Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (197)

Search Parameters:
Keywords = viscosity of free water

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3106 KiB  
Article
Preparation of a Nanomaterial–Polymer Dynamic Cross-Linked Gel Composite and Its Application in Drilling Fluids
by Fei Gao, Peng Xu, Hui Zhang, Hao Wang, Xin Zhao, Xinru Li and Jiayi Zhang
Gels 2025, 11(8), 614; https://doi.org/10.3390/gels11080614 - 5 Aug 2025
Viewed by 25
Abstract
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order [...] Read more.
During the process of oil and gas drilling, due to the existence of pores or micro-cracks, drilling fluid is prone to invade the formation. Under the action of hydration expansion of clay in the formation and liquid pressure, wellbore instability occurs. In order to reduce the wellbore instability caused by drilling fluid intrusion into the formation, this study proposed a method of forming a dynamic hydrogen bond cross-linked network weak gel structure with modified nano-silica and P(AM-AAC). The plugging performance of the drilling fluid and the performance of inhibiting the hydration of shale were evaluated through various experimental methods. The results show that the gel composite system (GCS) effectively optimizes the plugging performance of drilling fluid. The 1% GCS can reduce the linear expansion rate of cuttings to 14.8% and increase the recovery rate of cuttings to 96.7%, and its hydration inhibition effect is better than that of KCl and polyamines. The dynamic cross-linked network structure can significantly increase the viscosity of drilling fluid. Meanwhile, by taking advantage of the liquid-phase viscosity effect and the physical blocking effect, the loss of drilling fluid can be significantly reduced. Mechanism studies conducted using zeta potential measurement, SEM analysis, contact angle measurement and capillary force assessment have shown that modified nano-silica stabilizes the wellbore by physically blocking the nano-pores of shale and changing the wettability of the shale surface from hydrophilic to hydrophobic when the contact angle exceeds 60°, thereby reducing capillary force and surface free energy. Meanwhile, the dynamic cross-linked network can reduce the seepage of free water into the formation, thereby significantly lowering the fluid loss of the drilling fluid. This research provides new insights into improving the stability of the wellbore in drilling fluids. Full article
(This article belongs to the Special Issue Advanced Gels for Oil Recovery (2nd Edition))
Show Figures

Figure 1

13 pages, 5177 KiB  
Article
Pilot-Scale Polysulfone Ultrafiltration Patterned Membranes: Phase-Inversion Parametric Optimization on a Roll-to-Roll Casting System
by Ayesha Ilyas and Ivo F. J. Vankelecom
Membranes 2025, 15(8), 228; https://doi.org/10.3390/membranes15080228 - 31 Jul 2025
Viewed by 468
Abstract
The scalability and processability of high-performance membranes remain significant challenges in membrane technology. This work focuses on optimizing the pilot-scale production of patterned polysulfone (PSf) ultrafiltration membranes using the spray-modified non-solvent-induced phase separation (s-NIPS) method on a roll-to-roll pilot line. s-NIPS has already [...] Read more.
The scalability and processability of high-performance membranes remain significant challenges in membrane technology. This work focuses on optimizing the pilot-scale production of patterned polysulfone (PSf) ultrafiltration membranes using the spray-modified non-solvent-induced phase separation (s-NIPS) method on a roll-to-roll pilot line. s-NIPS has already been studied extensively at lab-scale to prepare patterned membranes for various applications including membrane bioreactors (MBR), reverse osmosis (RO) and forward osmosis (FO). Although studied at the lab scale, membranes prepared at a larger scale can significantly differ in performance; therefore, phase inversion parameters, including polymer concentration, molecular weight, and additive type (i.e., polyethylene glycol (PEG) or polyvinylpyrolidine (PVP)) and concentration, were systematically varied when casting on a roll-to-roll, 12″ wide pilot line to identify optimal conditions for achieving defect-free, high-performance, patterned PSf membranes. The membranes were characterized for their pure water permeance, BSA rejection, casting solution viscosities, and resulting morphology. s-NIPS patterned membranes exhibit 150–350% increase in water flux as compared to their reference flat membrane, thanks to very high pattern heights up to 825 µm and formation of finger-like macrovoids. This work bridges the gap between lab-scale and pilot-scale membrane preparation, while proposing an upscaled membrane with great potential for use in water treatment. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

