Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,350)

Search Parameters:
Keywords = viral integration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2630 KiB  
Review
Transfection Technologies for Next-Generation Therapies
by Dinesh Simkhada, Su Hui Catherine Teo, Nandu Deorkar and Mohan C. Vemuri
J. Clin. Med. 2025, 14(15), 5515; https://doi.org/10.3390/jcm14155515 - 5 Aug 2025
Abstract
Background: Transfection is vital for gene therapy, mRNA treatments, CAR-T cell therapy, and regenerative medicine. While viral vectors are effective, non-viral systems like lipid nanoparticles (LNPs) offer safer, more flexible alternatives. This work explores emerging non-viral transfection technologies to improve delivery efficiency [...] Read more.
Background: Transfection is vital for gene therapy, mRNA treatments, CAR-T cell therapy, and regenerative medicine. While viral vectors are effective, non-viral systems like lipid nanoparticles (LNPs) offer safer, more flexible alternatives. This work explores emerging non-viral transfection technologies to improve delivery efficiency and therapeutic outcomes. Methods: This review synthesizes the current literature and recent advancements in non-viral transfection technologies. It focuses on the mechanisms, advantages, and limitations of various delivery systems, including lipid nanoparticles, biodegradable polymers, electroporation, peptide-based carriers, and microfluidic platforms. Comparative analysis was conducted to evaluate their performance in terms of transfection efficiency, cellular uptake, biocompatibility, and potential for clinical translation. Several academic search engines and online resources were utilized for data collection, including Science Direct, PubMed, Google Scholar Scopus, the National Cancer Institute’s online portal, and other reputable online databases. Results: Non-viral systems demonstrated superior performance in delivering mRNA, siRNA, and antisense oligonucleotides, particularly in clinical applications. Biodegradable polymers and peptide-based systems showed promise in enhancing biocompatibility and targeted delivery. Electroporation and microfluidic systems offered precise control over transfection parameters, improving reproducibility and scalability. Collectively, these innovations address key challenges in gene delivery, such as stability, immune response, and cell-type specificity. Conclusions: The continuous evolution of transfection technologies is pivotal for advancing gene and cell-based therapies. Non-viral delivery systems, particularly LNPs and emerging platforms like microfluidics and biodegradable polymers, offer safer and more adaptable alternatives to viral vectors. These innovations are critical for optimizing therapeutic efficacy and enabling personalized medicine, immunotherapy, and regenerative treatments. Future research should focus on integrating these technologies to develop next-generation transfection platforms with enhanced precision and clinical applicability. Full article
Show Figures

