Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,516)

Search Parameters:
Keywords = visible light photocatalyst

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4361 KiB  
Article
Novel Visible Light-Driven Ho2InSbO7/Ag3PO4 Photocatalyst for Efficient Oxytetracycline Contaminant Degradation
by Jingfei Luan and Tiannan Zhao
Molecules 2025, 30(15), 3289; https://doi.org/10.3390/molecules30153289 - 6 Aug 2025
Abstract
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by [...] Read more.
In this study, a Z-scheme Ho2InSbO7/Ag3PO4 (HAO) heterojunction photocatalyst was successfully fabricated for the first time by ultrasound-assisted solvothermal method. The structural features, compositional components and morphological characteristics of the synthesized materials were thoroughly characterized by a series of techniques, including X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectrum, X-ray photoelectron spectroscopy, transmission electron microscopy, scanning electron microscopy and energy-dispersive X-ray spectroscopy. A comprehensive array of analytical techniques, including ultraviolet-visible diffuse reflectance absorption spectra, photoluminescence spectroscopy, time-resolved photoluminescence spectroscopy, photocurrent testing, electrochemical impedance spectroscopy, electron paramagnetic resonance, and ultraviolet photoelectron spectroscopy, was employed to systematically investigate the optical, chemical, and photoelectronic properties of the materials. Using oxytetracycline (OTC), a representative tetracycline antibiotic, as the target substrate, the photocatalytic activity of the HAO composite was assessed under visible light irradiation. Comparative analyses demonstrated that the photocatalytic degradation capability of the HAO composite surpassed those of its individual components. Notably, during the degradation process, the application of the HAO composite resulted in an impressive removal efficiency of 99.89% for OTC within a span of 95 min, along with a total organic carbon mineralization rate of 98.35%. This outstanding photocatalytic performance could be ascribed to the efficient Z-scheme electron-hole separation system occurring between Ho2InSbO7 and Ag3PO4. Moreover, the adaptability and stability of the HAO heterojunction were thoroughly validated. Through experiments involving the capture of reactive species and electron paramagnetic resonance analysis, the active species generated by HAO were identified as hydroxyl radicals (•OH), superoxide anions (•O2), and holes (h+). This identification provides valuable insights into the mechanisms and pathways associated with the photodegradation of OTC. In conclusion, this research not only elucidates the potential of HAO as an efficient Z-scheme heterojunction photocatalyst but also marks a significant contribution to the advancement of sustainable remediation strategies for OTC contamination. Full article
(This article belongs to the Special Issue Nanomaterials in Photochemical Devices: Advances and Applications)
Show Figures

Figure 1

22 pages, 2192 KiB  
Article
Visible-Light-Driven Degradation of Biological Contaminants on the Surface of Textile Fabric Modified with TiO2-N Photocatalyst
by Maria Solovyeva, Evgenii Zhuravlev, Yuliya Kozlova, Alevtina Bardasheva, Vera Morozova, Grigory Stepanov, Denis Kozlov, Mikhail Lyulyukin and Dmitry Selishchev
Int. J. Mol. Sci. 2025, 26(15), 7550; https://doi.org/10.3390/ijms26157550 - 5 Aug 2025
Abstract
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, [...] Read more.
The problem of spreading harmful infections through contaminated surfaces has become more acute during the recent coronavirus pandemic. The design of self-cleaning materials, which can continuously decompose biological contaminants, is an urgent task for environmental protection and human health care. In this study, the surface of blended cotton/polyester fabric was functionalized with N-doped TiO2 (TiO2-N) nanoparticles using titanium(IV) isopropoxide as a binder to form durable photoactive coating and additionally decorated with Cu species to promote its self-cleaning properties. The photocatalytic ability of the material with photoactive coating was investigated in oxidation of acetone vapor, degradation of deoxyribonucleic acid (DNA) fragments of various lengths, and inactivation of PA136 bacteriophage virus and Candida albicans fungi under visible light and ultraviolet A (UVA) radiation. The kinetic aspects of inactivation and degradation processes were studied using the methods of infrared (IR) spectroscopy, polymerase chain reaction (PCR), double-layer plaque assay, and ten-fold dilution. The results of experiments showed that the textile fabric modified with TiO2-N photocatalyst exhibited photoinduced self-cleaning properties and provided efficient degradation of all studied contaminants under exposure to both UVA and visible light. Additional modification of the material with Cu species substantially improved its self-cleaning properties, even in the absence of light. Full article
(This article belongs to the Special Issue Fabrication and Application of Photocatalytically Active Materials)
Show Figures