11 pages, 2406 KiB  
Article
Surfactant-Free Electrosprayed Alginate Beads for Oral Delivery of Hydrophobic Compounds
by Hye-Seon Jeong, Hyo-Jin Kim, Sung-Min Kang and Chang-Hyung Choi
Polymers 2025, 17(15), 2098; https://doi.org/10.3390/polym17152098 - 30 Jul 2025
Viewed by 207
Abstract
Oral delivery of hydrophobic compounds remains challenging due to their poor aqueous solubility and the potential toxicity associated with conventional surfactant-based emulsions. To address these issues, we present a surfactant-free encapsulation strategy using electrosprayed alginate hydrogel beads for the stable and controlled delivery [...] Read more.
Oral delivery of hydrophobic compounds remains challenging due to their poor aqueous solubility and the potential toxicity associated with conventional surfactant-based emulsions. To address these issues, we present a surfactant-free encapsulation strategy using electrosprayed alginate hydrogel beads for the stable and controlled delivery of hydrophobic oils. Hydrophobic compounds were dispersed in high-viscosity alginate solutions without surfactants via ultrasonication, forming kinetically stable oil-in-water dispersions. These mixtures were electrosprayed into calcium chloride baths, yielding monodisperse hydrogel beads. Higher alginate concentrations improved droplet sphericity and suppressed phase separation by enhancing matrix viscosity. The resulting beads exhibited stimuli-responsive degradation and controlled release behavior in response to physiological ionic strength. Dense alginate networks delayed ion exchange and prolonged structural integrity, while elevated external ionic conditions triggered rapid disintegration and immediate payload release. This simple and scalable system offers a biocompatible platform for the oral delivery of lipophilic active compounds without the need for surfactants or complex fabrication steps. Full article
Show Figures

Figure 1

16 pages, 1188 KiB  
Article
Preparation and Performance Evaluation of Modified Amino-Silicone Supercritical CO2 Viscosity Enhancer for Shale Oil and Gas Reservoir Development
by Rongguo Yang, Lei Tang, Xuecheng Zheng, Yuanqian Zhu, Chuanjiang Zheng, Guoyu Liu and Nanjun Lai
Processes 2025, 13(8), 2337; https://doi.org/10.3390/pr13082337 - 23 Jul 2025
Viewed by 344
Abstract
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. [...] Read more.
Against the backdrop of global energy transition and strict environmental regulations, supercritical carbon dioxide (scCO2) fracturing and oil displacement technologies have emerged as pivotal green approaches in shale gas exploitation, offering the dual advantages of zero water consumption and carbon sequestration. However, the inherent low viscosity of scCO2 severely restricts its sand-carrying capacity, fracture propagation efficiency, and oil recovery rate, necessitating the urgent development of high-performance thickeners. The current research on scCO2 thickeners faces a critical trade-off: traditional fluorinated polymers exhibit excellent philicity CO2, but suffer from high costs and environmental hazards, while non-fluorinated systems often struggle to balance solubility and thickening performance. The development of new thickeners primarily involves two directions. On one hand, efforts focus on modifying non-fluorinated polymers, driven by environmental protection needs—traditional fluorinated thickeners may cause environmental pollution, and improving non-fluorinated polymers can maintain good thickening performance while reducing environmental impacts. On the other hand, there is a commitment to developing non-noble metal-catalyzed siloxane modification and synthesis processes, aiming to enhance the technical and economic feasibility of scCO2 thickeners. Compared with noble metal catalysts like platinum, non-noble metal catalysts can reduce production costs, making the synthesis process more economically viable for large-scale industrial applications. These studies are crucial for promoting the practical application of scCO2 technology in unconventional oil and gas development, including improving fracturing efficiency and oil displacement efficiency, and providing new technical support for the sustainable development of the energy industry. This study innovatively designed an amphiphilic modified amino silicone oil polymer (MA-co-MPEGA-AS) by combining maleic anhydride (MA), methoxy polyethylene glycol acrylate (MPEGA), and amino silicone oil (AS) through a molecular bridge strategy. The synthesis process involved three key steps: radical polymerization of MA and MPEGA, amidation with AS, and in situ network formation. Fourier transform infrared spectroscopy (FT-IR) confirmed the successful introduction of ether-based CO2-philic groups. Rheological tests conducted under scCO2 conditions demonstrated a 114-fold increase in viscosity for MA-co-MPEGA-AS. Mechanistic studies revealed that the ether oxygen atoms (Lewis base) in MPEGA formed dipole–quadrupole interactions with CO2 (Lewis acid), enhancing solubility by 47%. Simultaneously, the self-assembly of siloxane chains into a three-dimensional network suppressed interlayer sliding in scCO2 and maintained over 90% viscosity retention at 80 °C. This fluorine-free design eliminates the need for platinum-based catalysts and reduces production costs compared to fluorinated polymers. The hierarchical interactions (coordination bonds and hydrogen bonds) within the system provide a novel synthetic paradigm for scCO2 thickeners. This research lays the foundation for green CO2-based energy extraction technologies. Full article
Show Figures

