Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (203)

Search Parameters:
Keywords = viral penetration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1028 KiB  
Article
Clone-Specific Variation in Myzus persicae Influences Transmission of BMYV and BYV and Associated Feeding Behavior
by Grégoire Noël, Lallie Glacet, Christiane Then and Frédéric Francis
Insects 2025, 16(8), 784; https://doi.org/10.3390/insects16080784 - 30 Jul 2025
Viewed by 254
Abstract
Sugar beet (Beta vulgaris ssp. vulgaris) is a vital crop, contributing to nearly a quarter of global sugar production, but faces significant challenges from biotic stressors, particularly aphids, which transmit damaging yellowing viruses such as Beet Yellow Virus (BYV) and Beet [...] Read more.
Sugar beet (Beta vulgaris ssp. vulgaris) is a vital crop, contributing to nearly a quarter of global sugar production, but faces significant challenges from biotic stressors, particularly aphids, which transmit damaging yellowing viruses such as Beet Yellow Virus (BYV) and Beet Mild Yellowing Virus (BMYV). Following the partial ban of neonicotinoids in Europe, viral infections in sugar beet have surged, highlighting the need for a deeper understanding of aphid-mediated virus transmission mechanisms. This study aims to evaluate the transmission efficiency of BYV and BMYV through different clones of the aphid vector Myzus persicae from sugar beet seed companies across Europe, and to analyze the feeding behaviors of efficient clones to identify factors influencing virus transmission. The transmission rates of yellowing viruses by M. persicae clones ranged from 52% to 79% for BMYV (mean 65%) and 7% to 96% for BYV (mean 47%). While no significant differences in BMYV transmission efficiency were observed among clones, a significant difference was detected between two BYV-carrying clones. Moreover, the BYV-carrying clone exhibited prolonged penetration activities during its feeding phase compared to the BMYV-carrying clone, suggesting a potential behavioral influence on transmission efficiency. This study highlights the importance of considering aphid clone influence in the development of sugar beet resistance. Full article
(This article belongs to the Special Issue Protecting Field Crops from Economically Damaging Aphid Infestation)
Show Figures