Figure 1

24 pages, 6999 KiB  
Article
Plasmid DNA Delivery to Cancer Cells with Poly(L-lysine)-Based Copolymers Bearing Thermally Sensitive Segments: Balancing Polyplex Tightness, Transfection Efficiency, and Biocompatibility
by Mustafa Kotmakci, Natalia Toncheva-Moncheva, Sahar Tarkavannezhad, Bilge Debelec Butuner, Ivaylo Dimitrov and Stanislav Rangelov
Pharmaceutics 2025, 17(8), 1012; https://doi.org/10.3390/pharmaceutics17081012 - 2 Aug 2025
Viewed by 229
Abstract
Background/Objectives. Efficient nucleic acid delivery into target cells remains a critical challenge in gene therapy. Due to its advantages in biocompatibility and safety, recent research has increasingly focused on non-viral gene delivery. Methods. A series of copolymers—synthesized by integrating thermally sensitive poly(N-isopropylacrylamide) [...] Read more.
Background/Objectives. Efficient nucleic acid delivery into target cells remains a critical challenge in gene therapy. Due to its advantages in biocompatibility and safety, recent research has increasingly focused on non-viral gene delivery. Methods. A series of copolymers—synthesized by integrating thermally sensitive poly(N-isopropylacrylamide) (PNIPAm), hydrophilic poly(ethylene glycol) (PEG) grafts, and a polycationic poly(L-lysine) (PLL) block of varying lengths ((PNIPAm)77-graft-(PEG)9-block-(PLL)z, z = 10–65)—were investigated. Plasmid DNA complexation with the copolymers was achieved through temperature-modulated methods. The resulting polyplexes were characterized by evaluating complex strength, particle size, zeta potential, plasmid DNA loading capacity, resistance to anionic stress, stability in serum, and lysosomal membrane destabilization assay. The copolymers’ potential for plasmid DNA delivery was assessed through cytotoxicity and transfection studies in cancer cell lines. Results. Across all complexation methods, the copolymers effectively condensed plasmid DNA into stable polyplexes. Particle sizes (60–90 nm) ranged with no apparent correlation to copolymer type, complexation method, or N/P ratio, whereas zeta potentials (+10–+20 mV) and resistance to polyanionic stress were dependent on the PLL length and N/P ratio. Cytotoxicity analysis revealed a direct correlation between PLL chain length and cell viability, with all copolymers demonstrating minimal cytotoxicity at concentrations required for efficient transfection. PNL-20 ((PNIPAm)77-graft-(PEG)9-block-(PLL)20) exhibited the highest transfection efficiency among the tested formulations while maintaining low cytotoxicity. Conclusions. The study highlights the promising potential of (PNIPAm)77-graft-(PEG)9-block-(PLL)z copolymers for effective plasmid DNA delivery to cancer cells. It reveals the importance of attaining the right balance between polyplex tightness and plasmid release to achieve improved biocompatibility and transfection efficiency. Full article
Show Figures

Figure 1

37 pages, 1469 KiB  
Review
Oncolytic Therapies for Glioblastoma: Advances, Challenges, and Future Perspectives
by Omar Alomari, Habiba Eyvazova, Beyzanur Güney, Rana Al Juhmani, Hatice Odabasi, Lubna Al-Rawabdeh, Muhammed Edib Mokresh, Ufuk Erginoglu, Abdullah Keles and Mustafa K. Baskaya
Cancers 2025, 17(15), 2550; https://doi.org/10.3390/cancers17152550 - 1 Aug 2025
Viewed by 556
Abstract
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, necessitating novel therapeutic approaches. Oncolytic treatments, particularly oncolytic viruses (OVs), have emerged as promising candidates by selectively infecting and lysing tumor cells while stimulating anti-tumor immunity. Various virus-based therapies are under [...] Read more.
Glioblastoma (GBM) remains one of the most aggressive and treatment-resistant brain tumors, necessitating novel therapeutic approaches. Oncolytic treatments, particularly oncolytic viruses (OVs), have emerged as promising candidates by selectively infecting and lysing tumor cells while stimulating anti-tumor immunity. Various virus-based therapies are under investigation, including genetically engineered herpes simplex virus (HSV), adenovirus, poliovirus, reovirus, vaccinia virus, measles virus, and Newcastle disease virus, each exploiting unique tumor-selective mechanisms. While some, such as HSV-based therapies including G207 and DelytactTM, have demonstrated clinical progress, significant challenges persist, including immune evasion, heterogeneity in patient response, and delivery barriers due to the blood–brain barrier. Moreover, combination strategies integrating OVs with immune checkpoint inhibitors, chemotherapy, and radiation are promising but require further clinical validation. Non-viral oncolytic approaches, such as tumor-targeting bacteria and synthetic peptides, remain underexplored. This review highlights current advancements while addressing critical gaps in the literature, including the need for optimized delivery methods, better biomarker-based patient stratification, and a deeper understanding of GBM’s immunosuppressive microenvironment. Future research should focus on enhancing OV specificity, engineering viruses to deliver therapeutic genes, and integrating OVs with precision medicine strategies. By identifying these gaps, this review provides a framework for advancing oncolytic therapies in GBM treatment. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

