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Abstract: Reynolds-averaged Navier–Stokes (RANS), large eddy simulation (LES), and hybrid RANS-LES,
first of all wall-modeled LES (WMLES) and detached eddy simulation (DES) methods, are regularly
applied for wall-bounded turbulent flow simulations. Their characteristic advantages and disadvantages
are well known: significant challenges arise from simulation performance, computational cost, and
functionality issues. This paper describes the application of a new simulation approach: continuous eddy
simulation (CES). CES is based on exact mathematics, and it is a minimal error method. Its functionality is
different from currently applied simulation concepts. Knowledge of the actual amount of flow resolution
enables the model to properly adjust to simulations by increasing or decreasing its contribution. The flow
considered is a high Reynolds number complex flow, the Bachalo–Johnson axisymmetric transonic bump
flow, which is often applied to evaluate the performance of turbulence models. A thorough analysis
of simulation performance, computational cost, and functionality features of the CES model applied is
presented in comparison with corresponding features of RANS, DES, WMLES, and wall-resolved LES
(WRLES). We conclude that CES performs better than RANS, DES, WMLES, and even WRLES at a little
fraction of computational cost applied for the latter methods. CES is independent of usual functionality
requirements of other methods, which offers relevant additional advantages.

Keywords: computational fluid dynamics; large eddy simulation (LES); Reynolds-averaged
Navier-Stokes (RANS) methods; hybrid RANS-LES methods

1. Introduction

Accurate and feasible numerical simulations of turbulent flows are highly relevant.
Such computational fluid dynamics (CFD) has impacted and transformed all aspects of
human endeavor and industry [1]. CFD tools today are integral components of aerospace,
defense, energy, power generation, transport, electronics, food processing, environmental
management, fire safety, computational chemistry, particle physics, genetics, architecture
and building design, and life, biomedical, and pharmaceutical sciences. The methodological
basis of such simulations has hardly changed. The spectrum of usually applied methods
ranges from non-resolving Reynolds-averaged Navier–Stokes (RANS) methods to resolving
large eddy simulation (LES) [2–7], and in between such non-resolving and resolving
methods we have hybrid RANS-LES methods [3,7–15].

In most applications of technical relevance, there is the need to simulate wall-bounded
complex turbulent flows including separation. Such flow simulations suffer from well-known,
basic problems for decades [7]. RANS simulations often provide unreliable results depending
on the model applied. Wall-resolved LES (WRLES) suffers from significant, often unaffordable
computational cost. Hybrid RANS-LES, usually detached eddy simulation (DES) methods [16–19],
and wall-modeled LES (WMLES) [20–22], provide predictions that are significantly influenced
by model setting options and (for the same number of grid points) the mesh distribution applied.
Such issues can be seen in several areas, as for example aerospace, mesoscale, and microscale
modeling in regard to atmospheric simulations, and many technical applications [7,23,24].
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Current developments driven by several communities focus on exploring options to
improve DES and WMLES methods.

There are novel methodological developments in this regard, such as minimal error
simulation methods referred to as continuous eddy simulation (CES) [7,25–32]. Such CES
methods can be used in conjunction with all usually applied turbulence models, including
probability density function (PDF) and Reynolds stress equation methods. These methods
are based on exact mathematics. They are essentially independent from a variety of
simulation settings applied in WMLES and DES methods. Their use continuously enables
simulations of partially resolving flow regimes ranging from RANS to LES. Such CES
methods receive limited attention so far because their design is different from mainstream
approaches. Unsteady RANS equations are known to be capable of involving resolved
motion in simulations, but (similar to LES applied on coarse grids) this is no guarantee of
a proper simulation performance. The idea that RANS-type equations can stably resolve
flow like LES is not generally accepted. CES methods do not explicitly involve information
about the grid as given by the filter width ∆. The latter is usually seen as requirement for
proper LES.

The motivation of this paper is to contribute to the clarification of the latter essential
questions. The flow considered, which is the axisymmetric transonic bump flow experimentally
studied by Bachalo and Johnson [33], is a complex and high Reynolds number (Re)
flow. It stands as a well-established test case for assessing turbulence models due to
its characteristics involving separation, shock waves, and downstream reattachment, along
with various regions of steep gradients. Remarkably, this flow closely resembles the flow
over an aircraft, such as the NASA Common Research Model (CRM) under transonic cruise
conditions. RANS predictions of this flow reveal significant problems, i.e., the performance
of simulation methods depends essentially on the proper inclusion of resolved motion.
However, partially resolving simulation methods (such as DES and WMLES) and even
WRLES face significant issues regarding such flow simulations. For example, Spalart et al.
concluded that “WMLES results are disappointing, even in terms of the shock position,
even though the results from two grids, respectively, agree well with each other. This
failure of grid refinement to warn of an inaccurate simulation is of great concern” [34].

The following are the specific objectives of our investigation:
O1. Performance features: demonstration that CES methods are characterized by a simulation

performance that is better than the performance of RANS and usually applied hybrid
RANS-LES (in particular DES and WMLES methods) and at least as good as the
performance of WRLES.

O2. Cost features: demonstration that the computational cost of CES is significantly below
the cost of hybrid RANS-LES (DES and WMLES methods) and WRLES.

O3. Functionality features: Demonstration that CES is independent of significant functionality
requirements of hybrid RANS-LES and WRLES (choice of sufficiently fine grids,
appropriate mesh distributions, specific simulation settings for a flow considered,
validation data needed to determine simulation settings).

This paper is organized in the following way. Section 2 introduces the modeling and
computational approach. Section 3 describes the resolution features of the CES model
considered. Section 4 compares the performance and computational cost of CES with
RANS, DES, WMLES, and WRLES methods. The conclusions of this study are presented
in Section 5.

2. Modeling and Computational Approach
2.1. Modeling Approach

The motivation of the modeling approach is to cover both RANS and LES regimes via
the implementation of a flow-resolving capability in RANS equations, with the understanding
that the use of this model in resolving mode is equivalent to the use of LES. On the one hand,
the implementation in RANS equations ensures a model complexity usually applied in
RANS approaches. On the other hand, this approach avoids the typical LES problem given
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by the use of an artificial (i.e., non-physical) length scale (the filter width ∆) [35]. The latter
is the reason for significant LES problems: the need to use very fine grids (which implies
very high computational cost) to ensure accurate results, and (very often) uncertainty
regarding how well resolving a particular LES actually is. The hybridization approach
applied (the set up of continuous eddy simulation (CES) methods [7,25–32]) can be used in
conjunction with a variety of turbulence models, including probability density function
(PDF) and Reynolds stress equation methods [7,30,36]. In an attempt to focus on the main
advantages of this approach, it will be applied here on the level of two-equation eddy
viscosity methods. The essential steps of the modeling approach will be described in the
following paragraphs focusing on the equations considered, the hybridization approach,
and the model functioning.