Figure 1

17 pages, 1647 KiB  
Article
Application of Iron Oxides in the Photocatalytic Degradation of Real Effluent from Aluminum Anodizing Industries
by Lara K. Ribeiro, Matheus G. Guardiano, Lucia H. Mascaro, Monica Calatayud and Amanda F. Gouveia
Appl. Sci. 2025, 15(15), 8594; https://doi.org/10.3390/app15158594 (registering DOI) - 2 Aug 2025
Viewed by 159
Abstract
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides [...] Read more.
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides were synthesized via a co-precipitation method in an aqueous medium, followed by microwave-assisted hydrothermal treatment. Structural and morphological characterizations were performed using X-ray diffraction, field-emission scanning electron microscopy, Raman spectroscopy, ultraviolet–visible (UV–vis), and photoluminescence (PL) spectroscopies. The effluent was characterized by means of ionic chromatography, total organic carbon (TOC) analysis, physicochemical parameters (pH and conductivity), and UV–vis spectroscopy. Both materials exhibited well-crystallized structures with distinct morphologies: Fe2(MoO4)3 presented well-defined exposed (001) and (110) surfaces, while FeWO4 showed a highly porous, fluffy texture with irregularly shaped particles. In addition to morphology, both materials exhibited narrow bandgaps—2.11 eV for Fe2(MoO4)3 and 2.03 eV for FeWO4. PL analysis revealed deep defects in Fe2(MoO4)3 and shallow defects in FeWO4, which can influence the generation and lifetime of reactive oxygen species. These combined structural, electronic, and morphological features significantly affected their photocatalytic performance. TOC measurements revealed degradation efficiencies of 32.2% for Fe2(MoO4)3 and 45.3% for FeWO4 after 120 min of irradiation. The results highlight the critical role of morphology, optical properties, and defect structures in governing photocatalytic activity and reinforce the potential of these simple iron-based oxides for real wastewater treatment applications. Full article
(This article belongs to the Special Issue Application of Nanomaterials in the Field of Photocatalysis)
Show Figures

Figure 1

17 pages, 2736 KiB  
Article
Controlled Formation of α- and β-Bi2O3 with Tunable Morphologies for Visible-Light-Driven Photocatalysis
by Thomas Cadenbach, María Isabel Loyola-Plúa, Freddy Quijano Carrasco, Maria J. Benitez, Alexis Debut and Karla Vizuete
Molecules 2025, 30(15), 3190; https://doi.org/10.3390/molecules30153190 - 30 Jul 2025
Viewed by 222
Abstract
Water pollution caused by increasing industrial and human activity remains a serious environmental challenge, especially due to the persistence of organic contaminants in aquatic systems. Photocatalysis offers a promising and eco-friendly solution, but in the case of bismuth oxide (Bi2O3 [...] Read more.
Water pollution caused by increasing industrial and human activity remains a serious environmental challenge, especially due to the persistence of organic contaminants in aquatic systems. Photocatalysis offers a promising and eco-friendly solution, but in the case of bismuth oxide (Bi2O3) there is still a limited understanding of how structural and morphological features influence photocatalytic performance. In this work, a straightforward hydrothermal synthesis method followed by controlled calcination was developed to produce phase-pure α- and β-Bi2O3 with tunable morphologies. By varying the hydrothermal temperature and reaction time, distinct structures were successfully obtained, including flower-like, broccoli-like, and fused morphologies. XRD analyses showed that the final crystal phase depends solely on the calcination temperature, with β-Bi2O3 forming at 350 °C and α-Bi2O3 at 500 °C. SEM and BET analyses confirmed that morphology and surface area are strongly influenced by the hydrothermal conditions, with the flower-like β-Bi2O3 exhibiting the highest surface area. UV–Vis spectroscopy revealed that β-Bi2O3 also has a lower bandgap than its α counterpart, making it more responsive to visible light. Photocatalytic tests using Rhodamine B showed that the flower-like β-Bi2O3 achieved the highest degradation efficiency (81% in 4 h). Kinetic analysis followed pseudo-first-order behavior, and radical scavenging experiments identified hydroxyl radicals, superoxide radicals, and holes as key active species. The catalyst also demonstrated excellent stability and reusability. Additionally, Methyl Orange (MO), a more stable and persistent azo dye, was selected as a second model pollutant. The flower-like β-Bi2O3 catalyst achieved 73% degradation of MO at pH = 7 and complete removal under acidic conditions (pH = 2) in less than 3 h. These findings underscore the importance of both phase and morphology in designing high-performance Bi2O3 photocatalysts for environmental remediation. Full article
(This article belongs to the Special Issue Green Catalysis Technology for Sustainable Energy Conversion)
Show Figures