Figure 1

14 pages, 2680 KiB  
Article
Optimization of Ultrasonic Dispersion of Single-Walled SWCNT Inks for Improvement of Thermoelectric Performance in SWCNT Films Using Heat Source-Free Water-Floating SWCNT Thermoelectric Generators
by Yutaro Okano, Shuya Ochiai, Hiroto Nakayama, Kiyofumi Nagai and Masayuki Takashiri
Materials 2025, 18(14), 3339; https://doi.org/10.3390/ma18143339 - 16 Jul 2025
Viewed by 363
Abstract
Single-walled carbon nanotube (SWCNT) inks were prepared by mixing SWCNTs with ethanol and varying the amplitude of ultrasonic dispersion. When the SWCNT inks were prepared by dispersion amplitudes at 60% (nominal value of 200 W), the SWCNT inks had low viscosity and a [...] Read more.
Single-walled carbon nanotube (SWCNT) inks were prepared by mixing SWCNTs with ethanol and varying the amplitude of ultrasonic dispersion. When the SWCNT inks were prepared by dispersion amplitudes at 60% (nominal value of 200 W), the SWCNT inks had low viscosity and a small variation of the particle size. The SWCNT films fabricated under this dispersion condition had well-distributed SWCNT bundles and exhibited the highest power factor. However, when the dispersion amplitude was excessive, the viscosity of the SWCNT ink increased due to the reduced contact between the SWCNTs owing to over-dispersion, and the crystallinity of the SWCNT films decreased, exhibiting a lower power factor. When the optimized SWCNT films at 60% were applied to heat-source-free water-floating SWCNT-TEGs, an output voltage of 2.0 mV could be generated under sunlight irradiation. These findings are useful for preparing various electronic devices with SWCNT films to improve the film quality using ultrasonic dispersion. Full article
(This article belongs to the Special Issue Advanced Thermoelectric Materials and Micro/Nanoscale Heat Transfer)
Show Figures

Figure 1

22 pages, 9751 KiB  
Article
Investigation on the Coupling Effect of Bionic Micro-Texture Shape and Distribution on the Tribological Performance of Water-Lubricated Sliding Bearings
by Xiansheng Tang, Yunfei Lan, Sergei Bosiakov, Michael Zhuravkov, Tao He, Yang Xia and Yongtao Lyu
Lubricants 2025, 13(7), 305; https://doi.org/10.3390/lubricants13070305 - 14 Jul 2025
Viewed by 338
Abstract
Water-lubricated bearings (WLB), due to their pollution-free nature and low noise, are increasingly becoming critical components in aerospace, marine applications, high-speed railway transportation, precision machine tools, etc. However, in practice, water-lubricated bearings suffer severe friction and wear due to low-viscosity water, harsh conditions, [...] Read more.
Water-lubricated bearings (WLB), due to their pollution-free nature and low noise, are increasingly becoming critical components in aerospace, marine applications, high-speed railway transportation, precision machine tools, etc. However, in practice, water-lubricated bearings suffer severe friction and wear due to low-viscosity water, harsh conditions, and contaminants like sediment, which can compromise the lubricating film and shorten their lifespan. The implementation of micro-textures has been demonstrated to improve the tribological performance of water-lubricated bearings to a certain extent, leading to their widespread adoption for enhancing the frictional dynamics of sliding bearings. The shape, dimensions (including length, width, and depth), and distribution of these micro-textures have a significant influence on the frictional performance. Therefore, this study aims to explore the coupling effect of different micro-texture shapes and distributions on the frictional performance of water-lubricated sliding, using the computational fluid dynamics (CFD) analysis. The results indicate that strategically arranging textures across multiple regions can enhance the performance of the bearing. Specifically, placing linear groove textures in the outlet of the divergent zone and triangular textures in the divergent zone body maximize improvements in the load-carrying capacity and frictional performance. This specific configuration increases the load-carrying capacity by 7.3% and reduces the friction coefficient by 8.6%. Overall, this study provided critical theoretical and technical insights for the optimization of WLB, contributing to the advancement of clean energy technologies and the extension of critical bearing service life. Full article
(This article belongs to the Special Issue Water Lubricated Bearings)
Show Figures

