Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = volcanic Portland cement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4487 KiB  
Article
Recycling Volcanic Lapillus as a Supplementary Cementitious Material in Sustainable Mortars
by Fabiana Altimari, Luisa Barbieri, Andrea Saccani and Isabella Lancellotti
Recycling 2025, 10(4), 153; https://doi.org/10.3390/recycling10040153 - 1 Aug 2025
Viewed by 135
Abstract
This study investigates the feasibility of using volcanic lapillus as a supplementary cementitious material (SCM) in mortar production to improve the sustainability of the cement industry. Cement production is one of the main sources of CO2 emissions, mainly due to clinker production. [...] Read more.
This study investigates the feasibility of using volcanic lapillus as a supplementary cementitious material (SCM) in mortar production to improve the sustainability of the cement industry. Cement production is one of the main sources of CO2 emissions, mainly due to clinker production. Replacing clinker with SCMs, such as volcanic lapillus, can reduce the environmental impact while maintaining adequate mechanical properties. Experiments were conducted to replace up to 20 wt% of limestone Portland cement with volcanic lapillus. Workability, compressive strength, microstructure, resistance to alkali-silica reaction (ASR), sulfate, and chloride penetration were analyzed. The results showed that up to 10% replacement had a minimal effect on mechanical properties, while higher percentages resulted in reduced strength but still improved some durability features. The control sample cured 28 days showed a compressive strength of 43.05 MPa compared with 36.89 MPa for the sample containing 10% lapillus. After 90 days the respective values for the above samples were 44.76 MPa and 44.57 MPa. Scanning electron microscopy (SEM) revealed good gel–aggregate adhesion, and thermogravimetric analysis (TGA) confirmed reduced calcium hydroxide content, indicating pozzolanic activity. Overall, volcanic lapillus shows promise as a sustainable SCM, offering CO2 reduction and durability benefits, although higher replacement rates require further optimization. Full article
Show Figures

Figure 1

28 pages, 1939 KiB  
Article
Durable Mortar Mixes Using 50% of Activated Volcanic Ash as A Binder
by Andrés Játiva, Andreu Corominas and Miren Etxeberria
Materials 2025, 18(8), 1777; https://doi.org/10.3390/ma18081777 - 13 Apr 2025
Viewed by 515
Abstract
Volcanic ash (VA) is an abundant resource in many world regions that can be used as a supplementary cementitious material (SCM). However, its low reactivity limits its applications as a replacement for Portland cement. In this study, the improvement of its reactivity was [...] Read more.
Volcanic ash (VA) is an abundant resource in many world regions that can be used as a supplementary cementitious material (SCM). However, its low reactivity limits its applications as a replacement for Portland cement. In this study, the improvement of its reactivity was evaluated through the calcination of VA (CVA) at 700 °C, alkali activation with Na2SiO3, CaCl2, and Na2CO3, as well as its combination with other SCMs (lime, fly ash, and blast-furnace slags). Additionally, the effect of curing was analysed under different regimes: standard moist curing and heat curing. The use of alkaline activators, especially 2% Na2SiO3 and 1% CaCl2, along with thermal curing (70 °C for 3 days) in mortars containing 50% VA, resulted in compressive strengths at 28 days, significantly higher than those obtained for mortars with non-activated VA or those cured under moist conditions. Furthermore, the addition of 10% fly ash (FA) and 5% slag (EC) to the mortars also led to the largest improvements in compressive strength. In addition, mortars cured at 70 °C exhibited lower shrinkage and improved resistance to acid attacks, particularly in those manufactured with CVA and 1% CaCl2. This study concludes that it is possible to optimise the design of mortars with 50% VA in replacement of ordinary cement based on activation and curing methods. These methods improve early-age strength, reduce shrinkage and water absorption, and enhance acid resistance. Full article
Show Figures