We consider the compressible continuity equation and momentum equation [28],

D̃ρ̃

D̃t
= −ρ̃

∂Ũk
∂xk

,
D̃Ũi

D̃t
= −1

ρ̃

∂ p̃
∂xi

+
2
ρ̃

∂(ρ̃νS̃d
ij)

∂xj
− 1

ρ̃

∂(ρ̃τij)

∂xj
. (1)

The tilde refers to space-averaged variables, and D̃/D̃t = ∂/∂t + Ũj∂/∂xj represents the
filtered Lagrangian time derivative. Components of the velocity vector are denoted by Ũi,
and p̃, ρ̃, and ν, represent pressure, fluid density, and kinematic viscosity, respectively. The
rate-of-strain tensor reads S̃ij = (∂Ũi/∂xj + ∂Ũj/∂xi)/2, and its deviatoric part is given
by S̃d

ij = S̃ij − S̃nnδij/3. Throughout this paper, we use the sum notation. The right-hand
side (RHS) of the momentum equation contains an unknown, the modeled stress tensor
τij. The eddy viscosity model assumes for this stress τij = 2kδij/3 − 2νtS̃d

ij. Here, δij is the
Kronecker delta, k represents the modeled kinetic energy, and νt = Cµk/ω is the turbulent
viscosity of the flow which includes the turbulence frequency ω = 1/τ and the model
parameter Cµ having a standard value Cµ = 0.09. Here, the turbulence time scale τ = k/ϵ
is related to k and the dissipation rate ϵ.

The model viscosity νt is closed via a two-equation turbulence model, in particular a
k − ω model that provides k and ω for νt = Cµk/ω. We consider the equations [37]

D̃k
D̃t

= P − ϵ + Dk,
D̃ω

D̃t
= Cω1 ω2

(P
ϵ
− β

)
+ Dω + Dωc. (2)

Here, turbulence production is given by P = νtS2 (which involves the strain rate
S = (2S̃d

mnS̃d
nm)

1/2), the dissipation of k is given by ϵ = kω, and β = Cω2 /(CkCω1). The
diffusion terms involved read

Dk =
∂

∂xj

[(
ν + νt

) ∂k
∂xj

]
, Dω =

∂

∂xj

[(
ν +

νt

σω

) ∂ω

∂xj

]
, Dωc =

Cω

k
(ν + νt)

∂k
∂xj

∂ω

∂xj
(3)

The model parameters involved have the values

Cω1 = 0.49, Cω2 = 0.072, Cω = 1.1, Ck = 0.09, σω = 1.8.

The cross-diffusion term Dwc is added to Dw, although its relevance is subject to questions
(it is supposed to reduce the inaccurate behavior of k − ω models for free shear layer flow
simulations) [38]. Numerical errors induced by the integration of the ω equation across
the viscous sub-layer can compromise the accurate simulation of the velocity profile [39].
To circumvent this problem, ω = 2ν/d2 is applied to specifically set the value of ω at the
first cells above the wall, while d accounts for the distance between the wall and the center
of the first cell. We note that the expression ω = 2ν/d2 is derived under the assumption
that the first cell center lies within the viscous sub-layer, alternative settings of which are
available in [38].
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The hybridization can be accomplished in several ways [27]. By following our recent
approach [25], we address the hybridization by a modification of the dissipation in the scale
equation by the introduction of an unknown function β∗, which replaces β in Equation (2),

D̃k
D̃t

= P − ϵ + Dk,
D̃ω

D̃t
= Cω1 ω2

(P
ϵ
− β∗

)
+ Dω + Dωc. (4)

We refer to the model described in the following as CES-KOS (or simply KOS), where KO
refers to the use of an k − ω model and KOS refers to a hybridization of the scale equation.
Essential steps of the hybridization described elsewhere [27] are the following ones. The
production term in the ω equation is replaced by using the k equation and the first variation
in the resulting ω equation is considered. The hybridization error becomes minimal for a
zero first-order variation. The latter provides a relationship between variations of model
parameters (β∗) and model variables (like k and ω). The integration of this relationship
from a complete modeling state to a state of partial modeling implies

β∗ = 1 + R(β − 1). (5)

Here, R (which characterizes the flow resolution degree) will be discussed in the next
paragraph. In order to obtain β∗ = 1 + R(β − 1), we neglected for simplicity Dωc and
the substantial derivatives D̃k/D̃t and D̃ϵ/D̃t. It is possible to involve the latter terms
at the cost of more complex equations [29]. Relevant assumptions also made to obtain
β∗ = 1 + R(β − 1) are normalized first variations δk/k and δω/ω which are invariant in
space and time. It is worth noting that the latter assumptions do not involve any restriction
of the modeling approach, as these assumptions stabilize the flow resolution in space and
time. These equations were applied in conjunction with the elliptic blending approach
used in our previous work to account for wall damping [40] (in the RANS-mode for all the
flow fields).

The model functioning is essentially related to the variable R. The hybridization
approach provides the relation R = L2

+. Here, L = k3/2/ϵ refers to the length scale
of modeled motions, and L+ = L/Ltot is the turbulence length scale resolution ratio
incorporating both modeled (L) and total contributions (Ltot) [7]. The modeled contribution
is calculated by L = ⟨k⟩3/2/⟨ϵ⟩. The brackets refer to averaging in time. The total
length scale is calculated correspondingly by Ltot = k3/2

tot /ϵtot. In these relations, we have
ktot = ⟨k⟩+ kres, where kres =

(〈
ŨiŨi

〉
−

〈
Ũi

〉〈
Ũi

〉)
/2. Correspondingly, ϵtot is the sum of

modeled and resolved contributions, ϵtot = ⟨ϵ⟩+ ϵres. Here, the resolved contribution is
calculated by ϵres = ν

(〈
∂Ũi/∂xj∂Ũi/∂xj

〉
−
〈
∂Ũi/∂xj

〉〈
∂Ũi/∂xj

〉)
. The differences between

the concept described here and related partially averaged Navier–Stokes (PANS) and
partially integrated transport (PITM) models are discussed elsewhere [7,31]. First of all,
these differences are seen in regard to the ability of models to accomplish a desired imposed
flow resolution. In particular, PANS and PITM approaches suffer from discrepancies
between the imposed and actual flow resolution, which may imply significant deficiencies
of the simulation performance of PANS and PITM methods. It is worth noting, however,
that ϵ+ = ϵ/ϵtot is usually found to be well-approximated by unity except very close to
walls. If this approximation is applicable, it implies that R = L2

+ = k3
+.