20 pages, 2976 KiB  
Review
The Role of DNA in Neural Development and Cognitive Function
by Tharsius Raja William Raja, Janakiraman Pillai Udaiyappan and Michael Pillay
DNA 2025, 5(3), 37; https://doi.org/10.3390/dna5030037 - 1 Aug 2025
Viewed by 82
Abstract
DNA connects the domains of genetic regulation and environmental interactions and plays a crucial role in neural development and cognitive function. The complex roles of genetic and epigenetic processes in brain development, synaptic plasticity, and higher-order cognitive abilities were reviewed in this study. [...] Read more.
DNA connects the domains of genetic regulation and environmental interactions and plays a crucial role in neural development and cognitive function. The complex roles of genetic and epigenetic processes in brain development, synaptic plasticity, and higher-order cognitive abilities were reviewed in this study. Neural progenitors are formed and differentiated according to genetic instructions, whereas epigenetic changes, such as DNA methylation, dynamically control gene expression in response to external stimuli. These processes shape behavior and cognitive resilience by influencing neural identity, synaptic efficiency, and adaptation. This review also examines how DNA damage and repair mechanisms affect the integrity of neurons, which are essential for memory and learning. It also emphasizes how genetic predispositions and environmental factors interact to determine a person’s susceptibility to neurodegenerative disorders, such as Parkinson’s and Alzheimer’s diseases. Developments in gene-editing technologies, such as CRISPR, and non-viral delivery techniques provide encouraging treatment avenues for neurodegenerative disorders. This review highlights the fundamental role of DNA in coordinating the intricate interactions between molecular and environmental factors that underlie brain function and diseases. Full article
Show Figures

Graphical abstract

68 pages, 2838 KiB  
Review
Unravelling the Viral Hypothesis of Schizophrenia: A Comprehensive Review of Mechanisms and Evidence
by Mădălina Georgeta Sighencea and Simona Corina Trifu
Int. J. Mol. Sci. 2025, 26(15), 7429; https://doi.org/10.3390/ijms26157429 - 1 Aug 2025
Viewed by 246
Abstract
Schizophrenia is a challenging multifactorial neuropsychiatric disease that involves interactions between genetic susceptibility and environmental insults. Increasing evidence implicates viral infections as significant environmental contributors, particularly during sensitive neurodevelopmental periods. This review synthesises current findings on the viral hypothesis of schizophrenia, encompassing a [...] Read more.
Schizophrenia is a challenging multifactorial neuropsychiatric disease that involves interactions between genetic susceptibility and environmental insults. Increasing evidence implicates viral infections as significant environmental contributors, particularly during sensitive neurodevelopmental periods. This review synthesises current findings on the viral hypothesis of schizophrenia, encompassing a wide array of neurotropic viruses, including influenza viruses, herpesviruses (HSV-1 and 2, CMV, VZV, EBV, HHV-6 and 8), hepatitis B and C viruses, HIV, HERVs, HTLV, Zika virus, BoDV, coronaviruses (including SARS-CoV-2), and others. These pathogens can contribute to schizophrenia through mechanisms such as direct microinvasion, persistent central nervous system infection, immune-mediated neuroinflammation, molecular mimicry, and the disturbance of the blood–brain barrier. Prenatal exposure to viral infections can trigger maternal immune activation, resulting in cytokine-mediated alterations in the neurological development of the foetus that persist into adulthood. Genetic studies highlight the role of immune-related loci, including major histocompatibility complex polymorphisms, in modulating susceptibility to infection and neurodevelopmental outcomes. Clinical data also support the “mild encephalitis” hypothesis, suggesting that a subset of schizophrenia cases involve low-grade chronic neuroinflammation. Although antipsychotics have some immunomodulatory effects, adjunctive anti-inflammatory therapies show promise, particularly in treatment-resistant cases. Despite compelling associations, pathogen-specific links remain inconsistent, emphasising the need for longitudinal studies and integrative approaches such as viromics to unravel causal relationships. This review supports a “multi-hit” model in which viral infections interfere with hereditary and immunological susceptibilities, enhancing schizophrenia risk. Elucidating these virus–immune–brain interactions may facilitate the discovery of biomarkers, targeted prevention, and novel therapeutic strategies for schizophrenia. Full article
(This article belongs to the Special Issue Schizophrenia: From Molecular Mechanism to Therapy)
Show Figures