Figure 1

27 pages, 2729 KiB  
Review
Degradation of Emerging Plastic Pollutants from Aquatic Environments Using TiO2 and Their Composites in Visible Light Photocatalysis
by Alexandra Gabriela Stancu, Maria Râpă, Cristina Liana Popa, Simona Ionela Donțu, Ecaterina Matei and Cristina Ileana Covaliu-Mirelă
Molecules 2025, 30(15), 3186; https://doi.org/10.3390/molecules30153186 - 30 Jul 2025
Viewed by 195
Abstract
This review synthesized the current knowledge on the effect of TiO2 photocatalysts on the degradation of microplastics (MPs) and nanoplastics (NPs) under visible light, highlighting the state-of-the-art techniques, main challenges, and proposed solutions for enhancing the performance of the photocatalysis technique. The [...] Read more.
This review synthesized the current knowledge on the effect of TiO2 photocatalysts on the degradation of microplastics (MPs) and nanoplastics (NPs) under visible light, highlighting the state-of-the-art techniques, main challenges, and proposed solutions for enhancing the performance of the photocatalysis technique. The synthesis of TiO2-based photocatalysts and hybrid nanostructured TiO2 materials, including those coupled with other semiconductor materials, is explored. Studies on TiO2-based photocatalysts for the degradation of MPs and NPs under visible light remain limited. The degradation behavior is influenced by the composition of the TiO2 composites and the nature of different types of MPs/NPs. Polystyrene (PS) MPs demonstrated complete degradation under visible light photocatalysis in the presence of α-Fe2O3 nanoflowers integrated into a TiO2 film with a hierarchical structure. However, photocatalysis generally fails to achieve the full degradation of small plastic pollutants at the laboratory scale, and its overall effectiveness in breaking down MPs and NPs remains comparatively limited. Full article
(This article belongs to the Special Issue New Research on Novel Photo-/Electrochemical Materials)
Show Figures

Figure 1

9 pages, 1841 KiB  
Proceeding Paper
Cu-Modified Zn6In2S9 Photocatalyst for Hydrogen Production Under Visible-Light Irradiation
by Shota Fukuishi, Hideyuki Katsumata, Ikki Tateishi, Mai Furukawa and Satoshi Kaneco
Chem. Proc. 2025, 17(1), 4; https://doi.org/10.3390/chemproc2025017004 - 29 Jul 2025
Viewed by 126
Abstract
Copper-doped indium zinc sulfides were synthesized by heating and stirring a mixture of zinc chloride, indium chloride tetrahydrate, thioacetamide, and copper chloride at 180 °C for 18 h. Among these, Zn5.7Cu0.3In2S9 exhibited a hydrogen-producing activity of [...] Read more.
Copper-doped indium zinc sulfides were synthesized by heating and stirring a mixture of zinc chloride, indium chloride tetrahydrate, thioacetamide, and copper chloride at 180 °C for 18 h. Among these, Zn5.7Cu0.3In2S9 exhibited a hydrogen-producing activity of 1660 μmol/g·h, which was approximately five times higher than that of pristine indium zinc sulfide. Therefore, the catalyst was characterized to investigate the effect of Cu addition. PL results revealed that the incorporation of Cu reduced the fluorescence intensity, indicating suppressed recombination of photogenerated electron–hole pairs. DRS showed that the Cu addition enhanced optical absorption in the visible-light region and narrowed the band gap. These findings suggest that the incorporation of copper into indium zinc sulfide improves its photocatalytic activity. Full article
Show Figures

