Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (96)

Search Parameters:
Keywords = voltage-source inverter nonlinearity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2980 KiB  
Article
Transient Stability Enhancement of Virtual Synchronous Generator Through Analogical Phase Portrait Analysis
by Si Wu, Jun Wu, Hongyou Zhong and Yang Qi
Energies 2025, 18(13), 3495; https://doi.org/10.3390/en18133495 - 2 Jul 2025
Viewed by 191
Abstract
Virtual synchronous generator (VSG) control has been increasingly utilized for the grid integration of the voltage source inverter (VSI). Under large disturbances, such as voltage sags and grid faults, the VSG synchronization dynamic is highly nonlinear and cannot be evaluated by small-signal-based approaches. [...] Read more.
Virtual synchronous generator (VSG) control has been increasingly utilized for the grid integration of the voltage source inverter (VSI). Under large disturbances, such as voltage sags and grid faults, the VSG synchronization dynamic is highly nonlinear and cannot be evaluated by small-signal-based approaches. Conventionally, the equal area criterion (EAC) is utilized to analyze the transient stability of a synchronous machine or a VSG. However, it is found that the EAC is only valid under special scenarios when the damping effect is ignored. In this case, the EAC will provide conservative predictions and therefore put stringent requirements on the fault-clearing time. This paper reveals that the motion of a pendulum is essentially the same as the VSG swing equation. Due to this, the phase portrait approach, which was used to predict the pendulum motion, can be similarly applied for the VSG transient stability study. Based on the analogical phase portrait analysis, a damping coefficient tuning guideline is proposed, which always guarantees the synchronization stability as long as an equilibrium exists. The aforementioned theoretical findings are finally verified through a grid-connected VSG under the hardware-in-loop (HIL) environment. Full article
Show Figures

Figure 1

22 pages, 4476 KiB  
Article
Real-Time Model Predictive Control for Two-Level Voltage Source Inverters with Optimized Switching Frequency
by Ariel Villalón, Claudio Burgos-Mellado, Marco Rivera, Rodrigo Zuloaga, Héctor Levis, Patrick Wheeler and Leidy Y. García
Appl. Sci. 2025, 15(13), 7365; https://doi.org/10.3390/app15137365 - 30 Jun 2025
Viewed by 324
Abstract
The increasing integration of renewable energy, electric vehicles, and industrial applications demands efficient power converter control strategies that reduce switching losses while maintaining high waveform quality. This paper presents a Finite-Control-Set Model Predictive Control (FCS-MPC) strategy for three-phase, two-level voltage source inverters (VSIs), [...] Read more.
The increasing integration of renewable energy, electric vehicles, and industrial applications demands efficient power converter control strategies that reduce switching losses while maintaining high waveform quality. This paper presents a Finite-Control-Set Model Predictive Control (FCS-MPC) strategy for three-phase, two-level voltage source inverters (VSIs), incorporating a secondary objective for switching frequency minimization. Unlike conventional MPC approaches, the proposed method optimally balances control performance and efficiency trade-offs by adjusting the weighting factor (λmin). Real-time implementation using the OPAL-RT platform validates the effectiveness of the approach under both linear and non-linear load conditions. Results demonstrate a significant reduction in switching losses, accompanied by improved waveform tracking; however, trade-offs in distortion are observed under non-linear load scenarios. These findings provide insights into the practical implementation of real-time predictive control strategies for high-performance power converters. Full article
(This article belongs to the Special Issue New Trends in Grid-Forming Inverters for the Power Grid)
Show Figures