Figure 1

23 pages, 21825 KiB  
Article
Implicating Ultrasonication and Heat–Moisture Treatments as a Green and Eco-Friendly Approach for Dual Physical Modification of Eleocharis tuberosa Starch to Improve Its Physico-Chemical and Functional Properties
by Zafarullah Muhammad, Rabia Ramzan, Chen Ana, Muhammad Afzaal, Adnan Abbas, Muhammad Safiullah Virk, Abdullah, Wu Sun and Guoqiang Zhang
Foods 2025, 14(13), 2185; https://doi.org/10.3390/foods14132185 - 22 Jun 2025
Viewed by 502
Abstract
Dual-physical modification is an eco-friendly and waste-free approach for enhancing the functionality of native starches compared with a single modification. In the present study, the individual and combined interrelating effects of hydrothermal (heat moisture (HM) with 15%, 20%, and 25% moisture) and non-thermal [...] Read more.
Dual-physical modification is an eco-friendly and waste-free approach for enhancing the functionality of native starches compared with a single modification. In the present study, the individual and combined interrelating effects of hydrothermal (heat moisture (HM) with 15%, 20%, and 25% moisture) and non-thermal (ultrasonication (US) with 200, 400, and 600 power (W)) on the physical modification of Eleocharis tuberosa (Chinese water chestnut (CWCS)) starch were studied. Furthermore, their effects on the morphology, FTIR, XRD, crystallinity, thermal, pasting, swelling power, solubility, rheological characteristics, and in vitro digestibility of native and modified starches were investigated. The results indicated a consistent B-type structure of CWCS, with a significant decrease in the crystallinity (22.32 ± 0.04–28.76 ± 0.02%), which was linked with ΔH (19.65 ± 0.01–12.18 ± 0.06 Jg−1) and amylose content (34.67 ± 0.07–40.73 ± 0.11%). The absorbance ratio 1048/1025 specified that the combination of HM-US compacted the short-range order degree up to 1.30 for HM25–US600-CWCS. The starch treated with HM, followed by the US, considerably amplified the setback, peak, and final viscosities compared with the HM-treated starch. The rheological analysis demonstrated that the fluidity of CWCS was enhanced (G′ > G″, tan δ < 1) by the synergistic effect of HM and US, increasing the resistivity toward deformation during paste development. The dual-modified starch exhibited a slower glucose release rate with increasing moisture (25%) during HM and 600 W during the US, with higher RS contents of 45.83 ± 0.28% and 43.09 ± 0.12%, respectively. Dual-physical modification exhibited a significant aptitude for modifying native starches structurally and functionally as a substitute for product formulation with a low glycemic index. Full article
(This article belongs to the Special Issue Advance in Starch Chemistry and Technology)
Show Figures