Figure 1

17 pages, 5156 KiB  
Article
Sustainable Geopolymer Tuff Composites Utilizing Iron Powder Waste: Rheological and Mechanical Performance Evaluation
by Mohamed Lyes Kamel Khouadjia, Sara Bensalem, Cherif Belebchouche, Abderrachid Boumaza, Salim Hamlaoui and Slawomir Czarnecki
Sustainability 2025, 17(3), 1240; https://doi.org/10.3390/su17031240 - 4 Feb 2025
Cited by 1 | Viewed by 1120
Abstract
Geopolymers are a sustainable alternative to Portland cement, with the potential to significantly reduce the carbon footprint of conventional cement production. This study investigates the valorization of industrial waste iron powder (IP) as a fine filler in geopolymers synthesized from volcanic tuff (VTF). [...] Read more.
Geopolymers are a sustainable alternative to Portland cement, with the potential to significantly reduce the carbon footprint of conventional cement production. This study investigates the valorization of industrial waste iron powder (IP) as a fine filler in geopolymers synthesized from volcanic tuff (VTF). Composites were prepared with IP substitutions of 5%, 10%, and 20% by weight, using sodium hydroxide and sodium silicate as alkaline activators. Microstructural and phase analyses were conducted using scanning electron microscope coupled with energy dispersive X-ray spectroscopy (SEM-EDS), X-ray fluorescence (XRF), X-ray diffraction (XRD), and differential scanning calorimetry (DSC), while rheological properties, compressive strength, and flexural strength were assessed. The impact of curing temperatures (25 °C and 80 °C) on mechanical performance was evaluated. Results revealed that air content increased to 3.5% with 20% IP substitution, accompanied by a slight rise in flow time (0.8–2 s). Compressive and flexural strengths at 25 °C decreased by up to 22.48% and 28.39%, respectively. Elevated curing at 80 °C further reduced compressive and flexural strengths by an average of 45.30% and 64.68%, highlighting the adverse effects of higher temperatures. Although these formulations are not suitable for load-bearing applications, the findings suggest potential for non-structural uses, such as pavement base layers, aligning with sustainable construction principles by repurposing industrial waste and reducing reliance on energy-intensive cement production. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

25 pages, 9963 KiB  
Article
Study on the Influence of Thermoplastic Microcapsules on the Sulfate Resistance and Self-Healing Performance of Limestone Calcined Clay Cement Concrete
by Wei Du, Lu Jiang, Quantao Liu, Wei Chen and Qingjun Ding
Molecules 2024, 29(20), 4797; https://doi.org/10.3390/molecules29204797 - 10 Oct 2024
Cited by 3 | Viewed by 1322
Abstract
Limestone calcined clay cement (LC3), enhanced through reactions with volcanic ash and the interaction between limestone and clay, significantly improves the performance of cementitious materials. It has the potential to cut CO2 emissions by up to 30% and energy consumption in cement [...] Read more.
Limestone calcined clay cement (LC3), enhanced through reactions with volcanic ash and the interaction between limestone and clay, significantly improves the performance of cementitious materials. It has the potential to cut CO2 emissions by up to 30% and energy consumption in cement manufacture by 15% to 20%, providing a promising prospect for the large-scale production of low-carbon cement with a lower environmental effect. To effectively manufacture LC3 concrete, this study utilized limestone (15%), calcined clay (30%), and gypsum (5%) as supplementary cementitious materials (SCMs), replacing 50% of ordinary Portland cement (OPC). However, in regions abundant in sulfate, sulfate attack can cause interior cracking of concrete, reducing the longevity of the building. To address this issue, microcapsules containing microcrystalline wax, ceresine wax, and nano-CaCO3 encapsulated in epoxy resin were prepared and successfully incorporated into LC3 concrete. Sulfate resistance tests were conducted through sulfate dry–wet cycles, comparing samples with and without microcapsules. The findings revealed that the initial mechanical and permeability properties of LC3 concrete did not significantly differ from OPC concrete. LC3 concrete with added microcapsules (SP4) exhibited enhanced resistance to sulfate attack, reducing mass loss and compressive strength degradation. SEM images displayed a mesh-like structure of repair products in SP4. After 14 days of self-repair, SP4 exhibited a 44.2% harmful pore ratio, 98.1% compressive strength retention, 88.7% chloride ion diffusion coefficient retention, 91.12 mV maximum amplitude, and 9.14 mV maximum frequency amplitude. The experimental results indicate that the presence of microcapsules enhances the sulfate attack self-healing performance of LC3 concrete. Full article
Show Figures