Figure 1

27 pages, 8144 KiB  
Article
Discrete vs. Discretized Control in Voltage Source Inverters for UPS Systems
by Zbigniew Rymarski, Wojciech Oliwa and Grzegorz Wieczorek
Energies 2025, 18(13), 3336; https://doi.org/10.3390/en18133336 - 25 Jun 2025
Viewed by 223
Abstract
Digital control in UPS systems is currently the only reasonable way of controlling a voltage source inverter (VSI). The control frequency range is restricted to up to about 1 kHz owing to the output low-pass LC filter, which should also maintain the output [...] Read more.
Digital control in UPS systems is currently the only reasonable way of controlling a voltage source inverter (VSI). The control frequency range is restricted to up to about 1 kHz owing to the output low-pass LC filter, which should also maintain the output voltage during one switching period for the step unload. The measurement channels in the low-pass frequency range can be modeled as delays equal to some switching periods. A reasonably high (about 50 kHz) switching frequency minimizes the delays of the measurement channels. Two control systems will be compared—the pure discrete control, in this case a one-sample-ahead preview deadbeat control (OSAP), and a discretized passivity-based control (PBC). The OSAP control is easy to realize, is very fast, and enables one to obtain a steady state in a restricted number of steps after disturbance. However, the single-input single-output deadbeat control version is useless because it depends very strongly on the parameters of the inverter. The multi-input single-output OSAP (MISO-OSAP) control is directly based on discrete state equations (we treat the output voltage, output current, and inductor current as the measured state variables) and works perfectly for the nonlinear rectifier RC load (PF = 0.7) in a system without delay. The version of this with a linear prediction of state variables by means of a full-order state Luenberger observer (MISO-OSAP-LO) will be used in systems with different delays and compared with the discretized MISO passivity-based control without prediction for relatively high switching frequency (about 50 kHz). The aim and the novelty of the paper are in enabling a choice between one of these control systems for high switching frequency VSI with delays in the measurement channels. Full article
(This article belongs to the Special Issue Management and Optimization for Renewable Energy and Power Systems)
Show Figures

Figure 1

23 pages, 933 KiB  
Review
Characterising Non-Intentional Supraharmonic Emissions from Inverters in Power Grids: Review and Challenges
by Kasun Peiris, Sean Elphick and Duane Robinson
Energies 2025, 18(11), 2980; https://doi.org/10.3390/en18112980 - 5 Jun 2025
Viewed by 494
Abstract
Supraharmonic emissions, referred to as voltage/current waveform distortions in the 2–150 kHz range, have been identified as an emerging power quality concern. With the increased number of non-linear devices connected to the power grid, such as photovoltaic inverter systems, supraharmonic disturbances are expected [...] Read more.
Supraharmonic emissions, referred to as voltage/current waveform distortions in the 2–150 kHz range, have been identified as an emerging power quality concern. With the increased number of non-linear devices connected to the power grid, such as photovoltaic inverter systems, supraharmonic disturbances are expected to increase. Despite being a source of supraharmonic emissions, power electronic equipment has become a ubiquitous technology due to recent advancements. Similarly, researchers around the world have started studying these emissions; however, complete systematic knowledge concerning supraharmonic emissions is yet to be achieved. This paper uniquely delves into characterising emissions using existing knowledge, significantly improving the understanding of their complex micro-level interactions and highlighting emerging challenges. The paper presents a comprehensive summary integrating existing studies on supraharmonic emissions in five key areas: emissions, propagation and attenuation, measurement techniques, modelling and simulation, and mitigation. Full article
(This article belongs to the Special Issue Advances in Power Converters and Inverters)
Show Figures