Figure 1

21 pages, 3123 KiB  
Article
The Impact of Starches from Various Botanical Origins on the Functional and Mechanical Properties of Anhydrous Lotion Body Bars
by Agnieszka Kulawik-Pióro, Beata Fryźlewicz-Kozak, Iwona Tworzydło, Joanna Kruk and Anna Ptaszek
Polymers 2025, 17(13), 1731; https://doi.org/10.3390/polym17131731 - 21 Jun 2025
Viewed by 515
Abstract
Starch, as a natural, low-cost, and vegan-friendly raw material, aligns well with the growing demand for sustainable, zero-waste, and waterless cosmetic products. Its biodegradability and natural origin allow for minimal environmental impact during production and disposal. Anhydrous lotion body bars, solid and water-free [...] Read more.
Starch, as a natural, low-cost, and vegan-friendly raw material, aligns well with the growing demand for sustainable, zero-waste, and waterless cosmetic products. Its biodegradability and natural origin allow for minimal environmental impact during production and disposal. Anhydrous lotion body bars, solid and water-free alternatives to traditional moisturizers, offer high concentrations of active ingredients that are more effective and have a longer shelf life. Their solid form enables packaging in paper-based containers, reducing plastic waste. To address formulation challenges such as excessive greasiness, poor absorption, or lack of structural stability, which are often associated with the high oil content of anhydrous body lotion bars, starch may serve as a promising natural additive. The aim of this study was to optimize the formulation of an innovative starch-based anhydrous lotion bar. For this purpose, physicochemical analyses of starches from various botanical sources (corn, rice, tapioca, waxy corn and potato) were performed, along with evaluations of the functional (including commercially acceptable form, hardness sufficient for application, product stability, reduced greasiness and stickiness) and mechanical properties of the resulting bars. Additionally, the rheological behavior was described using the De Kee model. The results indicate that a 2.5% starch addition, regardless of its botanical origin, provides the best balance between viscosity and ease of application. Moreover, starches with a low moisture content and high oil absorption capacity effectively reduce the greasy skin sensation. These findings demonstrate the potential of starch as a natural multifunctional additive in the development of stable, user-friendly anhydrous lotion body bars. Full article
Show Figures

Figure 1

20 pages, 2721 KiB  
Article
Natural Deep Eutectic Solvents (NADESs) for the Extraction of Bioactive Compounds from Quinoa (Chenopodium quinoa Willd.) Leaves: A Semi-Quantitative Analysis Using High Performance Thin-Layer Chromatography
by Verónica Taco, Dennys Almachi, Pablo Bonilla, Ixchel Gijón-Arreortúa, Samira Benali, Jean-Marie Raquez, Pierre Duez and Amandine Nachtergael
Molecules 2025, 30(12), 2620; https://doi.org/10.3390/molecules30122620 - 17 Jun 2025
Viewed by 419
Abstract
Natural deep eutectic solvents (NADESs) have emerged as a promising eco-friendly alternative to petrochemicals for extracting plant metabolites. Considering that the demand for sustainable “green” ingredients for industrial applications is growing, those solvents are purported to develop extracts with interesting phytochemical fingerprints and [...] Read more.
Natural deep eutectic solvents (NADESs) have emerged as a promising eco-friendly alternative to petrochemicals for extracting plant metabolites. Considering that the demand for sustainable “green” ingredients for industrial applications is growing, those solvents are purported to develop extracts with interesting phytochemical fingerprints and biological activities. Given the interest in flavonoids from Chenopodium quinoa Willd. leaves, an efficient “green” extraction method was developed by investigating eight NADESs with defined molar ratios, i.e., malic acid-choline chloride (chcl)-water (w) (1:1:2, N1), chcl-glucose-w (5:2:5, N2), proline-malic acid-w (1:1:3, N3), glucose-fructose-sucrose-w (1:1:1:11, N4), 1,2-propanediol-chcl-w (1:1:1, N5), lactic acid-glucose-w (5:1:3, N6), glycerol-chcl-w (2:1:1, N7), and xylitol-chcl-w (1:2:3, N8). Rheological measurements of all NADESs confirmed their pseudoplastic behaviors. To improve the extraction processes, differential scanning calorimetry (DSC) allowed us to determine the maximum amount of water that could be added to the most stable NADES (N1, N2, N3, and N4; 17.5%, 20%, 10%, and 10% w/w, respectively) to lower their viscosities without disturbing their eutectic environments. The phytochemical compositions of NADES extracts were analyzed using high-performance thin-layer chromatography (HPTLC), and their free radical scavenging and α-amylase inhibitory properties were assessed using HPTLC-bioautography. N2, diluted with 20% of water, and N7 presented the best potential for replacing methanol for an eco-friendly extraction of flavonoids, radical scavengers, and α-amylase inhibitors from quinoa leaves. Their biological properties, combined with a good understanding of both thermal behavior and viscosity, make the obtained quinoa leaf NADES extracts good candidates for direct incorporation in nutraceutical formulations. Full article
Show Figures