Figure 1

21 pages, 407 KiB  
Review
Modeling Virus-Associated Central Nervous System Disease in Non-Human Primates
by Krystal J. Vail, Brittany N. Macha, Linh Hellmers and Tracy Fischer
Int. J. Mol. Sci. 2025, 26(14), 6886; https://doi.org/10.3390/ijms26146886 - 17 Jul 2025
Viewed by 488
Abstract
While viral pathogens are often subdivided into neurotropic and non-neurotropic categories, systemic inflammation caused by non-neurotropic viruses still possesses the ability to alter the central nervous system (CNS). Studies of CNS disease induced by viral infection, whether neurotropic or not, are presented with [...] Read more.
While viral pathogens are often subdivided into neurotropic and non-neurotropic categories, systemic inflammation caused by non-neurotropic viruses still possesses the ability to alter the central nervous system (CNS). Studies of CNS disease induced by viral infection, whether neurotropic or not, are presented with a unique set of challenges. First, because brain biopsies are rarely necessary to diagnose viral-associated neurological disorders, antemortem tissue samples are not readily available for study and human pathological studies must rely on end-stage, postmortem evaluations. Second, in vitro models fail to fully capture the nuances of an intact immune system, necessitating the use of animal models to fully characterize pathogenesis and identify potential therapeutic approaches. Non-human primates (NHP) represent a particularly attractive animal model in that they overcome many of the limits posed by more distant species and most closely mirror human disease pathogenesis and susceptibility. Here, we review NHP infection models of viruses known to infect and/or replicate within cells of the CNS, including West Nile virus, the equine encephalitis viruses, Zika virus, and herpesviruses, as well as those known to alter the immune status of the brain in the absence of significant CNS penetrance, including human immunodeficiency virus (HIV) in the current era of combination antiretroviral therapy (cART) and the coronavirus of severe acute respiratory syndrome (SARS)-CoV−2. This review focuses on viruses with an established role in causing CNS disease, including encephalitis, meningitis, and myelitis and NHP models of viral infection that are directly translatable to the human condition through relevant routes of infection, comparable disease pathogenesis, and responses to therapeutic intervention. Full article
(This article belongs to the Special Issue Animal Research Model for Neurological Diseases, 2nd Edition)
13 pages, 264 KiB  
Review
Impact of Climate Change and Air Pollution on Bronchiolitis: A Narrative Review Bridging Environmental and Clinical Insights
by Cecilia Nobili, Matteo Riccò, Giulia Piglia and Paolo Manzoni
Pathogens 2025, 14(7), 690; https://doi.org/10.3390/pathogens14070690 - 14 Jul 2025
Viewed by 451
Abstract
Climate change and air pollution are reshaping viral circulation patterns and increasing host vulnerability, amplifying the burden of respiratory illness in early childhood. This narrative review synthesizes current evidence on how environmental exposures, particularly to nitrogen dioxide, ozone, and fine particulate matter, contribute [...] Read more.
Climate change and air pollution are reshaping viral circulation patterns and increasing host vulnerability, amplifying the burden of respiratory illness in early childhood. This narrative review synthesizes current evidence on how environmental exposures, particularly to nitrogen dioxide, ozone, and fine particulate matter, contribute to the incidence and severity of bronchiolitis, with a focus on biological mechanisms, epidemiological trends, and public health implications. Bronchiolitis remains one of the leading causes of hospitalization in infancy, with Respiratory Syncytial Virus (RSV) being responsible for the majority of severe cases. Airborne pollutants penetrate deep into the airways, triggering inflammation, compromising mucosal defenses, and impairing immune function, especially in infants with pre-existing vulnerabilities. These interactions can intensify the clinical course of viral infections and contribute to more severe disease presentations. Children in urban areas exposed to high levels of traffic-related emissions are disproportionately affected, underscoring the need for integrated public health interventions. These include stricter emission controls, urban design strategies to reduce exposure, and real-time health alerts during pollution peaks. Prevention strategies should also address indoor air quality and promote risk awareness among families and caregivers. Further research is needed to standardize exposure assessments, clarify dose–response relationships, and deepen our understanding of how pollution interacts with viral immunity. Bronchiolitis emerges as a sentinel condition at the crossroads of climate, environment, and pediatric health, highlighting the urgent need for collaboration across clinical medicine, epidemiology, and environmental science. Full article
20 pages, 941 KiB  
Review
HIV-1 Tat: Molecular Switch in Viral Persistence and Emerging Technologies for Functional Cure
by Kaixin Yu, Hanxin Liu and Ting Pan
Int. J. Mol. Sci. 2025, 26(13), 6311; https://doi.org/10.3390/ijms26136311 - 30 Jun 2025
Viewed by 727
Abstract
HIV-1 Tat acts as a central molecular switch governing the transition between viral latency and active replication, making it a pivotal target for HIV-1 functional cure strategies. By binding to the viral long terminal repeat (LTR) and hijacking host transcriptional machinery, Tat dynamically [...] Read more.
HIV-1 Tat acts as a central molecular switch governing the transition between viral latency and active replication, making it a pivotal target for HIV-1 functional cure strategies. By binding to the viral long terminal repeat (LTR) and hijacking host transcriptional machinery, Tat dynamically regulates RNA polymerase II processivity to alter viral transcription states. Recent studies reveal its context-dependent variability: while Tat recruits chromatin modifiers and scaffolds non-coding RNAs to stabilize epigenetic silencing in latently infected cells, it also triggers rapid transcriptional amplification upon cellular activation. This review systematically analyzes the bistable regulatory mechanism of Tat and investigates advanced technologies for reprogramming this switch to eliminateviral reservoirs and achieve functional cures. Conventional approaches targeting Tat are limited by compensatory viral evolution and poor bioavailability. Next-generation interventions will employ precision-engineered tools, such as AI-optimized small molecules blocking Tat-P-TEFb interfaces and CRISPR-dCas9/Tat chimeric systems, for locus-specific LTR silencing or reactivation (“block and lock” or “shock and kill”). Advanced delivery platforms, including brain-penetrant lipid nanoparticles (LNPs), enable the targeted delivery of Tat-editing mRNA or base editors to microglial reservoirs. Single-cell multiomics elucidates Tat-mediated clonal heterogeneity, identifying “switchable” subpopulations for timed interventions. By integrating systems-level Tat interactomics, epigenetic engineering, and spatiotemporally controlled delivery, this review proposes a roadmap to disrupt HIV-1 persistence by hijacking the Tat switch, ultimately bridging mechanistic insights to clinical applications. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