Figure 1

19 pages, 5985 KiB  
Article
Generalized Predictive Control for a Single-Phase, Three-Level Voltage Source Inverter
by Diego Naunay, Paul Ayala, Josue Andino, Wilmar Martinez and Diego Arcos-Aviles
Energies 2025, 18(10), 2541; https://doi.org/10.3390/en18102541 - 14 May 2025
Viewed by 838
Abstract
In recent years, the study of model predictive control (MPC) in power electronics has gained significant attention due to its ability to optimize system performance and improve the dynamic control of complex power converters. There are two types of MPC: finite control set [...] Read more.
In recent years, the study of model predictive control (MPC) in power electronics has gained significant attention due to its ability to optimize system performance and improve the dynamic control of complex power converters. There are two types of MPC: finite control set (FCS) and continuous control set (CCS). The FCS–MPC has been studied more in regard to these two types of control due to its easy and intuitive implementation. However, FCS–MPC has some drawbacks, such as the exponential growth of the computational burden as the prediction horizon increases and, in some cases, a variable frequency. In contrast, generalized predictive control (GPC), part of CCS–MPC, offers significant advantages. It enables the use of a longer prediction horizon without increasing the computational burden in regard to its implementation, which has practical implications for the efficiency and performance of power converters. This paper presents the design of GPC applied to single-phase multilevel voltage source inverters, highlighting its advantages over FCS–MPC. The controller is optimized offline, significantly reducing the computational cost of implementation. Moreover, the controller is tested in regard to R, RL, and nonlinear loads. Finally, the validation results using a medium-performance controller and a Hardware-in-the-Loop device highlight the improved behavior of the proposed GPC, maintaining a harmonic distortion of less than 1.2% for R and RL loads. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

26 pages, 8468 KiB  
Article
DC-Link Capacitance Estimation for Energy Storage with Active Power Filter Based on 2-Level or 3-Level Inverter Topologies
by Maksim Dybko, Sergey Brovanov and Aleksey Udovichenko
Electricity 2025, 6(1), 13; https://doi.org/10.3390/electricity6010013 - 7 Mar 2025
Viewed by 957
Abstract
Energy storage systems (ESSs) and active power filters (APFs) are key power electronic technologies for FACTS (Flexible AC Transmission Lines). Battery energy storage has a structure similar to a shunt active power filter, i.e., a storage element and a voltage source inverter (VSI) [...] Read more.
Energy storage systems (ESSs) and active power filters (APFs) are key power electronic technologies for FACTS (Flexible AC Transmission Lines). Battery energy storage has a structure similar to a shunt active power filter, i.e., a storage element and a voltage source inverter (VSI) connected to the grid using a PWM filter and/or transformer. This similarity allows for the design of an ESS with the ability to operate as a shunt APF. One of the key milestones in ESS or APF development is the DC-link design. The proper choice of the capacitance of the DC-link capacitors and their equivalent resistance ensures the proper operation of the whole power electronic system. In this article, it is proposed to estimate the required minimum DC-link capacitance using a spectral analysis of the DC-link current for different operating modes, battery charge mode and harmonic compensation mode, for a nonlinear load. It was found that the AC component of the DC-link current is shared between the DC-link capacitors and the rest of the DC stage, including the battery. This relation is described analytically. The main advantage of the proposed approach is its universality, as it only requires calculating the harmonic spectrum using the switching functions. This approach is demonstrated for DC-link capacitor estimation in two-level and three-level NPC inverter topologies. Moreover, an analysis of the AC current component distribution between the DC-link capacitors and the other elements of the DC-link stage was carried out. This part of the analysis is especially important for battery energy storage systems. The obtained results were verified using a simulation model. Full article
Show Figures

