Cu-Modified Zn6In2S9 Photocatalyst for Hydrogen Production Under Visible-Light Irradiation †
Abstract
1. Introduction
2. Methods
2.1. Chemicals
2.2. Synthesis of Zinc Indium Sulfide Photocatalysts
2.3. Characterization
2.4. Photocatalytic Hydrogen Evolution Activity Tests
2.5. Electrochemical Characterization
3. Results and Discussion
3.1. Structural and Morphological Analyses
3.2. Optical and Electrochemical Properties
3.3. Photocatalytic Activity and Mechanism of the Photocatalysts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Acar, C.; Dincer, I.; Naterer, G.F. Review of Photocatalytic Water-Splitting Methods for Sustainable Hydrogen Production. Int. J. Energy Res. 2016, 40, 1449–1473. [Google Scholar] [CrossRef]
- Chen, H.; Wu, J.; Zhu, Y.; Yang, J.; Tang, B.; Zhang, T.; Yang, H. Cu-MOF Modified ZnIn2S4 Nanosheet Composite Catalyst for Photocatalytic Hydrogen Production. Renew Energy 2024, 228, 120672. [Google Scholar] [CrossRef]
- Xu, J.; Tao, H.; Peng, H.; Liu, Y.; Peng, S.; Li, Y. In Situ Anchoring of Ni12P5 on ZnIn2S4 for Efficient and Stable Photocatalytic H2 Evolution. Fuel 2024, 368, 131624. [Google Scholar] [CrossRef]
- Yan, Y.; Zhou, L.; Wang, H.; Song, Z.; Jing, L.; Hu, J. Photothermal ReO2/ReS2/Zn2In2S5 Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Sep. Purif. Technol. 2024, 346, 127473. [Google Scholar] [CrossRef]
- Liu, L.; Zuo, L.; Zhai, X.; Xiao, X.; Fan, H.; Li, B.; Wang, L. A Novel Hexagonal Prism of Zr-Based MOF@ZnIn2S4 Core−shell Nanorod as an Efficient Photocatalyst for Hydrogen Evolution. Appl. Catal. B Environ. Energy 2025, 361, 124686. [Google Scholar] [CrossRef]
- Zhao, C.; Jiang, H.; Liang, Q.; Zhou, M.; Zhang, Y.; Li, Z.; Xu, S. NH2-UiO-66 with Heterogeneous Pores Assists Zinc Indium Sulfide in Accelerating the Photocatalytic H2 Evolution under Visible-Light Irradiation. Sol. Energy 2020, 207, 599–608. [Google Scholar] [CrossRef]
- Wang, P.; Shen, Z.; Xia, Y.; Wang, H.; Zheng, L.; Xi, W.; Zhan, S. Atomic Insights for Optimum and Excess Doping in Photocatalysis: A Case Study of Few-Layer Cu-ZnIn2S4. Adv. Funct. Mater. 2019, 29, 1807013. [Google Scholar] [CrossRef]
- He, Y.; Lv, T.; Zhou, T.; Liu, B.; Xiao, B.; Zheng, H.; Zi, B.; Zhang, J.; Zhang, Y.; Zhang, G.; et al. Cu Doping Enhanced ZnIn2S4/TiO2(VO) Z-Scheme Heterojunction for Efficient Photocatalytic Overall Water Splitting. Int. J. Hydrogen Energy 2024, 57, 491–499. [Google Scholar] [CrossRef]
- Ou, M.; Li, J.; Chen, Y.; Wan, S.; Zhao, S.; Wang, J.; Wu, Y.; Ye, C.; Chen, Y. Formation of Noble-Metal-Free 2D/2D ZnmIn2Sm+3 (m = 1, 2, 3)/MXene Schottky Heterojunction as an Efficient Photocatalyst for Hydrogen Evolution. Chem. Eng. J. 2021, 424, 130170. [Google Scholar] [CrossRef]
- Wang, H.; Sun, Y.; Wu, Y.; Tu, W.; Wu, S.; Yuan, X.; Zeng, G.; Xu, Z.J.; Li, S.; Chew, J.W. Electrical Promotion of Spatially Photoinduced Charge Separation via Interfacial-Built-in Quasi-Alloying Effect in Hierarchical Zn2In2S5/Ti3C2(O, OH)x Hybrids toward Efficient Photocatalytic Hydrogen Evolution and Environmental Remediation. Appl. Catal. B 2019, 245, 290–301. [Google Scholar] [CrossRef]
- Zhang, S.; Duan, S.; Chen, G.; Meng, S.; Zheng, X.; Fan, Y.; Fu, X.; Chen, S. MoS2/Zn3In2S6 Composite Photocatalysts for Enhancement of Visible Light-Driven Hydrogen Production from Formic Acid. Chin. J. Catal. 2021, 42, 193–204. [Google Scholar] [CrossRef]