The involvement of R in the model via β∗ = 1 + R(β − 1) characterizes an essential
difference to usually applied modeling approaches focusing on imposing a certain desired
flow resolution via the model set up. Within the CES-KOS modeling approach, the model is
informed about the actual flow resolution via R. This enables the model to properly respond
to changes in the amount of resolved motion (implied by changes in the mesh density
or different Re). In particular, the model contribution can decrease (increase) if there is a
significant amount of (little) resolved motion. Without implementation of this mechanism,
the model cannot properly transition between LES and RANS regimes characterized by a
significant amount of (no) resolved motion.
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2.2. Flow Considered

Figure 1 shows a schematic diagram of the experimental configuration and the
computational domain for the axisymmetric transonic bump considered along with the
applied boundary conditions. This case pertains to shock-triggered boundary layer separation
induced by an axially symmetric bump mounted on a slim spherical cylinder, which extends
61 cm upstream. The case reflects the upper surface of a transonic wing. It is characterized
by a Mach number (M∞) of 0.875 and a Reynolds number (Re) of 2.763 M relative to the
airfoil’s chord length c. Main flow features are also shown in Figure 2.

Figure 1. Axisymmetric transonic bump geometry: Experimental and computational configuration [41,42].

Figure 2. Main flow features [43].

The experiment [33] was conducted using a closed return tunnel with a variable
density and featured a spherical cylindrical body with a diameter of 0.152 m. The tunnel
had upper and lower walls, both made up of porous-slotted material, which allowed
approximately 21% of open area. The incident boundary layer on the bump measured
approximately 1 cm in thickness, and the estimated momentum-thickness Reynolds number
at a point of 1.5 chord lengths was around Reθ ≈ 6600. The chord length of the bump
was fixed at 0.2032 m. In the experiment, a shockwave formed downstream of the bump,
which extended from the cylindrical surface. This shockwave, along with an adverse
pressure gradient, led to unsteady flow separation from the surface with reattachment
further downstream. The reattachment point is largely influenced by the turbulent stresses
generated in the detached shear layer.

While the Bachalo–Johnson [33] experiment has provided detailed data on mean
velocity profiles, the Reynolds shear stress, and surface pressure, it is important to note
that measurements of skin friction coefficients were omitted. The latter were provided by a
recent experiment of Lynch et al. [44].
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2.3. Computational Approach

Given the axisymmetric nature of the test case, we designed the computational domain
as a slender wedge with an angle ≤5◦ and a single cell thickness along the plane of
symmetry. This setup process is documented in [45] and illustrated in Figure 1. The
domain’s length extended to 7.63 D (see Figure 2), while the height of the wedge matched
3.62 D. The spherical bump geometry starts at x/c = 0, with the inlet patch located at
x/c = −1.5 and the exit boundary at x/c = 4.4 in the main geometry. The relevant physical
domain extends to x/c = 2. To construct a block-structured grid suitable for the bump
domain, we employed Salome in conjunction with the snappyHexMesh mesh generator
provided by OpenFOAM. OpenFOAM has several solvers for both incompressible and
compressible flows (e.g., SonicFOAM and RhoCentralFOAM, etc.). For the current work,
we have applied an unstructured finite-volume solver, SonicFOAM, a transient solver
for transonic/supersonic, laminar, or compressible flow. Two meshes, G1 and G2, were
created with different cell counts in the longitudinal and transverse directions, as shown
in Figure 3. Detailed characteristics of these meshes are provided in Table 1. Both meshes
used non-uniform grading, with cells stretched in the axial direction and compressed in the
transverse direction, particularly near the wall and bump region. The mesh density was
enhanced in the expected shock region. The initial cell dimension near the surface was set
to 1 mm for both meshes, resulting in a mean value of y+ of 30. Using an axisymmetric grid,
we simulate in this way a slice of the 3D axisymmetric bump geometry (a spanwise-periodic
configuration with the same cross-sectional profile as given by the three-dimensional bump
geometry). The same approach was applied by Ren et al. [41] as well as Elnahhas et al. [46].

Figure 3. Partial view of the grids applied for the bump case: coarse grid G1[300 × 120], fine grid
G2[600 × 150].

Table 1. The grids applied and specifications of the simulation parameters.

Run Grid Ncells Nx × Ny × Nz
Min. Wall
Spacing ∆y+

G1 Coarse 1.08 M 300 × 120 × 30 0.00001 1.00
G2 Fine 5.4 M 600 × 150 × 60 0.000001 0.85

Reynolds numbers Mach
number Char. length Spatial domain

Re = (2.763 M, 5.5 M) 0.875 c = 0.2032 m 7.63 D × 3.62 D × 5◦

Characteristic boundary conditions were imposed at the freestream and outflow
boundaries. Efficiently characterizing turbulent inflow conditions remains a persistent
challenge for hybrid simulations. A precursor RANS simulation utilizing the k-ω model
was employed. This involved extracting mean velocity and other data (see Figure 4)
from the mapping plane to provide a proper turbulent inflow at x/c = −1. The set-up
involved a composite setting at the inlet boundary. Specifically, velocities within the
turbulent boundary layer were directly mapped at a predefined distance downstream,
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while upper-wall velocities were set to a fixed value, as depicted in Figure 4. The computed
total mass flow rate in conjunction with the turbulent viscosity profile established a
comprehensive inflow profile. The lateral surfaces, on the other hand, employed a wedge
boundary condition, which enforces equal and opposite fluxes on both sides. The bump’s
surface is subjected to a solid wall boundary condition. At the outlet, zero gradients were
applied for velocities and turbulent stresses. Since the flow is compressible, an appropriate
characteristic-based or pressure-outlet condition was applied at the outlet. The latter
allowed for the reflection of pressure waves, including shock waves.

Figure 4. Illustration of inflow simulation.