Figure 1

15 pages, 3134 KiB  
Article
A Practical Short-Circuit Current Calculation Method for Renewable Energy Plants Based on Single-Machine Multiplication
by Jianhua Li, Jianyu Lu, Po Li, Ying Huang and Guoteng Wang
Electricity 2025, 6(1), 7; https://doi.org/10.3390/electricity6010007 - 17 Feb 2025
Viewed by 765
Abstract
In non-synchronous machine sources (N-SMSs), power sources are connected to the grid through power electronic devices, which typically exhibit a voltage-controlled current source characteristic during faults. Due to the current-limiting feature of inverters, the voltage and current demonstrate a strong nonlinearity. As a [...] Read more.
In non-synchronous machine sources (N-SMSs), power sources are connected to the grid through power electronic devices, which typically exhibit a voltage-controlled current source characteristic during faults. Due to the current-limiting feature of inverters, the voltage and current demonstrate a strong nonlinearity. As a result, the short-circuit current (SCC) of N-SMSs is commonly calculated using iterative methods. For renewable energy plants, which contain a large number of N-SMSs, the calculation is often based on the single-machine multiplication method, ignoring internal discrepancies among machines. To address these issues, this paper proposes a calculation method for the SCC contributed by a renewable energy plant based on single-machine multiplication. This method is simple, does not require iteration, and ensures engineering practicability. This paper first analyzes the SCC calculation model under a low-voltage ride-through (LVRT) control strategy. Inspired by the single-machine multiplication approach, a fast initial voltage calculation method at the machine terminal is proposed, along with an active current correction method. With this approach, a more accurate SCC can be obtained, avoiding convergence issues and ensuring practical applicability in engineering. The validity of this method is verified through PSCAD/EMTDC simulations. The error in calculating SCC does not exceed 3.02%. Compared with the single-machine multiplication method, the accuracy is significantly improved, while the accuracy is roughly equivalent to that of the iterative method. Full article
Show Figures

Figure 1

22 pages, 2161 KiB  
Article
Modeling, Control and Validation of a Three-Phase Single-Stage Photovoltaic System
by Eubis Pereira Machado, Adeon Cecílio Pinto, Rodrigo Pereira Ramos, Ricardo Menezes Prates, Jadsonlee da Silva Sá, Joaquim Isídio de Lima, Flávio Bezerra Costa, Damásio Fernandes and Alex Coutinho Pereira
Energies 2024, 17(23), 5953; https://doi.org/10.3390/en17235953 - 27 Nov 2024
Cited by 2 | Viewed by 777
Abstract
The central inverter topology presents some advantages such as simplicity, low cost and high conversion efficiency, being the first option for interfacing photovoltaic mini-generation, whose shading and panel orientation studies are evaluated in the project planning phase. When it uses only one power [...] Read more.
The central inverter topology presents some advantages such as simplicity, low cost and high conversion efficiency, being the first option for interfacing photovoltaic mini-generation, whose shading and panel orientation studies are evaluated in the project planning phase. When it uses only one power converter, its control structures must ensure synchronization with the grid, tracking the maximum power generation point, appropriate power quality indices, and control of the active and reactive power injected into the grid. This work develops and contributes to mathematical models, the principles of formation of control structures, the decoupling process of the control loops, the treatment of nonlinearities, and the tuning of the controllers of a single-stage photovoltaic system that is integrated into the electrical grid through a three-phase voltage source inverter. Using the parameters and configurations of an actual inverter installed at the power plant CRESP (Reference Center for Solar Energy of Petrolina), mathematical modeling, implementation, and computational simulations were conducted in the time domain using MatLab® software (R2021b). The results of the currents injected into the grid, voltages, active powers, and power factor at the connection point with the grid are presented, analyzed, and compared with real measurement data during one day of operation. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

34 pages, 16736 KiB  
Article
Optimized Energy Management Strategy for an Autonomous DC Microgrid Integrating PV/Wind/Battery/Diesel-Based Hybrid PSO-GA-LADRC Through SAPF
by AL-Wesabi Ibrahim, Jiazhu Xu, Abdullrahman A. Al-Shamma’a, Hassan M. Hussein Farh, Imad Aboudrar, Youssef Oubail, Fahad Alaql and Walied Alfraidi
Technologies 2024, 12(11), 226; https://doi.org/10.3390/technologies12110226 - 11 Nov 2024
Cited by 3 | Viewed by 2775
Abstract
This study focuses on microgrid systems incorporating hybrid renewable energy sources (HRESs) with battery energy storage (BES), both essential for ensuring reliable and consistent operation in off-grid standalone systems. The proposed system includes solar energy, a wind energy source with a synchronous turbine, [...] Read more.
This study focuses on microgrid systems incorporating hybrid renewable energy sources (HRESs) with battery energy storage (BES), both essential for ensuring reliable and consistent operation in off-grid standalone systems. The proposed system includes solar energy, a wind energy source with a synchronous turbine, and BES. Hybrid particle swarm optimizer (PSO) and a genetic algorithm (GA) combined with active disturbance rejection control (ADRC) (PSO-GA-ADRC) are developed to regulate both the frequency and amplitude of the AC bus voltage via a load-side converter (LSC) under various operating conditions. This approach further enables efficient management of accessible generation and general consumption through a bidirectional battery-side converter (BSC). Additionally, the proposed method also enhances power quality across the AC link via mentoring the photovoltaic (PV) inverter to function as shunt active power filter (SAPF), providing the desired harmonic-current element to nonlinear local loads as well. Equipped with an extended state observer (ESO), the hybrid PSO-GA-ADRC provides efficient estimation of and compensation for disturbances such as modeling errors and parameter fluctuations, providing a stable control solution for interior voltage and current control loops. The positive results from hardware-in-the-loop (HIL) experimental results confirm the effectiveness and robustness of this control strategy in maintaining stable voltage and current in real-world scenarios. Full article
Show Figures