28 pages, 9321 KiB  
Article
In Situ Vaccination with a Vpr-Derived Peptide Elicits Systemic Antitumor Immunity by Improving Tumor Immunogenicity
by Danjie Pan, Ling Du, Jiayang Liu, Kudelaidi Kuerban, Xuan Huang, Yue Wang, Qiuyu Guo, Huaning Chen, Songna Wang, Li Wang, Pinghong Zhou, Zhefeng Meng and Li Ye
Vaccines 2025, 13(7), 710; https://doi.org/10.3390/vaccines13070710 - 30 Jun 2025
Viewed by 650
Abstract
Background: Cancer vaccines represent a groundbreaking advancement in cancer immunotherapy, utilizing tumor antigens to induce tumor-specific immune responses. However, challenges like tumor-induced immune resistance and technical barriers limit the widespread application of predefined antigen vaccines. Here, we investigated the potential of viral protein [...] Read more.
Background: Cancer vaccines represent a groundbreaking advancement in cancer immunotherapy, utilizing tumor antigens to induce tumor-specific immune responses. However, challenges like tumor-induced immune resistance and technical barriers limit the widespread application of predefined antigen vaccines. Here, we investigated the potential of viral protein R (Vpr) peptides as effective candidates for constructing anonymous antigen vaccines in situ by directly injecting at the tumor site and releasing whole-tumor antigens, inducing robust anti-tumor immune responses to overcome the limitations of predefined antigen vaccines. Methods: The cytotoxic effects of Vpr peptides were evaluated using the CCK8 reagent kit. Membrane penetration ability of Vpr peptides was observed using a confocal laser scanning microscope and quantitatively analyzed using flow cytometry. EGFR levels in the cell culture supernatants of cells treated with Vpr peptides were evaluated using an ELISA. Surface exposure of CRT on the tumor cell surface was observed using a confocal laser scanning microscope and quantitatively analyzed using flow cytometry. The secretion levels of ATP from tumor cells were evaluated using an ATP assay kit. HMGB1 release was evaluated using an ELISA. Mouse (Male C57BL/6 mice aged 4 weeks) MC38 and LLC bilateral subcutaneous tumor models were established to evaluate the therapeutic effects of Vpr peptides through in situ vaccination. Proteomic analysis was performed to explore the mechanism of anti-tumor activity of Vpr peptides. Results: Four Vpr peptides were designed and synthesized, with P1 and P4 exhibiting cytotoxic effects on tumor cells, inducing apoptosis and immunogenic cell death. In mouse tumor models, in situ vaccination with Vpr peptide significantly inhibited tumor growth and activated various immune cells. High-dose P1 monotherapy demonstrated potent anti-tumor effects, activating DCs, T cells, and macrophages. Combining ISV of P1 with a CD47 inhibitor SIRPαFc fusion protein showed potent distant tumor suppression effects. Proteomic analysis suggested that Vpr peptides exerted anti-tumor effects by disrupting tumor cell morphology, movement, and adhesion, and promoting immune cell infiltration. Conclusions: The designed Vpr peptides show promise as candidates for in situ vaccination, with significant anti-tumor effects, immune activation, and favorable safety profiles observed in mouse models. In situ vaccination with Vpr-derived peptides represents a potential approach for cancer immunotherapy. Full article
(This article belongs to the Special Issue New Approaches to Vaccine Development and Delivery)
Show Figures