Figure 1

17 pages, 812 KiB  
Article
Association Between ABO Blood Groups and SARS-CoV-2 RNAemia, Spike Protein Mutations, and Thrombotic Events in COVID-19 Patients
by Esra’a Abudouleh, Tarek Owaidah, Fatimah Alhamlan, Arwa A. Al-Qahtani, Dalia Al Sarar, Abdulrahman Alkathiri, Shouq Alghannam, Arwa Bagasi, Manal M. Alkhulaifi and Ahmed A. Al-Qahtani
Pathogens 2025, 14(8), 758; https://doi.org/10.3390/pathogens14080758 (registering DOI) - 31 Jul 2025
Viewed by 153
Abstract
Background: COVID-19 is associated with coagulopathy and increased mortality. The ABO blood group system has been implicated in modulating susceptibility to SARS-CoV-2 infection and disease severity, but its relationship with viral RNAemia, spike gene mutations, and thrombosis remains underexplored. Methods: We analyzed 446 [...] Read more.
Background: COVID-19 is associated with coagulopathy and increased mortality. The ABO blood group system has been implicated in modulating susceptibility to SARS-CoV-2 infection and disease severity, but its relationship with viral RNAemia, spike gene mutations, and thrombosis remains underexplored. Methods: We analyzed 446 hospitalized COVID-19 patients between 2021 and 2022. SARS-CoV-2 RNAemia was assessed via RT-qPCR on whole blood, and spike gene mutations were identified through whole-genome sequencing in RNAemia-positive samples. ABO blood groups were determined by agglutination testing, and thrombotic events were evaluated using coagulation markers. Statistical analyses included chi-square tests and Kruskal–Wallis tests, with significance set at p < 0.05. Results: RNAemia was detected in 26.9% of patients, with no significant association with ABO blood group (p = 0.175). Omicron was the predominant variant, especially in blood group A (62.5%). The N501Y mutation was the most prevalent in group O (53.2%), and K417N was most prevalent in group B (36.9%), though neither reached statistical significance. Thrombotic events were significantly more common in blood group A (OR = 2.08, 95% CI = 1.3–3.4, p = 0.002), particularly among RNAemia-positive patients. Conclusions: ABO blood group phenotypes, particularly group A, may influence thrombotic risk in the context of SARS-CoV-2 RNAemia. While no direct association was found between blood group and RNAemia or spike mutations, the observed trends suggest potential host–pathogen interactions. Integrating ABO typing and RNAemia screening may enhance risk stratification and guide targeted thromboprophylaxis in COVID-19 patients. Full article
Show Figures