Figure 1

19 pages, 2126 KiB  
Article
Power Quality State Estimation for Distribution Grids Based on Physics-Aware Neural Networks—Harmonic State Estimation
by Patrick Mack, Markus de Koster, Patrick Lehnen, Eberhard Waffenschmidt and Ingo Stadler
Energies 2024, 17(21), 5452; https://doi.org/10.3390/en17215452 - 31 Oct 2024
Cited by 1 | Viewed by 1222
Abstract
In the transition from traditional electrical energy generation with mainly linear sources to increasing inverter-based distributed generation, electrical power systems’ power quality requires new monitoring methods. Integrating a high penetration of distributed generation, which is typically located in medium- or low-voltage grids, shifts [...] Read more.
In the transition from traditional electrical energy generation with mainly linear sources to increasing inverter-based distributed generation, electrical power systems’ power quality requires new monitoring methods. Integrating a high penetration of distributed generation, which is typically located in medium- or low-voltage grids, shifts the monitoring tasks from the transmission to distribution layers. Compared to high-voltage grids, distribution grids feature a higher level of complexity. Monitoring all relevant nodes is operationally infeasible and costly. State estimation methods provide knowledge about unmeasured locations by learning a physical system’s non-linear relationships. This article examines a new flexible, close-to-real-time concept of harmonic state estimation using synchronized measurements processed in a neural network. A physics-aware approach enhances a data-driven model, taking into account the structure of the electrical network. An OpenDSS simulation generates data for model training and validation. Different load profiles for both training and testing were utilized to increase the variance in the data. The results of the presented concept demonstrate high accuracy compared to other methods for harmonic orders 1 to 20. Full article
Show Figures

Figure 1

15 pages, 5687 KiB  
Article
Synergistic Control of Active Filter and Grid Forming Inverter for Power Quality Improvement
by Khaliqur Rahman, Jun Hashimoto, Kunio Koseki, Taha Selim Ustun, Dai Orihara and Hiroshi Kikusato
Sustainability 2024, 16(20), 9068; https://doi.org/10.3390/su16209068 - 19 Oct 2024
Cited by 1 | Viewed by 1606
Abstract
This paper addresses the challenges and opportunities associated with integrating grid-forming inverters (GFMs) into modern power systems, particularly in the presence of nonlinear loads. Nonlinear loads introduce significant harmonic distortions in the source voltage and current, leading to reduced power factor, increased losses, [...] Read more.
This paper addresses the challenges and opportunities associated with integrating grid-forming inverters (GFMs) into modern power systems, particularly in the presence of nonlinear loads. Nonlinear loads introduce significant harmonic distortions in the source voltage and current, leading to reduced power factor, increased losses, and an overall reduction in system performance. To mitigate these adverse effects, active filters are employed. The objective of this study is to investigate a synergistic approach to modeling and control in integrated power systems with GFMs, focusing on enhancing power quality and grid stability by reducing harmonic distortions through the use of voltage-source active filters. This research contributes to sustainability by supporting the reliable and efficient integration of renewable energy sources, thereby reducing dependency on fossil fuels and minimizing greenhouse gas emissions. Additionally, improving power quality and system efficiency helps reduce energy waste, which is crucial for achieving sustainable energy goals. Simulations are conducted on a 1000 kW GFM connected to a grid with a nonlinear variable load, demonstrating the system’s effectiveness in adapting to dynamic conditions, reducing harmonics, and promoting a stable, resilient, and sustainable power grid. Full article
Show Figures