Figure 1

25 pages, 1263 KiB  
Review
Nanoneedle-Based Transdermal Gene Delivery: A Minimally Invasive Strategy for Gene Therapy
by Fatma Julide Akbuğa, Muhammet Davut Arpa and Emine Şalva
Int. J. Mol. Sci. 2025, 26(13), 6235; https://doi.org/10.3390/ijms26136235 - 27 Jun 2025
Cited by 1 | Viewed by 493
Abstract
Transdermal drug delivery systems have recently been explored as an alternative to oral systems, which have many challenges. Due to the limitations of first-generation transdermal systems, second- and third-generation systems have been developed, among which microneedles have been the most remarkable products. Building [...] Read more.
Transdermal drug delivery systems have recently been explored as an alternative to oral systems, which have many challenges. Due to the limitations of first-generation transdermal systems, second- and third-generation systems have been developed, among which microneedles have been the most remarkable products. Building on the advancements of nanotechnology, nanoneedles have recently been developed. Gene therapy molecules—such as DNA, RNA, siRNA, miRNA, and other nucleic acids—are typically delivered using viral or chemical carriers, but these methods face several challenges. In this context, nanoneedles offer a promising and efficient solution for delivering these large molecules. Nanoneedles are a biocompatible and reliable physical method for gene delivery, enabling transdermal administration by penetrating the skin barrier and delivering nucleic acids directly into cells. Their ability to penetrate cellular barriers with minimal invasiveness makes them advantageous for delivering genetic materials. This review will focus on the potential applications of nanoneedles in pharmaceutical contexts, especially in gene therapy. In addition, information on the properties, structure, and fabrication of nanoneedles is also provided. Full article
(This article belongs to the Special Issue Nanomedicine in Gene Therapy and Immunotherapy)
Show Figures

Figure 1

21 pages, 5739 KiB  
Article
Novel Lung Cell-Penetrating Peptide Targets Alveolar Epithelial Type II Cells, Basal Cells, and Ionocytes
by Jin Wen, Gajalakshmi Singuru, Jeffrey Stiltner, Sanjay Mishra, Kyle S. Feldman, Kayla McCandless, Raymond Yurko, Kazi Islam, Ray Frizzell, Hisato Yagi, Jonathan M. Brown and Maliha Zahid
Pharmaceutics 2025, 17(7), 824; https://doi.org/10.3390/pharmaceutics17070824 - 25 Jun 2025
Viewed by 593
Abstract
Background: Cell-penetrating peptides cross cell membrane barriers while carrying cargoes in a functional form. Our work identified two novel lung-targeting peptides, S7A and R11A. Here, we present studies on biodistribution, the cell types targeted, and an in vitro proof of application. Methods: Studies [...] Read more.
Background: Cell-penetrating peptides cross cell membrane barriers while carrying cargoes in a functional form. Our work identified two novel lung-targeting peptides, S7A and R11A. Here, we present studies on biodistribution, the cell types targeted, and an in vitro proof of application. Methods: Studies were performed in human bronchial epithelial cells (HBECs) with and without various endocytic inhibitors, and coincubation with fluorescently labeled transferrin or endocytic markers. Cyclic R11A (cR11A) was conjugated to siRNA duplexes and anti-viral activity against SARS-CoV-2 was tested. Biodistribution studies were performed by injecting wild-type mice with fluorescently labeled peptides, and various circulation times were allowed for, as well as cross-staining of lung sections or isolated single cells with various cellular markers, followed by fluorescence-activated cell sorting or confocal microscopy. Results: cR11A showed peak uptake in 15 min, with the highest uptake in airway epithelial type II (ATII) cells, followed by p63+ basal cells and ionocytes. Cyclization increased transduction efficiencies ~100-fold. Endocytosis studies showed a decrease in peptide uptake by pre-treatment with Pitstop2 but not Amiloride or Nystatin. Endocytic marker Lamp1 showed colocalization at the earliest time point, with the escape of the peptide from endocytic vesicles later. cR11A conjugated to ant-spike and anti-envelop proteins showed anti-viral effects with an EC90 of 0.6 μM and 1.0 µM, respectively. Conclusions: We have identified a novel peptide, cR11A, that targets ATII, basal cells, and ionocytes, the cyclization of which increased transduction efficiency in vitro and in vivo. The uptake mechanism appears to be via clathrin-mediated endocytosis with escape from endocytic vesicles. cR11A can act as a vector to deliver anti-viral siRNA to epithelial cells. Full article
(This article belongs to the Section Biologics and Biosimilars)
Show Figures