The initial time-step of the simulation was set at 10−3c/U∞ for the G1 grid, ensuring a
consistent CFL number of 0.4 in all simulations. The total sampling time of the CES-KOS
simulation on both grids was 14 convective units (c/U∞). Nine (9) of these units were
utilized to achieve a steady state of the simulation, while the remaining five (5) units were
dedicated to the collection of turbulence statistics. Due to the interaction between the
shock and turbulent boundary layer, the flow separates over the bump, and subsequently
reattaches at a location further downstream on the cylinder surface [43]. Figure 2 illustrates
the characteristic shock wave and the flow detachment following the shock on the bump.
To numerically solve the discretized equations, we used an algebraic multi-grid solver
with the van Leer scheme. The latter is a second-order upwind-based discretization
scheme. The solution was considered to be converged when the relative error magnitudes
of the computed flow variables reached 10−6. The flow dynamics and corresponding
shock-wave interactions were studied at two main Reynolds numbers: Re = (2.763 M,
5.5 M). Measurements for comparison are only available for the Re = 2.763 M case. The
grid and Re variations in our simulations cover resolutions ranging from well-resolved
LES to almost RANS modeling. In particular, the Re = 2.763 M (G2 case) approximates
a well-resolved LES, and the Re = 5.5 M (G1 case) represents RANS-type modeling. By
covering LES to RANS regimes, our simulations enable the investigation of resolution
effects on separation predictions.

3. CES-KOS Resolution Features
3.1. Resolution Features

Characteristic resolution features of the CES-KOS model will be illustrated first.
Figure 5 and Table 2 show velocity fluctuations (u and v) for different Re and resolution
conditions, in particular the Re = 5.5 M (G2, G1) and Re = 2.763 M (G2, G1) cases. These
cases cover a range of flow resolution conditions, from nearly fully resolved (Re = 2.763 M,
G2) to predominantly RANS-type (Re = 5.5 M, G1) conditions. The Re = 2.763 M(G2) case
shows a diverse range of small-scale vortices within the recirculation region, indicating
a high level of flow resolution. On the other hand, the Re = 5 M (G1) case exhibits an
unsteady RANS-type regime, in which fluctuations persist, but small-scale turbulence
structures are hardly resolved anymore. The transitional cases (Re = 2.763 M (G1) and
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Re = 5.5 M (G3)) show less fine-scale structures than the (Re = 2.763 M, G2) case due to the
grid coarsening and increased Re, respectively. Specific observations are the following ones:
(i) Grid coarsening and higher Re cause continuous changes of fluctuations, without sudden
shifts. The most noticeable change is the spatial clustering of fluctuations, while the overall
strength of fluctuations remains largely unaffected. (ii) In particular, under unstationary
RANS conditions, fluctuations are still present (they do not disappear). It is interesting
to see that the strength of fluctuations is comparable to the strength of fluctuations under
resolving conditions.

Table 2. Range of velocity fluctuations for the cases described in Figure 5.

Fluc. y/c = 0.48 y/c = 0.6 y/c = 0.8

u −0.002 ≤ u ≤ 0.002 −0.003 ≤ u ≤ 0.003 0.004 ≤ u ≤ 0.004
v −0.003 ≤ v ≤ 0.003 −0.004 ≤ v ≤ 0.004 0.004 ≤ v ≤ 0.004

Figure 5. Velocity fluctuations u, v (top to bottom) within and off the recirculation region in xz planes
at y = (0.48, 0.6, 0.8)c (left to right) for (a) Re = 5.5 M (G2), (b) Re = 5.5 M (G1), (c) Re = 2.763 M (G2),
(d) Re = 2.763 M (G1) cases. The color scale is given in Table 2. Positive (negative) fluctuations are
represented by red (blue) regions.

Figure 6 shows local resolution characteristics of the CES-KOS model, specifically
L+ = L/Ltot, k+ = k/ktot, and ϵ+ = ϵ/ϵtot for different grids at different positions. Apart
from looking at specifics, the k+ profile, for example, shows significant changes in the flow
resolution ranging from almost RANS regimes close to the walls to (depending on the grid)
resolving regimes in the core of the flow. It is essential to note that these resolution variations
take place smoothly; there are no oscillations in the resolution indicators. The latter is a
consequence of the model set-up assuming, for example, spatially invariant variational
contributions δk/k. The grid effect is as required: the use of a finer grid implies more
resolution, which decreases L+ = L/Ltot and k+ = k/ktot. As observed also otherwise [25],
ϵ+ values were found close to unity, but grid effects are clearly present.
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Figure 6. CES-KOS flow resolution features: L+, k+, and ϵ+ (first, second, and third row) are shown
at the given x/c.

3.2. Flow Simulations: Grid Effects

Figure 7 shows the spatial distribution of fluctuations, velocity magnitude, and
pressure. A λ-structure-like shock pattern is seen over the bump region in particular
in pressure and velocity contour plots. The pressure contour shows a diminishing pressure
within the shock region compared to the downstream distribution. The interplay between
the impinging shock wave and boundary layer triggers the downstream boundary layer
propagation and leads to an unsteady separation bubble formation near the trailing edge.

Figure 7. CES-KOS simulations on G2: contour plots of fluctuations, velocity magnitude,
and pressure.

Figure 8 shows corresponding modeled kinetic energy k, Mach number, and density
variation for the two grids applied. The shock structure can be clearly seen in the Mach
number and density distributions. Both grids predict a Mach number up to 1.4 prior to
flow separation. The modeled kinetic energy k is particularly large in the separation and
post-separation regions. The fine grid producing more flow resolution provides slightly
smaller values of the modeled kinetic energy k and correspondingly more pronounced
fine-scale structures.

In Figure 9, we compare CES-KOS predictions of mean velocities with experimental
data at six locations: the equilibrium region (at x/c = −0.25), near separation (x/c = 0.688),
within the separation region (x/c = 0.813), close to reattachment (x/c = 1.00, 1.125), and
in the recovery region (x/c = 1.25). Overall, there is an excellent agreement between
CES-KOS predictions on both grids applied and experimental data: minor improvements
can be seen if the finer G2 grid is implied. An almost perfect agreement of simulations and
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measurements is found at x/c = −0.25. At x/c = 0.688, which is in the region after the
shock location but prior to detachment, there are noticeable but small deviations in the
G2 grid results close to the boundary layer margins and away from the wall. However, at
positions x/c = (0.813, 1.0, 1.125), which fall within the separation zone, the predictions
align well with the measurements. Beyond the separation zone at x/c = 1.25, following
the flow reattachment, there is again an excellent agreement. Overall, the predictions are in
very good agreement with measurements, comparable to results in Mor-Yossef’s work [47],
which applies low-diffusion AUFSR schemes.

Figure 8. CES-KOS simulations: contour plots of modeled kinetic energy k, Mach number, and
density on G1 (first row) and G2 (second row).
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Figure 9. CES-KOS simulations: profiles of the normalized streamwise velocity ⟨U⟩/Ure f at different
axial locations for the two grids applied.