Figure 1

17 pages, 6511 KiB  
Article
Slow-Scale Bifurcation Analysis of a Single-Phase Voltage Source Full-Bridge Inverter with an LCL Filter
by Fang Yang, Weiye Bai, Xianghui Huang, Yuanbin Wang, Jiang Liu and Zhen Kang
Energies 2024, 17(16), 4168; https://doi.org/10.3390/en17164168 - 21 Aug 2024
Viewed by 948
Abstract
In high-power photovoltaic systems, the inverter with an LCL filter is widely used to reduce the value of output inductance at which a lower switching frequency is required. However, the effect on the stability of the system caused by an LCL filter due [...] Read more.
In high-power photovoltaic systems, the inverter with an LCL filter is widely used to reduce the value of output inductance at which a lower switching frequency is required. However, the effect on the stability of the system caused by an LCL filter due to its resonance characteristic cannot be ignored. This paper studies the stability of a single-phase voltage source full-bridge inverter with an LCL filter through the bifurcation theory as it is a nonlinear system. The simulation results show that low-frequency oscillation appears when the proportional coefficient of the system controller increases or the damping resistance decreases to a certain extent. The average model is derived to analyze the low-frequency oscillation; the theoretical analysis demonstrates that low-frequency oscillation is essentially a period in which doubling bifurcation occurs, which indicates the intrinsic mechanism of the instability of the full-bridge inverter with an LCL filter. Additionally, the limitation of the existing damping resistor design standards, which only considers the main circuit parameters but ignores the influence of the controller on system stability, is identified. To solve this problem, the analytical expression of the system stability boundary is provided, which can not only provide convenience for engineering design to protect the system from low-frequency oscillation but also expand the selection range of damping resistance in practice. The experiments are performed to verify the results of the simulation and theoretical analysis, demonstrating that the analysis method can facilitate the design of the inverter with an LCL filter. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

25 pages, 6867 KiB  
Article
Derivation of Analytical Expressions for Fast Calculation of Resistance Spot Welding System Currents
by Robert Brezovnik and Jožef Ritonja
Mathematics 2024, 12(16), 2454; https://doi.org/10.3390/math12162454 - 7 Aug 2024
Viewed by 983
Abstract
The paper deals with the dynamics of a resistance spot welding system. At the core of this system is a transformer, which is powered on the primary side by a pulse-width modulated inverter and has a full-wave output rectifier on the secondary side [...] Read more.
The paper deals with the dynamics of a resistance spot welding system. At the core of this system is a transformer, which is powered on the primary side by a pulse-width modulated inverter and has a full-wave output rectifier on the secondary side that provides a direct welding current. The entire system is nonlinear, due to magnetic hysteresis and electronics. The electronics prevent the current from flowing in all parts of the welding transformer at separate time intervals during the voltage supply period; therefore, not all the parameters affect the dynamic of currents and voltages all the time so the system is also time-variant. To design a high-performance welding system and to predict the maximum possible welding current at a specific load, it is necessary to know the welding and primary currents. The leakage inductances of the system can reduce the maximum welding current significantly at higher frequencies and the same load. There are several methods to determine these currents, each with its drawbacks. Measurements are time-consuming, using professional software is expensive and requires time to learn and free open-source software has many limitations and does not guarantee the correctness of the results. The article presents a new, fourth option—a theoretical derivation of analytical expressions that facilitate straightforward and rapid calculation of the welding and primary currents of the resistance spot welding system with symmetrical secondary branches. The derivation of the mathematical expressions is based on the equivalent circuits that describe the system in different operating states. The results of the numerical simulations confirmed the derived expressions completely. Full article
Show Figures