Figure 1

8 pages, 2473 KiB  
Proceeding Paper
Development of Photocatalytic Reduction Method of Cr(VI) with Modified g-C3N4 
by Miyu Sato, Mai Furukawa, Ikki Tateishi, Hideyuki Katsumata and Satoshi Kaneco
Chem. Proc. 2025, 17(1), 3; https://doi.org/10.3390/chemproc2025017003 - 29 Jul 2025
Viewed by 147
Abstract
Hexavalent chromium (Cr(VI)), a common contaminant in industrial wastewater, poses severe health risks due to its carcinogenic and mutagenic properties. Consequently, the development of efficient and environmentally friendly methods to reduce Cr(VI) to the less toxic trivalent chromium (Cr(III)) is of great importance. [...] Read more.
Hexavalent chromium (Cr(VI)), a common contaminant in industrial wastewater, poses severe health risks due to its carcinogenic and mutagenic properties. Consequently, the development of efficient and environmentally friendly methods to reduce Cr(VI) to the less toxic trivalent chromium (Cr(III)) is of great importance. In this study, we present a cost-effective photocatalytic approach using graphitic carbon nitride (g-C3N4) modified with 1,3,5-trihydroxybenzene via one-step thermal condensation. The modified photo-catalyst exhibited improved surface area, porosity, visible-light absorption, and a narrowed band gap, all of which contributed to enhanced charge separation. As a result, nearly complete reduction in Cr(VI) was achieved within 90 min under visible-light irradiation. Further optimization of catalyst dosage and EDTA concentration gave even higher reduction efficiency. This work offers a promising strategy for the design of high-performance photocatalysts for environmental remediation. Full article
Show Figures

Figure 1

20 pages, 4256 KiB  
Review
Recent Progress and Future Perspectives of MNb2O6 Nanomaterials for Photocatalytic Water Splitting
by Parnapalle Ravi and Jin-Seo Noh
Materials 2025, 18(15), 3516; https://doi.org/10.3390/ma18153516 - 27 Jul 2025
Viewed by 219
Abstract
The transition to clean and renewable energy sources is critically dependent on efficient hydrogen production technologies. This review surveys recent advances in photocatalytic water splitting, focusing on MNb2O6 nanomaterials, which have emerged as promising photocatalysts due to their tunable band [...] Read more.
The transition to clean and renewable energy sources is critically dependent on efficient hydrogen production technologies. This review surveys recent advances in photocatalytic water splitting, focusing on MNb2O6 nanomaterials, which have emerged as promising photocatalysts due to their tunable band structures, chemical robustness, and tailored morphologies. The objectives of this work are to (i) encompass the current synthesis strategies for MNb2O6 compounds; (ii) assess their structural, electronic, and optical properties in relation to photocatalytic performance; and (iii) elucidate the mechanisms underpinning enhanced hydrogen evolution. Main data collection methods include a literature review of experimental studies reporting bandgap measurements, structural analyses, and hydrogen production metrics for various MNb2O6 compositions—especially those incorporating transition metals such as Mn, Cu, Ni, and Co. Novelty stems from systematically detailing the relationships between synthesis routes (hydrothermal, solvothermal, electrospinning, etc.), crystallographic features, conductivity type, and bandgap tuning in these materials, as well as by benchmarking their performance against more conventional photocatalyst systems. Key findings indicate that MnNb2O6, CuNb2O6, and certain engineered heterostructures (e.g., with g-C3N4 or TiO2) display significant visible-light-driven hydrogen evolution, achieving hydrogen production rates up to 146 mmol h−1 g−1 in composite systems. The review spotlights trends in heterojunction design, defect engineering, co-catalyst integration, and the extension of light absorption into the visible range, all contributing to improved charge separation and catalytic longevity. However, significant challenges remain in realizing the full potential of the broader MNb2O6 family, particularly regarding efficiency, scalability, and long-term stability. The insights synthesized here serve as a guide for future experimental investigations and materials design, advancing the deployment of MNb2O6-based photocatalysts for large-scale, sustainable hydrogen production. Full article
Show Figures