The Reynolds-stress profiles presented in Figure 10 show minor discrepancies between
the simulated and measured stresses. Close to the reattachment location at x/c = 1.00, the
simulated stresses are lower than the measured stresses near the wall, with a maximum
difference of 31% near the peak of the bump. At x/c = 1.25 in the post-reattachment
region, the simulated Reynolds stress profile closely matches the experimental profile in
the far field. It is worth noting that the G1 grid results deviate somewhat more from the
measurements compared to the G2 grid profile, indicating the relevance of grid refinements.
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Figure 10. CES-KOS simulations: profiles of the normalized Reynolds stress ⟨uv⟩/U2
re f at different

axial locations for the two grids applied.
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Figure 11 shows flow streamlines colored by mean velocity magnitude for the two
grids applied. The shock-wave line is clearly visible. The plot shows a noticeable difference
between the streamlines of grid G1 and G2: the G2 result shows a considerably larger
separation bubble. Notably, the finer CES-KOS grid result aligns more closely with DNS
streamlines (see Figure 10 in Ref. [34]), although this is not displayed here. The figure
relates to the detachment and reattachment points reported in Table 3 in comparison with
measurements [33]. Despite small discrepancies in the exact locations of separation and
reattachment, the G2 prediction shows better correspondence to the shock location obtained
experimentally than the G1 result. The CES-KOS model characterizes the reattachment
location slightly downstream due to relatively long separation bubble length.

Figure 11. Time-averaged streamline across the flow domain colored by mean velocity magnitude:
G1 case left, G2 case right.

Figure 12 shows pressure (Cp) and skin friction (C f ) predictions. For a more detailed
discussion of grid effects, we consider four sub-regions of the domain. The initial region
extends from −1.0 ≤ x/c < 0.2, capturing a turbulent boundary layer with a pressure
gradient transitioning from zero to adverse to favorable. The second region covers
0.2 ≤ x/c < 0.6, incorporating the remaining favorable pressure gradient region and
ending with the interaction between shock and boundary layer. The third region stretches
from 0.6 ≤ x/c < 1.25, which covers the separation bubble. Lastly, the fourth region covers
the reattachment region, 1.25 ≤ x/c ≤ 2.5. The Cp profiles show a clear grid dependence
(with significant variations) in the first and second regions, whereas the C f profiles are
nearly grid-independent. Specifically, the G2 simulation accurately captures the elbow-like
feature in the pressure distribution at x/c ≈ 1.15 caused by the bump’s slope change; the
G1 grid simulation fails to replicate this feature. There is a slight overestimation of the C f
peak in the third region, with refinement leading to a monotonic decrease closer to the
measurements. Refinement also improves the predicted shock location upstream, aligning
better with the experiment (see Table 3). In post-shock regions, while surface pressure
agrees satisfactorily overall, separation and reattachment points differ slightly between
simulations and the measurement. For instance, in the 0.6 ≤ x/c < 1.25 region, separation
occurs at x/c = 0.8338 (G1) and x/c = 0.7030 (G2), with predictive error margins of 4–22%.
The G2 reattachment point (x/c = 1.1188) matches the measured x/c = 1.1000 [33] better
than the G1 estimation (x/c = 1.1479).
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Figure 12. CES-KOS simulations: profiles of pressure and skin-friction coefficients for the two
grids applied.
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Table 3. CES-KOS separation and reattachment characteristics.

Cases Re Separation Reattachment Bubble Length Error in Bubble
Location (x/c) Location (x/c) ∆x/c Length Prediction (%)

Expt. [33] 2.763 M 0.70 1.10 0.4 -
G1 2.763 M 0.8338 1.1479 0.3141 21.5
G2 2.763 M 0.703 1.1188 0.4158 3.95

G2 5.5 M 0.7105 1.1652 0.4547 -

3.3. Flow Simulations: Reynolds Number Effects

The study of Re effects is certainly of interest, and the CES concept provides a much
improved basis to address such questions than given by other modeling approaches (see
introduction). Corresponding results of CES-KOS simulations will be reported here by
expanding simulations of the Re = 2.763 M case to Re = 5.5 M simulations. A qualitative
impression is provided by Figure 13, which shows streamline structures for the low- and
high-Re regimes. Correspondingly, as Re is increased from Re = 2.763 to 5.5 M, a larger
separation bubble is observed. Table 3 presents a summary of the variations of separation
and reattachment points at different Re along with the experimental data. It may be seen
that increasing Re causes an increasing size of the separation bubble. The difference of
separation bubbles between Re = 2.673 M and Re = 5.5 M is less than 10%.

Figure 13. Time-averaged streamline across the flow domain colored by mean velocity magnitude:
Re = 2.763 M case left, Re = 5.5 M case right.

Overall, Figure 14 shows that higher Re values have a minimal influence on the velocity
profile of the flow [48]. In particular at x/c = 1.125 and 1.375, the boundary layer thickness
near the lower wall seems to expand with increasing Re. Similar observations are made
in regard to the Reynolds shear stress profile in the mid-separation region: there are only
minor Re effects. Figure 14 also shows corresponding profiles of the pressure coefficient
(Cp) and skin-friction coefficient (C f ). It may be seen that the Cp profiles are hardly affected
by Re effects. Although the separation locations for the two cases are not very different, the
lower Re case indicates an earlier reattachment at x/c ≈ 1.1188, while the reattachment
occurs at approximately x/c ≈ 1.1652 for Re = 5.5 M (see Table 3). Prior to flow separation,
the C f peak is significantly higher in the Re = 5 M case than for the Re = 2.763 M case,
indicating that the turbulence is highly intermittent in this zone. This finding aligns with
the common understanding that higher Reynolds numbers correspond to increased skin
friction, identified as the dominant drag in numerous practical applications. Örlü and
Schlatter [49] attributed this effect to the growing influence of the large-scale turbulence
structures, strong and accelerated flow over the bump and an implied impact on the
wall-shear stress. These factors contribute to an amplified growth rate of the separated
shear layer and consequently impact the reattachment location reported in Table 3.
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Figure 14. CES-KOS simulations: Re effect on profiles of the normalized streamwise velocity ⟨U⟩/Ure f
and normalized Reynolds shear stress ⟨uv⟩/U2

re f at different axial locations.

4. CES-KOS vs. RANS, DES, WMLES, and WRLES

The advantages of CES-KOS related to its ability to provide well-controlled resolving
simulations will be illustrated next. This will be conducted in comparison to usually
applied simulation methods that cover RANS, hybrid RANS-LES, and LES modeling. All
the CES-KOS results presented in this section were obtained on the G2 grid.