Figure 1

15 pages, 752 KiB  
Article
Relationship Between Estimated Drug Distribution of Antiretroviral Therapy and Immune Proteins in Cerebrospinal Fluid During Chronic HIV Suppression
by Mattia Trunfio, Jennifer E. Iudicello, Patricia K. Riggs, Asha R. Kallianpur, Todd Hulgan, Ronald J. Ellis and Scott L. Letendre
Viruses 2025, 17(6), 749; https://doi.org/10.3390/v17060749 - 23 May 2025
Viewed by 691
Abstract
Antiretroviral therapy (ART) drugs vary in their distribution into cerebrospinal fluid (CSF), which can be estimated using the central nervous system (CNS) penetration effectiveness (CPE) score. Although higher CPE has been associated with lower CSF HIV RNA levels, its relationship to CSF inflammation [...] Read more.
Antiretroviral therapy (ART) drugs vary in their distribution into cerebrospinal fluid (CSF), which can be estimated using the central nervous system (CNS) penetration effectiveness (CPE) score. Although higher CPE has been associated with lower CSF HIV RNA levels, its relationship to CSF inflammation is less clear. We investigated associations between CPE and three CSF immune biomarkers (CXCL10, TNF-α, and IL-6) in 275 virally suppressed people with HIV (PWH) on three-drug ART regimens using a training–validation design. Participants were randomized into training (TG, n = 144) and validation (VG, n = 131) groups with similar demographics, ART characteristics, and CPE scores. The CSF levels of the biomarkers were quantified by bead suspension array-based immunoassays. In both groups, higher CPE correlated with lower levels of CXCL10 (TG: r = −0.31, p < 0.001; VG: r = −0.30, p < 0.001) and TNF-α (TG: r = −0.19, p = 0.04; VG: r = −0.18, p = 0.03), with remarkably similar effect size. CPE did not correlate with IL-6 in either group. Multivariable models confirmed the associations between higher CPE and both lower CXCL10 (R2 = 0.16, p < 0.001) and TNF-α (R2 = 0.07, p = 0.02) in CSF, and supported the relative resistance of IL-6 to ART effects. During suppressive ART, regimens that achieve higher concentrations in the CNS may better reduce some indicators of CSF inflammation (CXCL10 and TNF-α, closely related to the interferon pathway), but they may not fully normalize the neuroimmune environment (IL-6). Distinct ART regimens may produce different neuroimmune signatures, potentially contributing to heterogeneous patterns of brain injury. Full article
(This article belongs to the Special Issue Neurocognitive Dynamics and Biomarkers in HIV)
Show Figures

Graphical abstract

26 pages, 1668 KiB  
Review
Neuroinflammation, Blood–Brain Barrier, and HIV Reservoirs in the CNS: An In-Depth Exploration of Latency Mechanisms and Emerging Therapeutic Strategies
by Noor Said and Vishwanath Venketaraman
Viruses 2025, 17(4), 572; https://doi.org/10.3390/v17040572 - 16 Apr 2025
Viewed by 2222
Abstract
Despite the success of antiretroviral therapy (ART) in suppressing viral replication in the blood, HIV persists in the central nervous system (CNS) and causes chronic neurocognitive impairment, a hallmark of HIV-associated neurocognitive disorders (HAND). This review looks at the complex interactions among HIV, [...] Read more.
Despite the success of antiretroviral therapy (ART) in suppressing viral replication in the blood, HIV persists in the central nervous system (CNS) and causes chronic neurocognitive impairment, a hallmark of HIV-associated neurocognitive disorders (HAND). This review looks at the complex interactions among HIV, the blood–brain barrier (BBB), neuroinflammation, and the roles of viral proteins, immune cell trafficking, and pro-inflammatory mediators in establishing and maintaining latent viral reservoirs in the CNS, particularly microglia and astrocytes. Key findings show disruption of the BBB, monocyte infiltration, and activation of CNS-resident cells by HIV proteins like Tat and gp120, contributing to the neuroinflammatory environment and neuronal damage. Advances in epigenetic regulation of latency have identified targets like histone modifications and DNA methylation, and new therapeutic strategies like latency-reversing agents (LRAs), gene editing (CRISPR/Cas9), and nanoparticle-based drug delivery also offer hope. While we have made significant progress in understanding the molecular basis of HIV persistence in the CNS, overcoming the challenges of BBB penetration and neuroinflammation is key to developing effective therapies. Further research into combination therapies and novel drug delivery systems will help improve outcomes for HAND patients and bring us closer to a functional cure for HIV. Full article
(This article belongs to the Special Issue HIV Neurological Disorders: 2nd Edition)
Show Figures