Figure 1

16 pages, 3004 KiB  
Article
New Discovery of Natural Zeolite-Rich Tuff on the Northern Margin of the Los Frailes Caldera: A Study to Determine Its Performance as a Supplementary Cementitious Material
by Jorge L. Costafreda, Domingo A. Martín, Miguel A. Sanjuán and Jorge L. Costafreda-Velázquez
Materials 2024, 17(17), 4430; https://doi.org/10.3390/ma17174430 - 9 Sep 2024
Viewed by 1067
Abstract
The release of Neogene volcanism in the southeastern part of the Iberian Peninsula produced a series of volcanic structures in the form of stratovolcanoes and calderas; however, other materials also accumulated such as large amounts of pyroclastic materials such as cinerites, ashes, and [...] Read more.
The release of Neogene volcanism in the southeastern part of the Iberian Peninsula produced a series of volcanic structures in the form of stratovolcanoes and calderas; however, other materials also accumulated such as large amounts of pyroclastic materials such as cinerites, ashes, and lapilli, which were later altered to form deposits of zeolites and bentonites. This work has focused on an area located on the northern flank of the San José-Los Escullos zeolite deposit, the only one of its kind with industrial capacity in Spain. The main objective of this research is to characterize the zeolite (SZ) of this new area from the mineral, chemical, and technical points of view and establish its possible use as a natural pozzolan. In the first stage, a study of the mineralogical and chemical composition of the selected samples was carried out using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray fluorescence (XRF), and thermogravimetric analysis (TGA); in the second stage, chemical-qualitative and pozzolanicity technical tests were carried out at 8 and 15 days. In addition, a chemical analysis was performed using XRF on the specimens of mortars made with a standardized mixture of Portland cement (PC: 75%) and natural zeolite (SZ: 25%) at the ages of 7, 28, and 90 days. The results of the mineralogical analyses indicated that the samples are made up mainly of mordenite and subordinately by smectite, plagioclase, quartz, halloysite, illite, and muscovite. Qualitative chemical assays indicated a high percentage of reactive silica and reactive CaO and also negligible contents of insoluble residues. The results of the pozzolanicity test indicate that all the samples analyzed behave like natural pozzolans of good quality, increasing their pozzolanic reactivity from 8 to 15 days of testing. Chemical analyses of PC/SZ composite mortar specimens showed how a significant part of SiO2 and Al2O3 are released by zeolite while it absorbs a large part of the SO3 contained in the cement. The results presented in this research could be of great practical and scientific importance as they indicate the continuation of zeolitic mineralization beyond the limits of the San José-Los Escullos deposit, which would result in an increase in geological reserves and the extension of the useful life of the deposit, which is of vital importance to the local mining industry. Full article
(This article belongs to the Special Issue Functional Cement-Based Composites for Civil Engineering (Volume II))
Show Figures

Figure 1

16 pages, 15017 KiB  
Article
Effect of Composite Fibers and Fly Ash on the Properties of Portland–Sulfoaluminate Composite Cement-Based Grouting Sealing Materials
by Jiming Bao, Xuzheng Zhu, Shanyang Wei, Feng Ren, Weidong Luo and Shuqi Xu
Coatings 2024, 14(8), 989; https://doi.org/10.3390/coatings14080989 - 6 Aug 2024
Viewed by 1637
Abstract
Current conventional cement materials are no longer able to meet the actual usage needs of geotechnical engineering. In order to improve the workability of cement materials used in geotechnical, transportation, and mining engineering, it is necessary to improve the formulation of cement materials. [...] Read more.
Current conventional cement materials are no longer able to meet the actual usage needs of geotechnical engineering. In order to improve the workability of cement materials used in geotechnical, transportation, and mining engineering, it is necessary to improve the formulation of cement materials. Polypropylene fibers (PVAF), polyvinyl alcohol fibers (PPF), and fly ash (FA) are used in this study to modify Portland–sulfoaluminate composite cement to improve the workability of the cement material system. Meanwhile, the microstructure that affects the system performance was also studied. The research results indicate that adding FA to the composite cement system can improve its fluidity. In the later stage of hydration, due to the volcanic ash reaction, the production of hydration products will increase, but it will not affect the type of hydration products. Adding PPF-PVAF can effectively improve the strength performance of the cement system. The compressive strength reached 24.61 MPa after 28 days of curing, which was 13.8% higher than the blank sample. Adding calcium hydroxide powder and FA to the system can improve the fluidity of the cement system to a certain extent and positively impact the later strength. After 28 days of curing, the compressive strength of experimental group 9 reached 30.21 MPa, which increased by 70.5% compared to after 7 days These results were found at the microscopic level, based on analyses via XRD, TG, and SEM. The Mix-EXP cured for 28 days has better hydration product content and composition arrangement of cement slurry than the O-S-C cured for 28 days. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