4.1. CES-KOS vs. RANS

The CES-KOS results were compared with four RANS models, in particular the
Wray–Agarwal (WA) model [50], the Spalart–Allmaras (SA) model [50], the shear-stress
transport (SST) k − ω model [which will be simply referred to as SST model] [51], and
the k − kL model [51]. Table 4 reports separation and reattachment locations, bubble
length, and % error results from different RANS-type turbulence models. The SST, SA,
and k − kL models predict a larger bubble size than given by the experimental data. The
WA model had an error of −23.5%, the smallest bubble size, due to late separation. The
CES-KOS prediction error is less than 4%. Most RANS models properly predicted the
location of separation around x/c = 0.70 (with the exception of the WA model). The SST
and SA models struggle with an accurate prediction of the reattachment point; they indicate
delayed reattachment. The WA and k − kL model predictions are closer to the experiment
measurement at 1.10. The best result follows from the CES-KOS simulation with an error
of 1.7%.

Table 4. RANS-type models: Separation and reattachment characteristics.

Cases Grid Separation Reattachment Bubble Length Error in Bubble
Points Location (x/c) Location (x/c) ∆x/c Length Prediction (%)

Expt. [33] - 0.70 1.10 0.4 -
CES-KOS 5.4 M 0.703 1.1188 0.4158 3.95
SA [16,50,52] - 0.688 1.1600 0.472 18
SST-k-ω [51,53] 0.21 M 0.665 1.1600 0.495 23.7
k-kL [51,54,55] 0.21 M 0.669 1.1200 0.450 12.75
WA [16,50,52] - 0.817 1.1230 0.306 −23.5

Model comparisons were performed at five axial locations: x/c = −0.25 (initial
region), x/c = 0.688 (the region after the shock location but prior to detachment), x/c =
(0.813, 1.125) (within the separation zone), and x/c = 1.375 (in the post-reattachment
region). Figure 15 shows mean velocity predictions of CES-KOS compared with the
predictions of RANS models mentioned above and the experimental results [33]. At
x/c = −0.25, all models provide similar predictions of the average velocity profile. Most
of the RANS models predict the velocity trend over the bump fairly well except at some
locations, in particular within the separation region (x/c = 0.688) where the traditional
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SA model clearly overestimates the actual mean velocity profile. CES-KOS matches the
experimental data and improves the prediction of SA, WA, SST, and k-kL models in the near
shock-wave and post-separation regions. In the post-reattachment region, all predictions
are relatively similar, in particular far away from the wall. Close to the wall, SST, SA and
CES-KOS models slightly underpredict the measured velocity. Figure 15 also shows a
corresponding comparison of Reynolds shear stresses in the post-separation region. The
predicted profiles exhibit a qualitative similarity with the experimental data, although the
Reynolds stresses are under-predicted. Compared to SST and k-kL turbulence models,
the CES-KOS prediction is in much better agreement with the experimental results. In
particular, SST and k − kL turbulence models underpredict the shear stress maximum (at
about y/c = 0.018) by up to 45% for the case considered, whereas the CES-KOS model
shows its capability of predicting a shear stress very similar to the experimental results.
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Figure 15. CES-KOS vs. RANS-type (WA, SA) [50] and (SST, k − kL) [51] models: Profiles of the
normalized streamwise velocity ⟨U⟩/Ure f and normalized Reynolds stress ⟨uv⟩/U2

re f at different
axial locations.

Figure 16 shows the time-averaged distributions of surface wall pressure and skin-friction
coefficients from RANS models and CES-KOS simulations. The numerical predictions of
SA, SST, and k-kL models indicate lower pressure levels in the post-separation region
(0.7 ≤ x/c ≤ 0.938) compared to experimental data. In addition, all RANS models
underpredict the surface pressure within the separation region (x/c = 0.938) [possibly
due to an inadequate flow resolution and turbulent mixing], whereas CES-KOS marginally
overestimates the profile. In the post-separation region, the CES-KOS and SA models exhibit
similar skin-friction coefficient profiles. However, after reattachment, the SA simulation
fails to capture the secondary C f peak at about x/c = 1.2 and the distinct skin-friction
distribution in this region, while CES-KOS accurately captures this feature. CES-KOS
provides the most accurate skin-friction results compared to the RANS models considered.
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Figure 16. CES-KOS vs. RANS-type (WA, SA) [50] and (SST, k − kL) [51] models: Profiles of pressure
and skin-friction coefficients.
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4.2. CES-KOS vs. DES

The inadequacy of RANS to accurately represent unsteady flow characteristics resulted
in the development of DES methods. In this subsection, we will compare CES-KOS predictions
with three DES methods: the Wray–Agarwal detached eddy simulation (WA-DES) method [50],
the Spalart–Allmaras-based DES (SA-DES) [41] method, and the zonal improved delayed
DES (IDDES) [34] method. The zonal IDDES technique uses a synthetic turbulence
generator at an adaptive RANS-LES interface located at x/c = −0.5 (0.5c upstream of the
bump). Due to the different flow regions considered, it is considered as a zonal approach.
Table 5 shows characteristic differences in the methods considered in regard to separation
and reattachment locations and bubble lengths. IDDES shows early reattachment around
x/c = 1.08. WA-DES predicts a longer bubble and delayed reattachment at x/c = 1.166.
The CES-KOS model provides the most accurate predictions.

Table 5. DES-type models: Separation and reattachment characteristics.

Cases Grid Separation Reattachment Bubble Length Error in Bubble
Points Location (x/c) Location (x/c) ∆x/c Length Prediction (%)

Expt. [33] - 0.70 1.10 0.4000 -
CES-KOS 5.4M 0.703 1.1188 0.4158 3.95
IDDES [34] 1.6B 0.7 1.0800 0.3800 −5.00
WA-DES [16,50,52] - 0.696 1.1660 0.4700 17.50

Figure 17 shows a comparison between velocity profiles provided by DES-based
models and the CES-KOS model. The velocity distribution predicted by SA-DES deviates
significantly from the empirical data, especially at x/c = 0.938 and x/c = 1.125. Profiles at
other locations also show considerable differences between the model and experiments,
indicating SA-DES issues with resolving the thin shear layer. WA-DES results also provide
inaccurate results; see the profiles at x/c = 0.688 and x/c = 1.375. Overall, the CES-KOS
model provides the most accurate results.
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Figure 17. CES-KOS vs. DES-type WA-DES, SA-DES [50], and IDDES [34] models: Profiles of the
normalized streamwise velocity ⟨U⟩/Ure f at different locations.