Figure 1

25 pages, 1990 KiB  
Article
Fecal and Environmental Shedding of Influenza A Virus in Brazilian Swine: Genomic Evidence of Recent Human-to-Swine Transmission
by Nágila Rocha Aguilar, Beatriz Senra Alvares da Silva Santos, Bruno Zinato Carraro, Brenda Monique Magalhães Rocha, Jardelina de Souza Todao Bernardino, Ana Luiza Soares Fraiha, Alex Ranieri Jeronimo Lima, Gabriela Ribeiro, Alessandra Silva Dias, Renata Rezende Carvalho, Bruna Ferreira Sampaio Ribeiro, Marta Giovanetti, Luiz Carlos Júnior Alcântara, Sandra Coccuzzo Sampaio, Maria Carolina Quartim Barbosa Elias Sabbaga, Rafael Romero Nicolino, Zélia Inês Portela Lobato, Maria Isabel Maldonado Coelho Guedes, Cesar Rossas Mota Filho, Vincent Louis Viala, Bruna Coelho Lopes and Erica Azevedo Costaadd Show full author list remove Hide full author list
Pathogens 2025, 14(8), 753; https://doi.org/10.3390/pathogens14080753 (registering DOI) - 31 Jul 2025
Viewed by 221
Abstract
Surveillance of swine influenza A virus (swIAV) traditionally focuses on respiratory matrices, yet emerging evidence suggests that fecal shedding and secondary environmental contamination may also contribute to viral dissemination. In this study, we collected and analyzed nasal, rectal, environmental, milk, and colostrum samples [...] Read more.
Surveillance of swine influenza A virus (swIAV) traditionally focuses on respiratory matrices, yet emerging evidence suggests that fecal shedding and secondary environmental contamination may also contribute to viral dissemination. In this study, we collected and analyzed nasal, rectal, environmental, milk, and colostrum samples from naturally infected pigs in a commercial farm in Minas Gerais, Brazil. IAV RNA was detected in 25% of samples, including 42% from asymptomatic animals, with nasal swabs showing higher detection rates (30%) than rectal swabs (20%), though rectal Ct values were consistently higher, indicative of lower viral loads. We successfully isolated viable viruses from feces and effluent samples. Whole-genome sequencing revealed co-circulation of enzootic pH1N1 clade #2 (HA) and pN1 clade #4 (NA), alongside human-origin H3N2 sequences clustering within clade 3C.2a1b.2a.2a.1, and N2 segments related to pre-3C human lineages from 2001 to 2002. Phylogenetic and p-distance analyses support both recent reverse zoonosis and historical transmission events. Detection of complete HA/NA sequences from rectal swabs and treated effluent further emphasizes the surveillance value of non-respiratory matrices. The integration of respiratory and fecal/environmental sampling appears important to achieve more comprehensive IAV monitoring in swine herds and may have significant implications for One Health strategies in Brazil and beyond. Full article
Show Figures

Graphical abstract

16 pages, 1803 KiB  
Article
Degradation of Poliovirus Sabin 2 Genome After Electron Beam Irradiation
by Dmitry D. Zhdanov, Anastasia N. Shishparenok, Yury Y. Ivin, Anastasia A. Kovpak, Anastasia N. Piniaeva, Igor V. Levin, Sergei V. Budnik, Oleg A. Shilov, Roman S. Churyukin, Lubov E. Agafonova, Alina V. Berezhnova, Victoria V. Shumyantseva and Aydar A. Ishmukhametov
Vaccines 2025, 13(8), 824; https://doi.org/10.3390/vaccines13080824 (registering DOI) - 31 Jul 2025
Viewed by 220
Abstract
Objectives: Most antiviral vaccines are created by inactivating the virus using chemical methods. The inactivation and production of viral vaccine preparations after the irradiation of viruses with accelerated electrons has a number of significant advantages. Determining the integrity of the genome of the [...] Read more.
Objectives: Most antiviral vaccines are created by inactivating the virus using chemical methods. The inactivation and production of viral vaccine preparations after the irradiation of viruses with accelerated electrons has a number of significant advantages. Determining the integrity of the genome of the resulting viral particles is necessary to assess the quality and degree of inactivation after irradiation. Methods: This work was performed on the Sabin 2 model polio virus. To determine the most sensitive and most radiation-resistant part, the polio virus genome was divided into 20 segments. After irradiation at temperatures of 25 °C, 2–8 °C, −20 °C, or −70 °C, the amplification intensity of these segments was measured in real time. Results: The best correlation between the amplification cycle and the irradiation dose at all temperatures was observed for segment 3D, left. Consequently, this section of the poliovirus genome is the least resistant to the action of accelerated electrons and is the most representative for determining genome integrity. The worst dependence was observed for the VP1 right section, which, therefore, cannot be used to determine genome integrity during inactivation. The electrochemical approach was also employed for a comparative assessment of viral RNA integrity before and after irradiation. An increase in the irradiation dose was accompanied by an increase in signals indicating the electrooxidation of RNA heterocyclic bases. The increase in peak current intensity of viral RNA electrochemical signals confirmed the breaking of viral RNA strands during irradiation. The shorter the RNA fragments, the greater the peak current intensities. In turn, this made the heterocyclic bases more accessible to electrooxidation on the electrode. Conclusions: These results are necessary for characterizing the integrity of the viral genome for the purpose of creating of antiviral vaccines. Full article
(This article belongs to the Special Issue Recent Scientific Development of Poliovirus Vaccines)
Show Figures