Figure 1

17 pages, 3396 KiB  
Article
Morphological Regulation of Bi5O7I for Enhanced Efficiency of Rhodamine B Degradation Under Visible-Light
by Xi Yang, Jiahuali Lu, Lei Zhou, Qin Wang, Fan Wu, Yuwei Pan, Ming Zhang and Guangyu Wu
Catalysts 2025, 15(8), 714; https://doi.org/10.3390/catal15080714 - 26 Jul 2025
Viewed by 350
Abstract
Photocatalysis is considered to be a very promising method for the degradation of organic matter, because its process of degrading organic matter is safe. However, some problems such as weak absorption of visible light and electronic-hole recombination easily are obviously drawbacks. In this [...] Read more.
Photocatalysis is considered to be a very promising method for the degradation of organic matter, because its process of degrading organic matter is safe. However, some problems such as weak absorption of visible light and electronic-hole recombination easily are obviously drawbacks. In this paper, three different morphologies of Bi5O7I (nanoball, nanosheet, and nanotube) were successfully prepared by solvothermal method, which was used for the degradation of Rhodamine B (RhB). Comparing the photocatalytic effect of three different morphologies and concluding that the optimal morphology was the Bi5O7I nanoball (97.8% RhB degradation within 100 min), which was analysed by the characterisation tests. Free radical trapping experiments were tested, which revealed that the main roles in the degradation process were singlet oxygen (1O2) and holes (h+). The degradation pathways of RhB were analyzed in detail. The photo/electrochemical parts of the three materials were analysed and explained the degradation mechanism of RhB degradation. This investigate provides a very valuable guide for the development of multiple morphologies of bismuth-based photocatalysts for removing organic dyes in aquatic environment. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Figure 1

15 pages, 4461 KiB  
Review
Cocatalyst-Tipped One-Dimensional Nanorods for Enhanced Photocatalytic Hydrogen Production
by Longlu Wang, Kun Wang, Junkang Sun, Chen Gu, Yixiang Luo and Shiyan Wang
Catalysts 2025, 15(8), 711; https://doi.org/10.3390/catal15080711 - 26 Jul 2025
Viewed by 359
Abstract
The controllable loading of a cocatalyst on a semiconductor is the key to further improving the efficiency and stability of visible-light photocatalytic hydrogen production. It is of great practical significance to load a cocatalyst onto a semiconductor spatially separated to realize space charge [...] Read more.
The controllable loading of a cocatalyst on a semiconductor is the key to further improving the efficiency and stability of visible-light photocatalytic hydrogen production. It is of great practical significance to load a cocatalyst onto a semiconductor spatially separated to realize space charge separation for efficient photocatalytic hydrogen evolution. The inherent anisotropic morphology of one-dimensional nanorods can provide two spatially separated locations at the tip and side surfaces of the nanorods. In this review, we systematically summarize non-centrosymmetric and centrosymmetric cocatalyst-tipped one-dimensional (1D) photocatalysts, including their preparation method, catalytic hydrogen production performance, and catalytic mechanism. This review will bring new vitality to the design, preparation, and application of cocatalyst-tipped one-dimensional nanorods. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Figure 1

22 pages, 4984 KiB  
Article
Plasmonic Effect of Au Nanoparticles Deposited onto TiO2-Impact on the Photocatalytic Conversion of Acetaldehyde
by Maciej Trzeciak, Jacek Przepiórski, Agnieszka Kałamaga and Beata Tryba
Molecules 2025, 30(15), 3118; https://doi.org/10.3390/molecules30153118 - 25 Jul 2025
Viewed by 217
Abstract
A comparison of two synthesis methods for depositing Au nanoparticles onto TiO2 was performed: (1) impregnation with HAuCl4 followed by thermal treatment in argon, and (2) magnetron sputtering from a Au disc. The obtained materials were used for acetaldehyde decomposition in [...] Read more.
A comparison of two synthesis methods for depositing Au nanoparticles onto TiO2 was performed: (1) impregnation with HAuCl4 followed by thermal treatment in argon, and (2) magnetron sputtering from a Au disc. The obtained materials were used for acetaldehyde decomposition in a high temperature reaction chamber and ch aracterised by UV-Vis/DR, XPS, XRD, SEM, and photoluminescence measurements. The process was carried out using an air/acetaldehyde gas flow under UV or UV-Vis LED irradiation. The mechanism of acetaldehyde decomposition and conversion was elaborated by in situ FTIR measurements of the photocatalyst surface during the reaction. Simultaneously, concentration of acetaldehyde in the outlet gas was monitored using gas chromatography. All the Au/TiO2 samples showed absorption in the visible region, with a maximum around 550 nm. The plasmonic effect of Au nanoparticles was observed under UV-Vis light irradiation, especially at elevated temperatures such as 100 °C, for Au/TiO2 prepared by the magnetron sputtering method. This resulted in a significant increase in the conversion of acetaldehyde at the beginning, followed by gradual decrease over time. The collected FTIR spectra indicated that, under UV-Vis light, acetaldehyde was strongly adsorbed onto Au/TiO2 surface and formed crotonaldehyde or aldol. Under UV, acetaldehyde was mainly adsorbed in the form of acetate species. The plasmonic effect of Au nanoparticles increased the adsorption of acetaldehyde molecules onto TiO2 surface, while reducing their decomposition rate. The increased temperature of the process enhanced the decomposition of the acetaldehyde. Full article
(This article belongs to the Special Issue Research on Heterogeneous Catalysis—2nd Edition)
Show Figures