Figure 18 shows Reynolds-stress profiles of DES-type models and CES-KOS predictions.
We see significant differences, IDDES shows the largest difference of up to 37% compared
to experimental data. The Reynolds stress within the separation zone is notably low in
IDDES, making it challenging to capture velocity fluctuations. SA-DES and CES-KOS
overestimate the stresses off the boundary layer region. Corresponding comparisons of
pressure coefficient distributions are shown in the middle of Figure 18. The IDDES results
indicate reduced pressure levels in the post-separation region (0.85 ≤ x/c ≤ 1.2) compared
to the experimental data. Notably, IDDES substantially underestimates skin-friction
coefficients for 0.12 < x/c < 0.65. Changes in slope in the skin-friction distribution
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correlate with longitudinal curvature reversal of the bump’s surface at x/c ≈ 0.12 and
x/c ≈ 1.1. The low pressure values from IDDES correlate with the skin-friction coefficient
discrepancies. Specifically, the shear stress reversal predicted by IDDES occurs excessively
downstream, consistent with the misplaced shock-wave position.
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Figure 18. CES-KOS vs. DES-type WA-DES, SA-DES [50], and IDDES [34] models: Normalized
Reynolds stress ⟨uv⟩/U2

re f , pressure and skin-friction coefficient distributions.

4.3. CES-KOS vs. WMLES and WRLES

Given the notable shortcomings of DES-type models particularly in the attached boundary
layer region, as shown above, let us consider next the corresponding comparisons of CES-KOS
with WMLES and WRLES. Table 6 shows characteristic differences of the methods considered
in regard to separation and reattachment locations and bubble lengths. The reported WMLES
misidentifies the reattachment location and overestimates the separation bubble size by up to
17.5%. While WRLES captures the separation point accurately, its predicted bubble length size
has a 20% error. In contrast, the CES-KOS model provides the highest accuracy regarding the
estimation of the separation length, with an error of only ≈4%.

Table 6. LES-type models: separation and reattachment characteristics.

Cases Grid Separation Reattachment Bubble Length Error in Bubble
Points Location (x/c) Location (x/c) ∆x/c Length Prediction (%)

Expt. [33] - 0.70 1.10 0.4000 -
CES-KOS 5.4M 0.703 1.1188 0.4158 3.95
WRLES [42] 24B 0.69(0.68) 1.17(1.16) 0.48 20
WMLES [34] 24.09M 0.7 1.17 0.47 17.5

Figure 19 shows in its first row streamwise velocity profiles obtained by CES-KOS,
WMLES [41], and WRLES [42]. It may be seen that the CES-KOS model predicts the
streamwise velocity more accurately than WMLES and WRLES. In regard to turbulent
shear stress profiles shown in the second row, we see a reasonable agreement of WMLES,
WRLES, and CES-KOS with experimental data. It is of interest to note that CES-KOS and
WRLES provide very similar results. In attached flow regions, WMLES over-predicts the
turbulent shear stress (in the same amount as IDDES, as seen above). Due to its delayed
reattachment point, WMLES predicts a faster separated shear layer growth and higher
maximum Reynolds stresses compared to CES-KOS. These trends have been noted in past
numerical studies using alternative models [56,57].

Figure 19 also shows pressure coefficient distributions obtained by CES-KOS, WMLES,
and WRLES. The figure helps to illustrate and validate the accuracy of CES-KOS predictions.
The CES-KOS and WRLES models accurately predict pressure coefficient profiles due to
their sufficient flow resolution ability. In contrast, WMLES predicts a linearly increasing
pressure distribution within x/c = (0.7, 1.1), which fails to accurately capture the separation
zone. Furthermore, both CES-KOS and WRLES show reasonable predictions of the shock
location and post-shock pressure recovery. The WRLES results agree slightly better with the
experimental data downstream of the bump (between x/c = 1.1 and 1.3) compared to the
CES-KOS model. Figure 19 also shows skin-friction coefficient distributions obtained
by CES-KOS, WMLES, and WRLES. Evidently, WMLES significantly underestimates
the skin-friction coefficient in the separation region and fails to accurately represent the
post-separation flow physics. The predictions of CES-KOS and WRLES are very similar,
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with the exception that CES-KOS better agrees with the experimental data in the C f plateau
region upstream of separation. Overall, CES-KOS provides the most accurate predictions.
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Figure 19. CES-KOS vs. LES-type WRLES [42] and WMLES [41] models: Profiles of the normalized
streamwise velocity ⟨U⟩/Ure f , Reynolds stress ⟨uv⟩/U2

re f , pressure, and skin-friction coefficients at
different locations.

4.4. Cost Estimates

The comparison of computational method features will be completed by an analysis
of related computational cost. We follow our previous approach for doing so [25,40]. The
simulation cost are specified by

C = NNt = TN/∆t. (6)

Here, N is the number of grid points applied, Nt is number of time steps performed,
T = Nt∆t refers to the constant total physical simulation time, and ∆t (in c/U∞) is the
prescribed simulation time-step. N and ∆t are known to vary with Re according to N =
α1(Re/Re0)

β1 , ∆t = α2(Re/Re0)
−β2 , where α1, α2, β1, and β2 are constants [40]. Here,

Re0 = 2.763M, the Reynolds number of the flow considered, is used as normalization,
which simplifies the comparisons of computational cost for the flow considered. There
is, so far, limited information about the scaling characteristics of computational cost for
complex turbulent flows. To make the best possible use of the data we have, we follow our
approach presented in Ref. [25]. This means, in regard to WMLES and WRLES, that we
apply scalings presented by Yang et al. [58]. In regard to CES-KOS and DES, we use the
same scaling assumptions as before [25]. This approach determines the β1 and β2 values
shown below. The α1 and α2 can be determined by taking reference to simulation settings
of the flow considered, which are presented in Table 7 (for the flow considered, we have
N = α1 and ∆t = α2). The corresponding cost scalings are presented in Table 8, where the
range of coarse/fine data in Table 7 is translated into ranges of α1 and α2 data in Table 8.

Figure 20 shows the scaling of computational cost: the corresponding minima and
maxima of cost per method are defined by the coarse/fine data in Table 7. For simplicity,
we approximate the C/T scalings of CES-KOS, WMLES, and DES by (Re/Re0)

1.1 and apply
the corresponding fine grid data. Then, the cost of CES to the corresponding cost of WMLES
and DES are 1, 9.2, and 296, respectively, independent of Re. The cost ratio of WRLES to
CES-KOS is 77.7 × 103(Re/Re0)

1.62, showing a strong increase with Re. These differences
can be attributed to the CES-KOS feature of being derived through the minimization of the
hybridization error. A comparison of α3 values derived here for the finer grid,

(αKOS
3 , αWRLES

3 , αWMLES
3 , αDES

3 ) = (10.8 × 109, 8.39 × 1014, 9.96 × 1010, 32.0 × 1011), (7)

with corresponding α3 values determined regarding our previous CES simulations of the
NASA wall-mounted hump flow [25] shows a reasonable agreement:
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(αKOS
3 , αWRLES

3 , αWMLES
3 , αDES

3 ) = (8.43 × 1010, 7.28 × 1014, 1.66 × 1013, 2.64 × 1011). (8)

The latter α3 values apply to a scaling of C/T = α3(Re/Re0)
β1+β2 . Here, Re0 = 0.936 M

for the NASA wall-mounted hump flow, and β1 + β2 refers to scaling parameters of the
method considered.