Graphical abstract

6 pages, 2881 KiB  
Proceeding Paper
Comparison of Ultraviolet A/B and C Irradiation for Exosome Secretion Enhancement in HEK 293T Cell
by Ching-Chih Chan, Pohao Lin, Yi Xian, Ruey-Hwang Chou and Yi-Jui Liu
Eng. Proc. 2025, 89(1), 39; https://doi.org/10.3390/engproc2025089039 - 17 Mar 2025
Viewed by 462
Abstract
Exosomes, extracellular vesicles known for their stability, low immunogenicity, and excellent tissue penetration, are employed as delivery vehicles. These exosomes can traverse the tumor barrier and deliver therapeutic agents directly into pancreatic cancer cells. Targeted exosome vectors containing gene fragments to inhibit Kirsten [...] Read more.
Exosomes, extracellular vesicles known for their stability, low immunogenicity, and excellent tissue penetration, are employed as delivery vehicles. These exosomes can traverse the tumor barrier and deliver therapeutic agents directly into pancreatic cancer cells. Targeted exosome vectors containing gene fragments to inhibit Kirsten rat sarcoma viral oncogene homolog (KRAS) activity are crucial for treating pancreatic tumors. Therefore, the content of the exosomes is critical. This study aims to compare the function of exosomes released by HEK-293T cells when exposed to ultraviolet A/B and ultraviolet C irradiation to determine its impact. HEK-293T cells were irradiated with ultraviolet A/B, and ultraviolet C for various indicated times, after which the cell count and exosome secretion were measured. Exosomes derived from HEK-293T cells were isolated through differential centrifugation and identified using four methods: cell counting, Bradford assay, nanoparticle tracking analysis (NTA), and Western blot analysis. Preliminary studies demonstrated that the cell count and Bradford assay expression were reduced in ultraviolet C compared to the control, with similar levels observed for ultraviolet A/B and the control. Exosome expression in Western blot analysis showed ultraviolet C, but a higher amount of ultraviolet A/B compared to the control. We introduce a comprehensive approach to ultraviolet irradiation, including ultraviolet A/B and ultraviolet C, which enhanced the secretion of exosomes by HEK-293T targeted vectors for KRAS inhibition in pancreatic cancer. Full article
Show Figures

Figure 1

13 pages, 2421 KiB  
Article
Inactivation of Viruses by Charged Cinnamaldehyde Nanoemulsions
by Pragathi Kamarasu, Minji Kim, David Julian McClements, Amanda J. Kinchla and Matthew D. Moore
Foods 2025, 14(6), 931; https://doi.org/10.3390/foods14060931 - 9 Mar 2025
Viewed by 1044
Abstract
Viral pathogens are a considerable public health burden, and so inactivating viruses in the environment is critical. This study compared the antiviral activity of cinnamaldehyde nanoemulsions (CNE) and cinnamaldehyde oil (CNO) on a non-enveloped norovirus surrogate bacteriophage (MS2) and an enveloped human coronavirus [...] Read more.
Viral pathogens are a considerable public health burden, and so inactivating viruses in the environment is critical. This study compared the antiviral activity of cinnamaldehyde nanoemulsions (CNE) and cinnamaldehyde oil (CNO) on a non-enveloped norovirus surrogate bacteriophage (MS2) and an enveloped human coronavirus 229E (HuCoV-229E). MS2 bacteriophage and HuCoV-229E were treated with different concentrations of CNE or CNO (0.5–3.5%). After treatment for 1 h, the reduction in MS2 numbers was significantly less for the CNE than for the CNO. For instance, the log reductions in MS2 numbers were 4.02 ± 0.10 and 2.78 ± 0.34 PFU/mL after treatment with 3.5% and 0.5% of CNO, whereas they were only 1.54 ± 0.08 and 0 PFU/mL after treatment with the equivalent CNE, respectively. Conversely, a significant reduction in HuCoV-229E was observed for the nanoemulsion-based treatment at high cinnamaldehyde levels. Specifically, when treated with 0.5% cinnamaldehyde, there was a 1.35 ± 0.23 and 3.08 ± 0.17 log PFU/mL reduction for the CNE and CNO treatments, but when treated with 2.5% cinnamaldehyde, there was a 5.98 ± 0.12 and 4.43 ± 0.38 log PFU/mL reduction, respectively. These results suggest that the efficiency of the essential oil as a disinfectant against coronavirus-229E can be increased when it is incorporated in a nanoemulsion at an appropriate concentration. The better efficacy of the nanoemulsion formulations against coronavirus-229E than against MS2 bacteriophage may have been because the cinnamaldehyde oil droplets could penetrate into and deactivate enveloped viruses more effectively than non-enveloped ones. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