23 pages, 13633 KiB  
Article
Experimental Study Based on Box–Behnken Design and Response Surface Methodology for Optimization Proportioning of Activated Lithium Slag Composite Cement-Based Cementitious Materials
by Weixing Shao, Wenhua Zha, Xueyun Zhou and Tao Xu
Materials 2024, 17(11), 2651; https://doi.org/10.3390/ma17112651 - 30 May 2024
Cited by 7 | Viewed by 1400
Abstract
Cement-based cementitious materials occupy a central position in the construction industry, but the problem of high carbon dioxide(CO2) emissions from cement production has attracted global attention. To meet this challenge, finding low-carbon alternative materials has become a top priority in the [...] Read more.
Cement-based cementitious materials occupy a central position in the construction industry, but the problem of high carbon dioxide(CO2) emissions from cement production has attracted global attention. To meet this challenge, finding low-carbon alternative materials has become a top priority in the research of new building materials. At the same time, the problem of large amounts of lithium slag piling up needs to be solved, and resource utilization has become its potential way out. In this study, the volcanic ash activity of lithium slag was activated by composite activation means of high-temperature calcination and sodium silicate, and it was used as an alternative mix to cement. The Box–Behnken design and response surface method (BBD-RSM) was utilized to optimize the ratio of activated lithium slag composite cement-based cementitious materials, and high-performance new solid waste cementitious materials were prepared. The results show that activated lithium slag composite cementitious materials activated lithium slag exhibit excellent performance when activated lithium slag mass fraction is 7.3%, the sodium silicate dosage is 8.8%, and water–solid ratio is 0.6:1. The composite cementitious material under this ratio shows excellent performance, with fluidity 235.69 mm, gelation time 73.54 s, water evolution rate 1.123%, 3d and 28d compressive strengths, respectively, are 11.54 MPa and 22.9 MPa. Compared with ordinary Portland-cement-based cementing materials, the uniaxial compressive strength, modulus of elasticity, and tensile strength at break of activated lithium slag cementitious material solidified body were increased by 34.33%, 36.43%, and 34.98%, and the compressive deformation and tensile deformation were enhanced by 37.78% and 40%. This study not only provides a theoretical basis and experimental foundation for the preparation of new solid waste cementitious materials, but also provides a new solution for the reinforcement of crushed rock bodies in engineering practice, which is of great significance for promoting the low-carbon development of the construction industry. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

18 pages, 3882 KiB  
Article
Effect of a Hybrid Pumice–Portland Cement Extract on Corrosion Activity of Stainless Steel SS304 and Carbon Mild Steel A36
by David Bonfil, Lucien Veleva and Jose Ivan Escalante-Garcia
Materials 2024, 17(10), 2255; https://doi.org/10.3390/ma17102255 - 10 May 2024
Cited by 2 | Viewed by 1409
Abstract
The change in the corrosion activities of SS304 and the carbon steel A36 were studied during their exposure for 30 days to hybrid pumice-Portland cement extract (CE), to simulate the concrete–pore environment. The ionic composition and the initial pH (12.99) of the CE [...] Read more.
The change in the corrosion activities of SS304 and the carbon steel A36 were studied during their exposure for 30 days to hybrid pumice-Portland cement extract (CE), to simulate the concrete–pore environment. The ionic composition and the initial pH (12.99) of the CE were influenced by the reduction of Portland cement (PC) content, volcanic pumice oxides and alkaline activators. Because of the air CO2  dissolution, the pH decreased and maintained a constant value ≈ 9.10 (established dynamic ionic equilibrium). The CE promoted the passivation of both steels and their free corrosion potential (OCP) reached positive values. On the surfaces, Fe and Cr oxides were formed, according to the nature of the steel. Over the time of exposure, the presence of chloride ions in the pumice caused a localized pitting attack, and for carbon steel, this fact may indicate an intermediate risk of corrosion. The chloride effect was retarded by the accumulation of SO42 ions at the steel surfaces. Based on electrochemical impedance (EIS), the polarization resistance (Rp) and the thickness of the passive layers were calculated. Their values were compared with those previously reported for the steels exposed to CEs of Portland and supersulfated cements, and the hybrid cement was considered as a PC “green” alternative. Full article
Show Figures