- Wang, Z.; Ye, J.; Wang, Y.; Ye, H.; Xie, Y.; Ling, Y. Non-Noble Metal Cu Modification ZnIn2S4 Driving Efficient Production H2 under Visible Light. Int. J. Hydrogen Energy 2024, 60, 1266–1274. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, P.; Yue, S.; Li, F.; Zhao, Z.; Zhan, S. Tailoring the Surface and Interface Structures of Photocatalysts to Enhance Hydrogen Production. Sci. China Chem. 2024, 67, 1161–1174. [Google Scholar] [CrossRef]
- Bai, P.; Wang, P.; Wu, Y.; Pang, X.; Song, M.; Du, C.; Su, Y. Junction of ZnmIn2S3+m and Bismuth Vanadate as Z-Scheme Photocatalyst for Enhanced Hydrogen Evolution Activity: The Role of Interfacial Interactions. J. Colloid. Interface Sci. 2022, 628, 488–499. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Lin, L.; Zhou, M.; Wang, Y.; Xu, S.; Chen, X.; Li, Z. Dual Functional S-Scheme ZnIn2S4/Crystalline Polymeric Carbon Nitride (ZIS/CPCN) Heterojunction for Efficient Photocatalytic Hydrogen Evolution and Degradation of Levofloxacin. Chem. Eng. J. 2024, 495, 153563. [Google Scholar] [CrossRef]
- Li, Q.; Xia, Y.; Yang, C.; Lv, K.; Lei, M.; Li, M. Building a Direct Z-Scheme Heterojunction Photocatalyst by ZnIn2S4 Nanosheets and TiO2 Hollowspheres for Highly-Efficient Artificial Photosynthesis. Chem. Eng. J. 2018, 349, 287–296. [Google Scholar] [CrossRef]
- Xia, Y.; Li, Q.; Lv, K.; Tang, D.; Li, M. Superiority of Graphene over Carbon Analogs for Enhanced Photocatalytic H2-Production Activity of ZnIn2S4. Appl. Catal. B 2017, 206, 344–352. [Google Scholar] [CrossRef]
- Zeng, D.; Xiao, L.; Ong, W.; Wu, P.; Zheng, H.; Chen, Y.; Peng, D. Hierarchical ZnIn2S4/MoSe2 Nanoarchitectures for Efficient Noble-Metal-Free Photocatalytic Hydrogen Evolution under Visible Light. ChemSusChem 2017, 10, 4624–4631. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zhang, Y.; Wu, J.; Dai, H.; Ma, C.; Zhang, Q.; Zou, Z. Ag-Pd Alloy Decorated ZnIn2S4 Microspheres with Optimal Schottky Barrier Height for Boosting Visible-Light-Driven Hydrogen Evolution. J. Mater. Sci. Technol. 2022, 114, 81–89. [Google Scholar] [CrossRef]
- Zhan, X.; Zheng, Y.; Li, B.; Fang, Z.; Yang, H.; Zhang, H.; Xu, L.; Shao, G.; Hou, H.; Yang, W. Rationally Designed Ta3N5/ZnIn2S4 1D/2D Heterojunctions for Boosting Visible-Light-Driven Hydrogen Evolution. Chem. Eng. J. 2022, 431, 134053. [Google Scholar] [CrossRef]
ZnCl2 (mmol) | InCl3 · 4 H2O (mmol) | TAA (mmol) | CuCl (mmol) | |
---|---|---|---|---|
Zn6In2S9 | 2.700 | 0.900 | 4.050 | 0.000 |
Zn5.9Cu0.1In2S9 | 2.655 | 0.900 | 4.050 | 0.045 |
Zn5.8Cu0.2In2S9 | 2.610 | 0.900 | 4.050 | 0.090 |
Zn5.7Cu0.3In2S9 | 2.565 | 0.900 | 4.050 | 0.135 |
Zn5.6Cu0.4In2S9 | 2.520 | 0.900 | 4.050 | 0.180 |
Zn5.4Cu0.6In2S9 | 2.430 | 0.900 | 4.050 | 0.270 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fukuishi, S.; Katsumata, H.; Tateishi, I.; Furukawa, M.; Kaneco, S. Cu-Modified Zn6In2S9 Photocatalyst for Hydrogen Production Under Visible-Light Irradiation. Chem. Proc. 2025, 17, 4. https://doi.org/10.3390/chemproc2025017004
Fukuishi S, Katsumata H, Tateishi I, Furukawa M, Kaneco S. Cu-Modified Zn6In2S9 Photocatalyst for Hydrogen Production Under Visible-Light Irradiation. Chemistry Proceedings. 2025; 17(1):4. https://doi.org/10.3390/chemproc2025017004
Chicago/Turabian StyleFukuishi, Shota, Hideyuki Katsumata, Ikki Tateishi, Mai Furukawa, and Satoshi Kaneco. 2025. "Cu-Modified Zn6In2S9 Photocatalyst for Hydrogen Production Under Visible-Light Irradiation" Chemistry Proceedings 17, no. 1: 4. https://doi.org/10.3390/chemproc2025017004
APA StyleFukuishi, S., Katsumata, H., Tateishi, I., Furukawa, M., & Kaneco, S. (2025). Cu-Modified Zn6In2S9 Photocatalyst for Hydrogen Production Under Visible-Light Irradiation. Chemistry Proceedings, 17(1), 4. https://doi.org/10.3390/chemproc2025017004