Graphical abstract

19 pages, 3923 KiB  
Article
Palygorskite as an Extender Agent in Light Cement Pastes for Oil Wells: Performance Analysis
by Rafael A. Ventura, José V. A. Carvalho, Raphael R. da Silva, Francisco G. H. S. Pinto, Júlio C. O. Freitas and Sibele B. C. Pergher
Minerals 2025, 15(6), 637; https://doi.org/10.3390/min15060637 - 11 Jun 2025
Viewed by 395
Abstract
Cementing operations are among the most critical steps in oil-well construction. When performed improperly, the integrity and useful life of the well can be significantly compromised. Light cement pastes are used to cement formations with a low fracture gradient to ensure zonal isolation [...] Read more.
Cementing operations are among the most critical steps in oil-well construction. When performed improperly, the integrity and useful life of the well can be significantly compromised. Light cement pastes are used to cement formations with a low fracture gradient to ensure zonal isolation and maintain the integrity of the casing. Extenders are additives used to reduce the density of cement pastes, ensuring that the paste has desirable properties before and after setting. This work aimed to evaluate the application of palygorskite clay as an additive in lightweight cement pastes for oil wells, highlighting how its fibrous morphology influences the microstructure and enhances the macroscopic properties of the hardened cement matrix. For this, the clay sample was initially characterized regarding its physicochemical properties using X-ray diffraction (XRD), X-ray fluorescence (XRF), thermogravimetry (TG), textural analysis (BET/N2), and scanning electron microscopy (SEM). Lightweight pastes (1.56 g/cm3) were then formulated, varying the clay concentration by 1%, 3%, and 6% of the total mass. Cement pastes using bentonite were also formulated for comparison. Technological tests of atmospheric consistency, rheological behavior, free water, and stability were applied. It can be noted that the pastes formulated with palygorskite had lower viscosity, reflected in the reduced plastic viscosity and yield stress values, indicating easier flow behavior when compared with bentonite-based pastes. The pastes formulated with 6% palygorskite and 3% bentonite showed satisfactory stability and drawdown results. Therefore, applying palygorskite satisfies the minimum requirements for acting as an extending agent for lightweight cement pastes and is an option for application in oil-well cementing operations. Full article
Show Figures

Figure 1

22 pages, 1510 KiB  
Article
Effects of Geological and Fluid Characteristics on the Injection Filtration of Hydraulic Fracturing Fluid in the Wellbores of Shale Reservoirs: Numerical Analysis and Mechanism Determination
by Qiang Li, Qingchao Li, Fuling Wang, Jingjuan Wu, Yanling Wang and Jiafeng Jin
Processes 2025, 13(6), 1747; https://doi.org/10.3390/pr13061747 - 2 Jun 2025
Cited by 1 | Viewed by 467
Abstract
To mitigate the influence of wellbore heat transfer on the physicochemical properties of water-based fracturing fluids in the high-temperature environments of low-permeability shale reservoirs, this study investigates the fluid filtration behavior of water-based fracturing fluids within the wellbore under such reservoir conditions. A [...] Read more.
To mitigate the influence of wellbore heat transfer on the physicochemical properties of water-based fracturing fluids in the high-temperature environments of low-permeability shale reservoirs, this study investigates the fluid filtration behavior of water-based fracturing fluids within the wellbore under such reservoir conditions. A wellbore heat-transfer model based on solid–liquid coupling was constructed in order to analyse the effects of different reservoir and wellbore factors on fluid properties (viscosity and filtration volume) in the water-based fracturing fluids. Concurrently, boundary conditions and control equations were established for the numerical model, thereby delineating the heat-transfer conditions extant between the water-based fracturing fluid and the wellbore. Furthermore, molecular dynamics theory and microgrid theory were utilised to elucidate the mechanisms of the alterations of the fluid properties of the water-based fracturing fluids due to wellbore heat transfer in low-permeability shale reservoirs. The findings demonstrated that wellbore heat transfer in low-permeability shale reservoirs exerts a pronounced influence on the fluid viscosity and filtration volume of the water-based fracturing fluids. Parameters such as wellbore wall thickness, heat-transfer coefficient, radius, and pressure differential introduce distinct variation trends in these fluid properties. At the microscopic scale, the disruption of intermolecular hydrogen bonds and the consequent increase in free molecular content induced by thermal effects are the fundamental mechanisms driving the observed changes in viscosity and fluid filtration. These findings may offer theoretical guidance for improving the thermal stability of water-based fracturing fluids under wellbore heat-transfer conditions. Full article
Show Figures