Figure 1

15 pages, 3938 KiB  
Article
The Role of Chemical Activation in Strengthening Iron Ore Tailings Supplementary Cementitious Materials
by Zhihang Hu, Xiaowei Gu, Baojun Cheng, Qing Wang, Jianping Liu, Xiaowei Ge and Shiqi Yin
Buildings 2024, 14(4), 963; https://doi.org/10.3390/buildings14040963 - 1 Apr 2024
Cited by 4 | Viewed by 1906
Abstract
The preparation of iron ore tailings (IOTs) into supplementary cementitious materials (SCMs) is an effective approach to achieve value-added utilization of industrial solid waste. This study systematically investigates the hydration pattern and strength development of Portland cement systems with the incorporation of IOTs, [...] Read more.
The preparation of iron ore tailings (IOTs) into supplementary cementitious materials (SCMs) is an effective approach to achieve value-added utilization of industrial solid waste. This study systematically investigates the hydration pattern and strength development of Portland cement systems with the incorporation of IOTs, steel slag (SS), granulated blast-furnace slag (GBFS), and fly ash (FA) under the action of different chemical additives. The hydration products, and microstructure and pore structure of the SCMs are analyzed using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and mercury intrusion porosimetry. The findings of this study demonstrate that chemical activation plays a significant role in the strength development of SCMs. Among the five chemical activators tested, Triethanolamine (TEA) had the greatest influence on mechanical properties. The maximum compressive strength of the SCMs at 28 days was 42.9 MPa at a dosage of 1%. Specifically, the addition of TEA promotes volcanic ash reactions, and the high fineness of SCM provides nucleation sites for hydration products. Interactions between the volcanic ash reaction and the complexation reaction of TEA have a positive effect on compressive strength development. This research expands the potential for IOTs SCMs through chemical activation methods for value-added applications. Full article
(This article belongs to the Special Issue Study on Mechanical Properties of Civil Engineering Materials)
Show Figures

Figure 1

23 pages, 6179 KiB  
Article
Fabrication and Mechanical Evaluation of Eco-Friendly Geopolymeric Mortars Derived from Ignimbrite and Demolition Waste from the Construction Industry in Peru
by Fredy Alberto Huamán-Mamani, Cris Katherin Palomino-Ñaupa, María del Mar Orta Cuevas and Santiago Medina-Carrasco
Geosciences 2024, 14(3), 80; https://doi.org/10.3390/geosciences14030080 - 15 Mar 2024
Cited by 3 | Viewed by 2336
Abstract
Ignimbrite rock is a volcanic material located in the Arequipa region (Peru), and for centuries, it has been used as a construction material, giving a characteristic light pastel, white to pink color to the city of Arequipa, with white being the most common. [...] Read more.
Ignimbrite rock is a volcanic material located in the Arequipa region (Peru), and for centuries, it has been used as a construction material, giving a characteristic light pastel, white to pink color to the city of Arequipa, with white being the most common. In the present study, the potential use of three types of Arequipa raw materials (ignimbrite rock powder, calcined clay powder, and demolition mortar powder) as the main source of new binders or the manufacture of environmentally friendly mortars, without the addition of ordinary Portland cement (OPC) is discussed. In this work, an in-depth characterization of the materials used was carried out. The proposed fabrication route for geopolymeric materials was considered for the manufacture of binders and mortars using an alkaline solution of NaOH with values between 12 and 18 molar, as a trigger for the geopolymerization process. Geopolymeric mortars were obtained by adding a controlled amount of fine sand to the previously prepared mixture of binder raw material and an alkaline solution. Conventional OPC and geopolymeric mortars manufactured under the same conditions were mechanically evaluated by uniaxial compression tests at a constant compression rate of 0.05 mm/min and under normal conditions of temperature and atmosphere, where the most optimal values were obtained for 15 molar alkaline solutions of ignimbrite without the addition of aggregates, with values of compressive strength of 42 MPa and a modulus elastic of 30 GPa. The results revealed a significant increase in the maximum strength and modulus of elasticity values when the volumetric fractions of OPC are completely replaced with geopolymeric binders in the study conditions of this work, demonstrating the enormous potential of the ignimbrite rock and construction waste studied, as raw material of alternative mortar binders without the addition of OPC. With this work, the ignimbrite rock, of great value in the region and also found in other areas of the Earth’s geography, was characterized and valued, in addition to the calcined clay and demolition mortar of the region. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Graphical abstract