Figure 1

18 pages, 825 KiB  
Article
Decentralized Retrofit Model Predictive Control of Inverter-Interfaced Small-Scale Microgrids
by Milad Shojaee and S. Mohsen Azizi
Electronics 2024, 13(15), 2914; https://doi.org/10.3390/electronics13152914 - 24 Jul 2024
Viewed by 861
Abstract
In recent years, small-scale microgrids have become popular in the power system industry because they provide an efficient electrical power generation platform to guarantee autonomy and independence from the power grid, which is a critical feature in cases of catastrophic events or remote [...] Read more.
In recent years, small-scale microgrids have become popular in the power system industry because they provide an efficient electrical power generation platform to guarantee autonomy and independence from the power grid, which is a critical feature in cases of catastrophic events or remote areas. On the other hand, due to the short distances among multiple distribution generation systems in small-scale microgrids, the interconnection couplings among them increase significantly, which jeopardizes the stability of the entire system. Therefore, this work proposes a novel method to design decentralized robust controllers based on a retrofit model predictive control scheme to tackle the issue of instability due to the short distances among generation systems. In this approach, the retrofit model predictive controller receives the measured feedback signal from the interconnection current and generates a control command signal to limit the interconnection current to prevent instability. To design a retrofit controller, only the model of a robust closed-loop system, as well as an interconnection line, is required. The model predictive control signal is added in parallel to the control signal from the existing robust voltage source inverter controller. Simulation results demonstrate the superior performance of the proposed technique as compared with the virtual impedance and retrofit linear quadratic regulator techniques (benchmarks) with respect to peak-load demand, plug-and-play capability, nonlinear load, and inverter efficiency. Full article
(This article belongs to the Special Issue Advances in Enhancing Energy and Power System Stability and Control)
Show Figures

Figure 1

16 pages, 9721 KiB  
Article
Disturbance-Rejection Passivity-Based Control for Inverters of Micropower Sources
by Chao Luo, Liang Tu, Haiqing Cai, Haohan Gu, Jiawei Chen, Guangyu Jia and Xinke Zhu
Electronics 2024, 13(14), 2851; https://doi.org/10.3390/electronics13142851 - 19 Jul 2024
Viewed by 867
Abstract
Inverters are important interfaces between micropower sources and consuming loads. However, the varying inductors and capacitors, modeling errors, measurement errors, and external disturbances would lead to degradation of the inverters’ performances when conventional linear control is adopted, causing instability problems. To address it, [...] Read more.
Inverters are important interfaces between micropower sources and consuming loads. However, the varying inductors and capacitors, modeling errors, measurement errors, and external disturbances would lead to degradation of the inverters’ performances when conventional linear control is adopted, causing instability problems. To address it, a disturbance-rejection passivity-based nonlinear control strategy is proposed for the inverters of micropower sources. The proposed method innovatively introduces an extended high-gain state observer into the passivity-based controller to achieve online observation and elimination of complex influencing factors such as external disturbances, time-varying parameter uncertainties, and modeling errors, thus ensuring the global stability of the inverter under various disturbances. The design details on the passivity-based controller and the extended high-gain state observer are elaborated. The effectiveness and feasibility of the proposed control strategy are verified by the experiments performed by a 15 kVA inverter designed in the lab. The results show that the proposed control is able to ensure the inverter’s stable operation under the following conditions: constant power load, the filter inductance and capacitance reduce up to 33% and 96%, and the input voltage varies more than 22%. Full article
(This article belongs to the Special Issue Design and Control of Smart Renewable Energy Systems)
Show Figures

Figure 1

Back to TopTop