Figure 1

22 pages, 7139 KiB  
Article
Influence of Fe Ions on the Surface, Microstructural and Optical Properties of Solution Precursor Plasma-Sprayed TiO2 Coatings
by Key Simfroso, Romnick Unabia, Anna Gibas, Michał Mazur, Paweł Sokołowski and Rolando Candidato
Coatings 2025, 15(8), 870; https://doi.org/10.3390/coatings15080870 - 24 Jul 2025
Viewed by 890
Abstract
This work investigates on how Fe incorporation influences the surface, microstructural, and optical properties of solution precursor plasma-sprayed TiO2 coatings. The Fe-TiO2 coatings were prepared using titanium isopropoxide and iron acetylacetonate as precursors, with ethanol as the solvent. X-ray diffraction analysis [...] Read more.
This work investigates on how Fe incorporation influences the surface, microstructural, and optical properties of solution precursor plasma-sprayed TiO2 coatings. The Fe-TiO2 coatings were prepared using titanium isopropoxide and iron acetylacetonate as precursors, with ethanol as the solvent. X-ray diffraction analysis revealed the existence of both anatase and rutile TiO2 phases, with a predominant rutile phase, also confirmed by Raman spectroscopy. There was an increase in the anatase crystals upon the addition of Fe ions. A longer spray distance further enhanced the anatase content and reduced the average TiO2 crystallite sizes present in the Fe-added coatings. SEM cross-sectional images displayed finely grained, densely packed deposits in the Fe-added coatings. UV-Vis spectroscopy showed visible-light absorption by the Fe-TiO2 coatings, with reduced band gap energies ranging from 2.846 ± 0.002 eV to 2.936 ± 0.003 eV. Photoluminescence analysis showed reduced emission intensity at 356 nm (3.48 eV) for the Fe-TiO2 coatings. These findings confirm solution precursor plasma spray to be an effective method for developing Fe-TiO2 coatings with potential application as visible-light-active photocatalysts. Full article
Show Figures

Figure 1

20 pages, 2048 KiB  
Article
Photocatalytic Degradation of Oxytetracycline and Imidacloprid Under Visible Light with Sr0.95Bi0.05TiO3: Influence of Aqueous Matrix
by Maria J. Nunes, Ana Lopes, Maria J. Pacheco, Paulo T. Fiadeiro, Guilherme J. Inacio, Jefferson E. Silveira, Alyson R. Ribeiro, Wendel S. Paz and Lurdes Ciríaco
Water 2025, 17(15), 2177; https://doi.org/10.3390/w17152177 - 22 Jul 2025
Viewed by 202
Abstract
In this study, Sr0.95Bi0.05TiO3 was synthesized via solid state reaction, characterized, and applied as a visible-light-active photocatalyst for the degradation of oxytetracycline, imidacloprid, and their mixture. To evaluate the influence of the aqueous matrix on pollutant degradation, photocatalytic [...] Read more.
In this study, Sr0.95Bi0.05TiO3 was synthesized via solid state reaction, characterized, and applied as a visible-light-active photocatalyst for the degradation of oxytetracycline, imidacloprid, and their mixture. To evaluate the influence of the aqueous matrix on pollutant degradation, photocatalytic experiments were carried out in both distilled water and a real environmental sample (surface water). The Sr0.95Bi0.05TiO3 perovskite showed high photocatalytic performance under visible light, achieving nearly complete degradation of oxytetracycline after 2 h, and significant removal of imidacloprid in river water (60% after 3 h). Enhanced degradation in surface water was attributed to favorable ionic composition and pH. The perovskite oxide maintained its photocatalytic performance over five consecutive cycles, with no significant loss in photocatalytic activity or structural and morphological stability. Ecotoxicological assessment using Daphnia magna confirmed that the treated water was non-toxic, indicating that no harmful byproducts were formed. Complementary Density Functional Theory calculations were conducted to complement experimental findings, providing insights into the structural, electronic, and optical properties of the photocatalyst, enhancing the understanding of the degradation mechanisms involved. This integrated approach, combining experimental photocatalytic performance evaluation in different matrices, ecotoxicity testing, and theoretical modeling, highlights Sr0.95Bi0.05TiO3 as a promising, stable, and environmentally safe photocatalyst for practical wastewater treatment applications. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