23 pages, 2524 KiB  
Article
Exploring the Utilization of Activated Volcanic Ash as a Substitute for Portland Cement in Mortar Formulation: A Thorough Experimental Investigation
by Andrés Játiva and Miren Etxeberria
Materials 2024, 17(5), 1123; https://doi.org/10.3390/ma17051123 - 29 Feb 2024
Cited by 6 | Viewed by 1770
Abstract
The manufacture of natural pozzolans as cement products is economically affordable and contributes to CO2 mitigation in the cement-based materials industry. Through two experimental stages, this study evaluates the feasibility of using volcanic ash (VA) to partially substitute portland cement (PC) in [...] Read more.
The manufacture of natural pozzolans as cement products is economically affordable and contributes to CO2 mitigation in the cement-based materials industry. Through two experimental stages, this study evaluates the feasibility of using volcanic ash (VA) to partially substitute portland cement (PC) in mortar production. In Stage 1, the effectiveness of different activation methods, such as calcination, alkali activation, and lime addition, in enhancing VA reactivity was assessed when the mortars were produced using 35% VA. The compressive strength (fcm) and physical properties of the mortars produced were determined at 7 and 28 days and compared with those of mortars without activated VA. In Stage 2, the most effective treatments obtained from Stage 1 were applied to produce mortars with 50% and 75% of VA replacements, focusing on their physical and mechanical properties. The findings revealed promising results, particularly when mortars were produced with up to 50% calcined VA (CVA) at 700 °C and 20 wt% lime addition, reaching a higher fcm than 45 MPa. Chemical activation with 2% CaCl or 1% NSi enhanced early-age strength in 35% VA-based mortars. Additionally, NSi-activated CVA-lime-based mortar at 50% VA achieved a notable fcm of 40 MPa at 28 days. Even mortars with 75% VA replacement achieved an adequate compressive strength of 33MPa at 28 days. This study determined that VA-based mortars have the potential for construction applications. Full article
(This article belongs to the Special Issue Advance in Sustainable Construction Materials)
Show Figures