Figure 1

23 pages, 8978 KiB  
Article
A Lignin-Based Zwitterionic Surfactant Facilitates Heavy Oil Viscosity Reduction via Interfacial Modification and Molecular Aggregation Disruption in High-Salinity Reservoirs
by Qiutao Wu, Tao Liu, Xinru Xu and Jingyi Yang
Molecules 2025, 30(11), 2419; https://doi.org/10.3390/molecules30112419 - 31 May 2025
Viewed by 607
Abstract
The development of eco-friendly surfactants is pivotal for enhanced oil recovery (EOR). In this study, a novel lignin-derived zwitterionic surfactant (DMS) was synthesized through a two-step chemical process involving esterification and free radical polymerization, utilizing renewable alkali lignin, maleic anhydride, dimethylamino propyl methacrylamide [...] Read more.
The development of eco-friendly surfactants is pivotal for enhanced oil recovery (EOR). In this study, a novel lignin-derived zwitterionic surfactant (DMS) was synthesized through a two-step chemical process involving esterification and free radical polymerization, utilizing renewable alkali lignin, maleic anhydride, dimethylamino propyl methacrylamide (DMAPMA), and sulfobetaine methacrylate (SBMA) as precursors. Comprehensive characterization via 1H NMR, FTIR, and XPS validated the successful integration of amphiphilic functionalities. Hydrophilic–lipophilic balance (HLB) analysis showed a strong tendency to form stable oil-in-water (O/W) emulsions. The experimental results showed a remarkable 91.6% viscosity reduction in Xinjiang heavy crude oil emulsions at an optimum dosage of 1000 mg/L. Notably, DMS retained an 84.8% viscosity reduction efficiency under hypersaline conditions (total dissolved solids, TDS = 200,460 mg/L), demonstrating exceptional salt tolerance. Mechanistic insights derived from zeta potential measurements and molecular dynamics simulations revealed dual functionalities: interfacial modification by DMS-induced O/W phase inversion and electrostatic repulsion (zeta potential: −30.89 mV) stabilized the emulsion while disrupting π–π interactions between asphaltenes and resins, thereby mitigating macromolecular aggregation in the oil phase. As a green, bio-based viscosity suppressor, DMS exhibits significant potential for heavy oil recovery in high-salinity reservoirs, addressing the persistent challenge of salinity-induced inefficacy in conventional chemical solutions and offering a sustainable pathway for enhanced oil recovery. Full article
Show Figures

Figure 1

16 pages, 2498 KiB  
Article
Synthesis, Characteristics, and Field Applications of High-Temperature and Salt-Resistant Polymer Gel Tackifier
by Guowei Zhou, Xin Zhang, Weijun Yan and Zhengsong Qiu
Gels 2025, 11(6), 378; https://doi.org/10.3390/gels11060378 - 22 May 2025
Viewed by 407
Abstract
To address the technical challenge of high polymer gel viscosity reducers losing viscosity at elevated temperatures and difficulty in controlling fluid loss, a polymer-based nano calcium carbonate composite high-temperature tackifier named GW-VIS was prepared using acrylamide (AM), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), N-vinylpyrrolidone (NVP), and [...] Read more.
To address the technical challenge of high polymer gel viscosity reducers losing viscosity at elevated temperatures and difficulty in controlling fluid loss, a polymer-based nano calcium carbonate composite high-temperature tackifier named GW-VIS was prepared using acrylamide (AM), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), N-vinylpyrrolidone (NVP), and nano calcium carbonate as raw materials through water suspension polymerization. This polymer gel can absorb water well at room temperature and has a small solubility. After a long period of high-temperature treatment, most of it can dissolve in water, increasing the viscosity of the suspension. The structure of the samples was characterized by infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy, and their performance was evaluated. Rheological tests indicated that the 0.5% water suspension had a consistency coefficient (k = 761) significantly higher than the requirement for clay-free drilling fluids (k > 200). In thermal resistance experiments, the material maintained stable viscosity at 180 °C (reduction rate of 0%), and only decreased by 14.8% at 200 °C. Salt tolerance tests found that the viscosity reduction after hot rolling at 200 °C was only 17.31% when the NaCl concentration reached saturation. Field trials in three wells in the Liaohe oilfield verified that the clay-free drilling fluid supported formation operations successfully. The study shows that the polymer gel has the potential to maintain rheological stability at high temperatures by forming a network structure through polymer chain adsorption and entanglement, with a maximum temperature resistance of up to 200 °C, providing an efficient drilling fluid for deep oil and gas well development. It is feasible to select nano calcium carbonate to participate in the research of high-temperature resistant polymer materials. Meanwhile, the combined effect of monomers with large steric hindrance and inorganic materials can enhance the product’s temperature resistance and resistance to NaCl pollution. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (3rd Edition))
Show Figures