15 pages, 4945 KiB  
Review
The Role of Orthobunyavirus Glycoprotein Gc in the Viral Life Cycle: From Viral Entry to Egress
by Han Gao, Dengshuai Zhao, Canyuan Li, Menghua Deng, Gan Li, Shengfeng Chen, Mengmeng Zhao, Limei Qin and Keshan Zhang
Molecules 2025, 30(3), 503; https://doi.org/10.3390/molecules30030503 - 23 Jan 2025
Cited by 2 | Viewed by 1743
Abstract
Orthobunyavirus refers to the virus members within the Genus Orthobunyavirus, which is the largest virus genus in the Family Peribunyaviridae and even Class Bunyaviricetes. To date, over 130 species of Orthobunyaviruses have been identified worldwide. Orthobunyaviruses mainly infect arthropods, while some species are [...] Read more.
Orthobunyavirus refers to the virus members within the Genus Orthobunyavirus, which is the largest virus genus in the Family Peribunyaviridae and even Class Bunyaviricetes. To date, over 130 species of Orthobunyaviruses have been identified worldwide. Orthobunyaviruses mainly infect arthropods, while some species are capable of being transmitted to mammals, including humans, via intermediate vectors. As emerging and re-emerging pathogens, orthobunyavirus poses a significant threat to both human and veterinary public health worldwide. Currently, there are no commercial vaccines against orthobunyavirus. The structure of orthobunyavirus is relatively simple, consisting of a typical tri-segmented negative-sense RNA genome that encodes four structural proteins (L, Gn, Gc, and N) and two non-structural proteins (NSm and NSs). The highly glycosylated Gc protein, which has a complex conformation and forms polymers embedded in the viral envelope, plays a critical role in inducing neutralizing antibodies throughout the orthobunyavirus infection cycle from entry to egress. This review provides a comprehensive summary of the virus-encoded Gc protein and its role in the virus life cycle from viral entry to egress, offering researchers with valuable integrated information for further investigations. Full article
Show Figures

Figure 1

15 pages, 577 KiB  
Review
Are You My Host? An Overview of Methods Used to Link Bacteriophages with Hosts
by Paul Hyman
Viruses 2025, 17(1), 65; https://doi.org/10.3390/v17010065 - 5 Jan 2025
Cited by 3 | Viewed by 2131
Abstract
Until recently, the only methods for finding out if a particular strain or species of bacteria could be a host for a particular bacteriophage was to see if the bacteriophage could infect that bacterium and kill it, releasing progeny phages. Establishing the host [...] Read more.
Until recently, the only methods for finding out if a particular strain or species of bacteria could be a host for a particular bacteriophage was to see if the bacteriophage could infect that bacterium and kill it, releasing progeny phages. Establishing the host range of a bacteriophage thus meant infecting many different bacteria and seeing if the phage could kill each one. Detection of bacterial killing can be achieved on solid media (plaques, spots) or broth (culture clearing). More recently, additional methods to link phages and hosts have been developed. These include methods to show phage genome entry into host cells (e.g., PhageFISH); proximity of phage and host genomes (e.g., proximity ligation, polonies, viral tagging); and analysis of genomes and metagenomes (e.g., CRISPR spacer analysis, metagenomic co-occurrence). These methods have advantages and disadvantages. They also are not measuring the same interactions. Host range can be divided into multiple host ranges, each defined by how far the phage can progress in the infection cycle. For example, the ability to effect genome entry (penetrative host range) is different than the ability to produce progeny (productive host range). These different host ranges reflect bacterial defense mechanisms that block phage growth and development at various stages in the infection cycle. Here, I present a comparison of the various methods used to identify bacteriophage-host relationships with a focus on what type of host range is being measured or predicted. Full article
(This article belongs to the Special Issue Bacteriophage Diversity)
Show Figures