Figure 1

20 pages, 13352 KiB  
Article
Valorisation of “La Palma” Volcanic Ash for Making Portland-Blended, Alkaline and Hybrid Portland–Alkaline Cements
by Pablo Martín-Rodríguez, Ana Fernández-Jiménez, María del Mar Alonso, Angel Palomo and Inés García-Lodeiro
Materials 2024, 17(1), 242; https://doi.org/10.3390/ma17010242 - 2 Jan 2024
Cited by 2 | Viewed by 1915
Abstract
The present work evaluates the feasibility of using volcanic fly ash (VFA) generated by the eruption of the Tajogaite volcano on the island of La Palma (Spain) in 2021, as a precursor in the preparation of cementitious materials with different Portland cement (PC) [...] Read more.
The present work evaluates the feasibility of using volcanic fly ash (VFA) generated by the eruption of the Tajogaite volcano on the island of La Palma (Spain) in 2021, as a precursor in the preparation of cementitious materials with different Portland cement (PC) replacement levels (0%, 30%, 70% and 100%), in the absence (Blended Cement, BC) and presence of an alkaline activator (Hybrid Alkaline Cement, HAC, and Alkaline Cements, AC). Hydration kinetics (isothermal conduction calorimetry), paste mechanical strengths and reaction products were characterised by XRD, FTIR, TG/DTG and BSEM/EDX. The results obtained indicate that the strengths developed by the hybrid alkaline cements (HAC) are higher than those of the blended cements (BC), especially at the age of 2 days, where 25 MPa were obtained with the replacement of 70% PC by VFA. Alkaline cements (AC, 100% VFA) that were prepared with 8 M NaOH solution as the activator reached 40 MPa after 2 days. It was observed that in all the binders, depending on the initial composition of the binder mixture and the percentage of replacement and/or activator, VFA reacts to form cementitious gels, C-A-S-H and N-A-S-H type, which supports its use as a mineral addition to blended cement or as a precursor in the preparation of alkaline and hybrid alkaline cements. Full article
Show Figures

Figure 1

27 pages, 3478 KiB  
Review
Acid Activation in Low-Carbon Binders: A Systematic Literature Review
by Janaina Aguiar Park, Marcio Mateus Pimenta and Augusto Cesar da Silva Bezerra
Buildings 2024, 14(1), 83; https://doi.org/10.3390/buildings14010083 - 27 Dec 2023
Cited by 8 | Viewed by 3834
Abstract
Geopolymers have emerged as an alternative binding material to Ordinary Portland Cement (OPC). Recently, there has been an increase in studies exploring the synthesis of these materials using acid activation rather than traditional alkaline activation. This approach offers benefits such as good strength [...] Read more.
Geopolymers have emerged as an alternative binding material to Ordinary Portland Cement (OPC). Recently, there has been an increase in studies exploring the synthesis of these materials using acid activation rather than traditional alkaline activation. This approach offers benefits such as good strength at an early age, better thermal properties, and a chemical activator that emits less carbon to be produced. In addition, it provides resistance to efflorescence and leaching, which are common challenges associated with alkali-activated products. This work analyzed the scientific advances in acid activation in synthesizing an alternative binder to OPC. To this end, a systematic review of the last five years of scientific literature was carried out using the Systematic Review for Engineering and Experiments (SREE) method. The results show a notable increase in research focused on acid activation over the last few years. The acid activators were always phosphate solutions, mainly phosphoric acid. Metakaolin was the most tested precursor, followed by fly ash, and volcanic ash. The research requires improvements in the methodological quality, providing data on molar ratios (Al/P, Si/Al, and Si/P), Liquid/Solid mass ratio, activator solution molarity, and curing process, in addition to statistical treatment and comparison of results. There exists a paucity of diversity in the examined precursors, activators, and additives. Future research developments need to clarify the behavior of mechanical resistance over time, better curing process, water resistance, durability, and the role of iron, magnesium, and calcium silicates and/or oxides. The paper identifies the main research gaps in the area and functions as a database, guiding researchers in selecting raw materials, dosing methodology, and curing processes. Full article
(This article belongs to the Special Issue Eco-Friendly Building Materials)
Show Figures