Figure 1

15 pages, 6746 KiB  
Article
Electrospun Gelatin/Dextran Nanofibers from W/W Emulsions: Improving Probiotic Stability Under Thermal and Gastrointestinal Stress
by Yuehan Wu, Ziyou Yan, Shanshan Zhang, Shiyang Li, Ya Gong and Zhiming Gao
Foods 2025, 14(10), 1725; https://doi.org/10.3390/foods14101725 - 13 May 2025
Viewed by 482
Abstract
Probiotics offer numerous health benefits; however, preserving their viability during processing and storage remains a major challenge. This study investigates the electrospinning of gelatin/dextran (GE/DEX) water-in-water (W/W) emulsions for Lactobacillus plantarum encapsulation. By varying dextran concentrations, the ways in which phase behavior, viscosity, [...] Read more.
Probiotics offer numerous health benefits; however, preserving their viability during processing and storage remains a major challenge. This study investigates the electrospinning of gelatin/dextran (GE/DEX) water-in-water (W/W) emulsions for Lactobacillus plantarum encapsulation. By varying dextran concentrations, the ways in which phase behavior, viscosity, and conductivity influence fiber formation and morphology were analyzed. Scanning and transmission electron microscopy confirmed core–shell nanofibers, while FT-IR revealed electrostatic interactions rather than chemical reactions between GE and DEX. Encapsulated probiotics exhibited enhanced viability under thermal stress (65 and 72 °C), storage (25 and 4 °C), and simulated gastrointestinal conditions, maintaining high viability (>8 log CFU/g) compared with free cells. Notably, gelatin-rich shell phases provided stronger protection, likely due to gelation properties restricting bacterial mobility. These findings demonstrate that electrospinning of W/W emulsions is an effective strategy to improve probiotic stability, offering potential applications in functional foods. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

23 pages, 7812 KiB  
Article
The Effect of Mineral Fillers on the Rheological and Performance Properties of Self-Compacting Concretes in the Production of Reinforced Concrete Products
by Meiram M. Begentayev, Erzhan I. Kuldeyev, Daniyar A. Akhmetov, Zhanar O. Zhumadilova, Dossym K. Suleyev, Yelbek B. Utepov, Talal Awwad and Mussa T. Kuttybay
J. Compos. Sci. 2025, 9(5), 235; https://doi.org/10.3390/jcs9050235 - 6 May 2025
Viewed by 652
Abstract
This study investigates the impact of widely used mineral fillers in self-compacting concrete compositions applied in vibration-free reinforced concrete production technology, as a means of enhancing rheological characteristics and cost-effectiveness. Three distinct types of mineral fillers, including the well-studied fillers microsilica and metakaolin, [...] Read more.
This study investigates the impact of widely used mineral fillers in self-compacting concrete compositions applied in vibration-free reinforced concrete production technology, as a means of enhancing rheological characteristics and cost-effectiveness. Three distinct types of mineral fillers, including the well-studied fillers microsilica and metakaolin, as well as the lesser-explored filler Kazakhstani natural opal-chalcedony opoka, are examined in this research. In addition to the evaluation of conventional rheological and performance properties of concretes containing these fillers, the internal processes within the cement–filler matrix are analyzed. This includes X-ray phase analysis and microstructural examination of cement hydration products in combination with a superplasticizer and each of the three minerals. The findings confirm the potential for optimizing the rheological parameters of the concrete mixture by substituting up to 15% of the cement with mineral fillers, achieving optimal viscosity and workability. It is established that compositions with the addition of microsilica and metakaolin have a more homogeneous structure, mainly represented by low-basicity calcium hydrosilicates of the CSH(B) type, along with an increase in compressive strength of up to 10%. The addition of these mineral fillers to C30/35 strength class self-compacting concrete resulted in improved frost resistance up to F300, a reduction in volumetric water absorption by up to 30%, and a decrease in shrinkage deformations by 32%. The developed SCC compositions have successfully passed production testing and are recommended for implementation in the operational processes of reinforced concrete product manufacturing plants. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

Back to TopTop