20 pages, 7386 KiB  
Article
Exploring Synthesis Methods of CdS/TiO2 Photocatalysts for Enhanced Hydrogen Production Under Visible Light
by Jesús Herrera-Ramos, Socorro Oros-Ruíz, Angela G. Romero-Villegas, J. Edgar Carrera-Crespo, Raúl Pérez-Hernández, Jaime S. Valente and Francisco Tzompantzi
Catalysts 2025, 15(8), 699; https://doi.org/10.3390/catal15080699 - 22 Jul 2025
Viewed by 442
Abstract
TiO2 was synthesized via the sol–gel method and employed as a support material for the deposition of CdS nanofibers using two novel techniques: impregnation and photodeposition. XRD characterization shows that crystallite size decreases when CdS is incorporated into TiO2. UV-Vis [...] Read more.
TiO2 was synthesized via the sol–gel method and employed as a support material for the deposition of CdS nanofibers using two novel techniques: impregnation and photodeposition. XRD characterization shows that crystallite size decreases when CdS is incorporated into TiO2. UV-Vis spectroscopy showed that the bandgap of the CdS/TiO2 heterostructured nanocomposites decreases compared to the raw TiO2 support, making them very appropriate for photocatalytic applications in the visible region. The photocatalysts were tested for hydrogen production in methanol–water solutions under visible light conditions. It was observed that the TiC20 photocatalyst prepared by the impregnation method improved the photocatalytic activity compared with photodeposition technique (TiC20FD), achieving a maximum hydrogen production of 570.5 µmol H2 gcat1 h−1, while the latter attained 383.4 µmol H2 gcat1 h−1. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation)
Show Figures

Graphical abstract

21 pages, 4597 KiB  
Article
Preparation of Non-Covalent BPTCD/g-C3N4 Heterojunction Photocatalysts and Photodegradation of Organic Dyes Under Solar Irradiation
by Xing Wei, Gaopeng Jia, Ru Chen and Yalong Zhang
Nanomaterials 2025, 15(14), 1131; https://doi.org/10.3390/nano15141131 - 21 Jul 2025
Viewed by 297
Abstract
In this study, the BPTCD/g-C3N4 heterojunction photocatalyst was successfully prepared by the hydrothermal method. BPTCD (3,3′,4,4′-benzophenone tetracarboxylic dianhydride) is immobilised on the surface of g-C3N4 by non-covalent π-π stacking. The BPTCD/g-C3N4 heterojunction photocatalyst is [...] Read more.
In this study, the BPTCD/g-C3N4 heterojunction photocatalyst was successfully prepared by the hydrothermal method. BPTCD (3,3′,4,4′-benzophenone tetracarboxylic dianhydride) is immobilised on the surface of g-C3N4 by non-covalent π-π stacking. The BPTCD/g-C3N4 heterojunction photocatalyst is an all-organic photocatalyst with significantly improved photocatalytic performance compared with g-C3N4. BPTCD/g-C3N4-60% was able to effectively degrade MO solution (10 mg/L) to 99.9% and 82.8% in 60 min under full spectrum and visible light. The TOC measurement results indicate that MO can ultimately be decomposed into H2O and CO2 through photocatalytic action. The photodegradation of methyl orange by BPTCD/g-C3N4 composite materials under sunlight is mainly attributed to the successful construction of the heterojunction structure and its excellent π-π stacking effect. Superoxide radicals (O2) were found to be the main active species, while OH and h+ played a secondary role. The synthesised BPTCD/g-C3N4 also showed excellent stability in the activity of photodegradation of MO in wastewater, with the performance remaining above 90% after three cycles. The mechanism of the photocatalytic removal of MO dyes was also investigated by the trap agent experiments. Additionally, BPTCD/g-C3N4-60% demonstrated exceptional photodegradation performance in the degradation of methylene blue (MB). BPTCD/g-C3N4 heterojunctions have great potential to degrade organic pollutants in wastewater under solar irradiation conditions. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

Back to TopTop