Table 7. Computational cost characteristics of methods.

Factors CES-KOS DES [34] WMLES [41] WRLES [42]
Coarse Fine Coarse Fine Coarse Fine Coarse Fine

N = α1 1.08 M 5.4 M 470 M 1.6 B 20.74 M 24.90 M 3 B 24 B
∆t = α2 1 × 10−3 0.5 × 10−3 1 × 10−3 5 × 10−4 - 2.5 × 10−4 2.86 × 10−5 2.86 × 10−5

Table 8. Simulation cost estimates (C/T) for WRLES [42,58], WMLES [41,58], DES [21,34,59], and
CES-KOS.

Methods N ∆t C/T = N/∆t

CES-KOS N = α1(
Re
Re0

)0.545 ∆t = α2(
Re
Re0

)−0.554 N/∆t = α3(
Re
Re0

)1.099 α3 = (1.08 − 10.8)× 109

WRLES N = α1(
Re
Re0

)1.86 ∆t = α2(
Re
Re0

)−0.857 N/∆t = α3(
Re
Re0

)2.72 α3 = (1.05 − 8.39)× 1014

WMLES N = α1(
Re
Re0

)1.0 ∆t = α2(
Re
Re0

)−0.143 N/∆t = α3(
Re
Re0

)1.143 α3 = (8.3 − 9.96)× 1010

DES N = α1(
Re
Re0

)0.545 ∆t = α2(
Re
Re0

)−0.554 N/∆t = α3(
Re
Re0

)1.099 α3 = (4.7 − 32.0)× 1011

Figure 20. Cost scalings for the methods listed in Table 8.

5. Conclusions

The following conclusions can be drawn in regard to the three objectives O1–O3
considered in the introduction, the simulation performance features, computational cost
features, and functionality features of CES in comparison to other simulation methods.

In regard to simulation performance features, the application of typically used RANS
as the SST or SA models confirms the known inability of RANS to accurately predict
separated turbulent flows, as seen in terms of their bubble length prediction errors of
18–24%. While the corresponding WA model error also corresponds to 24%, the k-kL
model performs better, as its bubble length error is only 13%. Velocity profile and pressure
coefficient plots indicate that the k-kL model performs relatively similar to the SA model.
The SA’s model inability to properly represent the structure of the flow considered can be
seen in the skin-friction coefficient C f plot. Corresponding C f plots of the WA model are
not reported. In regard to DES methods, IDDES in particular improves the prediction of
separation zone characteristics. However, the latter does not guarantee a better overall
simulation performance at all, as may be seen in terms of the skin-friction profile obtained
by IDDES. Other DES methods as WA-DES and SA-DES suffer from their inability to
properly represent the structure of the velocity field. In regard to both WMLES and WRLES,
we see predictions of separation bubble characteristics that are relatively similar to RANS
predictions (SST and SA predictions). Corresponding skin-friction profile predictions
reveal a remarkable inaccuracy of WMLES, and even deficiencies of WRLES. Arguably,
the most interesting feature of corresponding CES predictions is a very well-balanced
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performance. The CES-KOS considered shows the most accurate prediction of separation
bubble characteristics. Velocity, stresses, pressure and skin-friction profiles are in much
better agreement with the experimental data than seen in regard to the other methods
considered. This applies, in particular, to the use of the G2 grid. The latter is very coarse
compared to grids applied in other methods. However, the use of even coarser grids can
reduce the simulation performance, as illustrated in regard to the use of the G1 grid.

In respect to computational cost features, Figure 20 and computational cost scalings
presented in Table 8 speak a clear language regarding the cost differences of methods
considered. Using the fine grid data in Table 8 for the flow considered here, the CES costs
represent 0.0013, 10.8, 0.34% of the WRLES, WMLES, DES costs, respectively. In regard
to our previous CES simulations of the NASA wall-mounted hump flow [25], we found
for the flow considered corresponding CES cost ratios of 0.012, 0.51, 31.9% of WRLES,
WMLES, DES costs, respectively (see Equation (8). This comparison shows that significant
variations in cost ratios can be found, but the CES costs are always much below the costs of
other methods. These CES advantages enable the reliable simulations of high Re flows that
cannot be properly studied by other methods. This was demonstrated by the simulation
of the flow considered at the much higher Re = 5.5 m. The conclusion was that there are
very minor Re effects, i.e., the flow considered is basically in the asymptotic Re regime.
The consideration of cost depending on Re is only one way of looking at the question
considered. The overall message is that CES opens a new dimension for studying the
influence of significant grid refinements to improve predictions via involving a higher
fraction of resolved motion.

In respect to functionality features, we see the following. WRLES is constrained by
the need to use sufficiently fine grids. Usually, it is not evident at all whether the grids
applied enable fully resolved simulations. Hybrid RANS-LES like WMLES methods are
known to be seriously affected by simulation settings, the use of different (equilibrium
or non-equilibrium) wall models, definitions of regions where different models and grids
are applied, different mesh distributions, and set-up options to manage the information
exchange between such different flow regions. A similar dependence on simulation settings
is found for DES methods: the results depend on the concrete model applied and the
definition of differently treated simulation zones. For the same number of grid points, DES
and WMLES are known to depend on the mesh organization. An appropriate setting of
simulation options requires validation data which are often unavailable. CES methods are
independent of such functionality requirements, and the model can be used as is, which
is a significant advantage. The CES features enable reliable predictions under conditions
where validation data are unavailable.

The present paper on Bachalo–Johnson axisymmetric transonic bump flow simulations
continues our previous simulations of periodic hill flows at high Re [31] and the NASA
wall-mounted hump flow [25]. A natural continuation of this work would be the simulation
of even more complex flows, as given by Gaussian bump flows [60]. The latter is outside
the scope of this paper. However, corresponding CES simulations appear to be highly
promising due to the inherent nature of CES, the incorporation of actual resolved motion,
and related stable model response. Such simulations are expected to significantly improve
RANS and hybrid RANS-LES as WMLES and DES results. As demonstrated here, it is even
plausible to expect improvements of WRLES at a fraction of the computational cost.
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