Figure 1

12 pages, 1321 KiB  
Article
Anti-DENV-2 Activity of Ethanolic Extracts from Arachis hypogaea L.: Peanut Skin as a Relevant Resource of Bioactive Compounds against Dengue Virus
by Florencia Menis Candela, Elio Andrés Soria, Melina Vanesa Moliva, Agostina Suárez Perrone, Elina Beatríz Reinoso, Walter Giordano and María Carola Sabini
Plants 2024, 13(20), 2881; https://doi.org/10.3390/plants13202881 - 15 Oct 2024
Cited by 3 | Viewed by 2848
Abstract
Dengue is an emerging disease of high impact on human health. Plants are an important source of new antivirals and Arachis hypogaea stands for its biological properties. The aim of this study was to evaluate the cytotoxicity and antiviral activity and elucidate the [...] Read more.
Dengue is an emerging disease of high impact on human health. Plants are an important source of new antivirals and Arachis hypogaea stands for its biological properties. The aim of this study was to evaluate the cytotoxicity and antiviral activity and elucidate the antiviral mechanism of ethanolic extracts from A. hypogaea against dengue virus 2 (DENV-2). The skin or tegument ethanolic extract (TEEs) and seed ethanolic extract (SEEs) were obtained. Cytotoxicity was evaluated by MTT and Neutral Red Uptake (NRU). Antiviral activity was evaluated at different stages of the viral replication cycle by the lysis plaque reduction method. The 50% inhibitory concentration (IC50) and selectivity index (SI) were determined. Antiviral activity was further determined by RT-qPCR. The CC50 values were 169 (NRU) and 65 (MTT) µg/mL for TEE. In addition, the CC50 values were >1400 (NRU) and 636 (MTT) µg/mL for SEE. The TEE demonstrated 99.9 ± 0.1% viral inhibition. The TEE presented an IC50 = 3.47 and SI of 48.7 (NRU) and 18.73 (MTT). Its mechanism of antiviral action is broad and it acts in the viral adsorption–penetration stage and inhibits the first steps of infection in the post-penetration stage. It is also capable of acting as virucidal and as prophylactic. Studies of RT-qPCR indicated that the TEE inhibited viral RNA synthesis. These findings suggest that the TEE from A. hypogaea could be a promising antiviral candidate for treating DENV-2 infections. Full article
(This article belongs to the Special Issue Chemical Characteristics and Bioactivity of Plant Natural Products)
Show Figures

Graphical abstract

46 pages, 1455 KiB  
Review
Mannose and Lactobionic Acid in Nasal Vaccination: Enhancing Antigen Delivery via C-Type Lectin Receptors
by Mariana Colaço, Maria T. Cruz, Luís Pereira de Almeida and Olga Borges
Pharmaceutics 2024, 16(10), 1308; https://doi.org/10.3390/pharmaceutics16101308 - 8 Oct 2024
Cited by 1 | Viewed by 2173
Abstract
Background/Objectives: Nasal vaccines are a promising strategy for enhancing mucosal immune responses and preventing diseases at mucosal sites by stimulating the secretion of secretory IgA, which is crucial for early pathogen neutralization. However, designing effective nasal vaccines is challenging due to the complex [...] Read more.
Background/Objectives: Nasal vaccines are a promising strategy for enhancing mucosal immune responses and preventing diseases at mucosal sites by stimulating the secretion of secretory IgA, which is crucial for early pathogen neutralization. However, designing effective nasal vaccines is challenging due to the complex immunological mechanisms in the nasal mucosa, which must balance protection and tolerance against constant exposure to inhaled pathogens. The nasal route also presents unique formulation and delivery hurdles, such as the mucous layer hindering antigen penetration and immune cell access. Methods: This review focuses on cutting-edge approaches to enhance nasal vaccine delivery, particularly those targeting C-type lectin receptors (CLRs) like the mannose receptor and macrophage galactose-type lectin (MGL) receptor. It elucidates the roles of these receptors in antigen recognition and uptake by antigen-presenting cells (APCs), providing insights into optimizing vaccine delivery. Results: While a comprehensive examination of targeted glycoconjugate vaccine development is outside the scope of this study, we provide key examples of glycan-based ligands, such as lactobionic acid and mannose, which can selectively target CLRs in the nasal mucosa. Conclusions: With the rise of new viral infections, this review aims to facilitate the design of innovative vaccines and equip researchers, clinicians, and vaccine developers with the knowledge to enhance immune defenses against respiratory pathogens, ultimately protecting public health. Full article
Show Figures

Graphical abstract

Back to TopTop