Figure 1

15 pages, 3978 KiB  
Article
Bentonite Clays from Southeastern Spain as Sustainable Natural Materials for the Improvement of Cements, Mortars and Concretes
by Jorge L. Costafreda, Domingo A. Martín, Miguel Ángel Sanjuán and Jorge L. Costafreda-Velázquez
Sustainability 2023, 15(24), 16710; https://doi.org/10.3390/su152416710 - 10 Dec 2023
Cited by 2 | Viewed by 2369
Abstract
The effects of global climate change are becoming more evident and accelerating at an unprecedented pace. For this reason, human activities urgently need a paradigm shift to stop this entropic process before the consequences become irreversible. In this sense, the use of highly [...] Read more.
The effects of global climate change are becoming more evident and accelerating at an unprecedented pace. For this reason, human activities urgently need a paradigm shift to stop this entropic process before the consequences become irreversible. In this sense, the use of highly eco-efficient materials aimed at conveniently neutralizing CO2 greenhouse gas emissions entering into the atmosphere can contribute significantly to mitigating and reversing this process. This work aims to demonstrate the positive effects obtained when Portland cement is partially replaced by bentonite clays of volcano-sedimentary origin. The samples were initially characterized by various methods, such as Thin-Section Petrographic Study (TSP) and the analysis of mineral phases with XRD, chemical composition was determined via XRF, and morphological analysis was determined via scanning electron microscopy (SEM). To determine the technical properties of the samples, a qualitative chemical analysis (QCA) was performed, as well as a chemical analysis of pozzolanicity (CAP) at 8 and 15 days, respectively, and a study of the mechanical compressive strengths at 2, 7, 28 and 90 days. Characterization studies using TSP, DRX, FRX and SEM established that these bentonite clays have a complex mineralogical variety, composed mainly of smectite, mordenite, plagioclase and biotite, as well as altered volcanic glass and sericite. The results of the qualitative chemical analysis establish that more than 93% of the SiO2 present in the samples is reactive. Chemical analysis of pozzolanicity (CAP) showed significant pozzolanic behavior in all samples analyzed at both 8 and 15 days, while mechanical tests highlighted significant increases in mechanical strengths, with maximum values varying between 52.2 and 70.6 MPa at 90 days. These results show that the materials can be used as quality pozzolans for the manufacture of cements, mortars and concretes, which could be considered as a favorable factor and, therefore, relevant in the management and control of greenhouse gas emissions responsible for the deterioration of the environment. Full article
(This article belongs to the Special Issue Resilient Built Environment and Public Health)
Show Figures

Figure 1

17 pages, 4224 KiB  
Article
Experimental Investigation into the Proportion of Cemented Aeolian Sand-Coal Gangue-Fly Ash Backfill on Mechanical and Rheological Properties
by Zhijun Zheng, Baogui Yang, Chengjin Gu, Faguang Yang and Hao Liu
Minerals 2023, 13(11), 1436; https://doi.org/10.3390/min13111436 - 13 Nov 2023
Cited by 10 | Viewed by 1519
Abstract
Aiming at the problems of large water secretion, poor suspensibility and low strength of cemented aeolian sand (AS)-fly ash (FA) backfill (CAFB) mixtures, CAFB was doped with fine coal gangue (CG) particles crushed to less than 4 mm and configured as cemented aeolian [...] Read more.
Aiming at the problems of large water secretion, poor suspensibility and low strength of cemented aeolian sand (AS)-fly ash (FA) backfill (CAFB) mixtures, CAFB was doped with fine coal gangue (CG) particles crushed to less than 4 mm and configured as cemented aeolian sand-coal gangue-fly ash backfill (CACFB) mixtures, in which coal gangue accounted for 8% of the mass ratio of the slurry. Through UCS and rheological experiments, using the response surface methodology and an orthogonal design, the following conclusions were drawn: (1) With the increase in ordinary Portland cement (PO) and slurry concentration, the UCS of the CACFB increased. (2) With the increase in the FA dosage, the UCS of the CACFB decreased first and then increased due to the gradual increase in FA dosage, destroying the reasonable ratio of the material and leading to the reduction in the material’s UCS, and with the growth in time, the volcanic ash effect of the FA caused the UCS of the material to increase. (3) With the increases in slurry concentration, the yield stress and viscosity coefficient of the slurry increased. (4) Reasonable proportions for CACFB should ensure the strength characteristics and rheological properties of the material. Through theoretical and experimental research, the final reasonable proportions were as follows: the concentrations of slurry, AS, CG, FA and PO were 77.5%, 42%, 8%, 17.5% and 10%, respectively. This ensured that the UCSs of the CACFB at 3 d, 7 d and 28 d were 1.2 MPa, 2.5 MPa and 4.3 MPa, respectively; the yield stress of the CACFB was 495 Pa, and the viscosity coefficient was 3.97 Pa·s. These reasonable proportions of the CACFB can meet the strength index and flow property of material industrial experiments. Full article
(This article belongs to the Special Issue Backfilling Materials for Underground Mining, Volume III)
Show Figures

Graphical abstract

Back to TopTop