Figure 1

36 pages, 1583 KiB  
Review
SARS-CoV-2 Pneumonia: Advances in Diagnosis and Treatment
by Olga Adriana Caliman-Sturdza, Iuliana Soldanescu and Roxana Elena Gheorghita
Microorganisms 2025, 13(8), 1791; https://doi.org/10.3390/microorganisms13081791 - 31 Jul 2025
Viewed by 270
Abstract
The development of severe SARS-CoV-2 pneumonia is characterized by extensive lung inflammation, which, in turn, leads to respiratory distress and a decline in blood oxygen levels. Hospital admission, along with intensive care or ventilator usage, becomes necessary because this condition leads to serious [...] Read more.
The development of severe SARS-CoV-2 pneumonia is characterized by extensive lung inflammation, which, in turn, leads to respiratory distress and a decline in blood oxygen levels. Hospital admission, along with intensive care or ventilator usage, becomes necessary because this condition leads to serious respiratory problems. This review aims to provide a comprehensive overview of the pathophysiological mechanisms, diagnostic methods, and current therapeutic options for pneumonia caused by the SARS-CoV-2 virus. The pathophysiological process of severe pneumonia due to SARS-CoV-2 infection is characterized by direct lung damage from viral replication, an excessive immune system response, inflammation, impaired gas exchange, and multi-organ failure. The coexistence of various medical conditions leads to substantial lung impairment, resulting in hypoxia and respiratory failure, which can ultimately lead to fatal outcomes. The diagnosis of severe SARS-CoV-2 pneumonia is made through a combination of clinical, radiologic, and laboratory findings. A multifaceted approach integrating antiviral therapy, corticosteroids, oxygen supplementation, ventilatory management, and immunomodulation is imperative to control inflammation and enhance clinical outcomes. Early intervention, meticulous monitoring, and personalized care are paramount for enhancing survival and mitigating complications in critically ill patients with COVID-19 pneumonia. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: SARS-CoV-2 and COVID-19)
Show Figures

Figure 1

9 pages, 184 KiB  
Article
HPV E6/E7 mRNA Testing in the Follow-Up of HPV-Vaccinated Patients After Treatment for High-Grade Cervical Intraepithelial Neoplasia
by Adolfo Loayza, Alicia Hernandez, Ana M. Rodriguez, Belen Lopez, Cristina Gonzalez, David Hardisson, Itziar de la Pena, Maria Serrano, Rocio Arnedo and Ignacio Zapardiel
Vaccines 2025, 13(8), 823; https://doi.org/10.3390/vaccines13080823 (registering DOI) - 31 Jul 2025
Viewed by 299
Abstract
Introduction: Following up on treated high-grade cervical intraepithelial neoplasia (HSIL/CIN) lesions poses a challenge. Cervical cytology often has a high false-negative rate, while high-risk human papillomavirus (HR-HPV) DNA testing, though sensitive, lacks specificity. The detection of messenger RNA of the HR-HPV E6 and [...] Read more.
Introduction: Following up on treated high-grade cervical intraepithelial neoplasia (HSIL/CIN) lesions poses a challenge. Cervical cytology often has a high false-negative rate, while high-risk human papillomavirus (HR-HPV) DNA testing, though sensitive, lacks specificity. The detection of messenger RNA of the HR-HPV E6 and E7 oncoproteins (E6/E7 mRNA) is proposed as an indicator of viral integration, which is crucial for identifying severe lesions. Additionally, HPV vaccination could reduce recurrence rates in patients treated for high-grade cervical intraepithelial neoplasia. Objective: Our study aimed to assess the clinical utility of E6/E7 mRNA determination in the follow-up of HPV-immunized patients who were treated for HSIL/CIN. Methods: We conducted a retrospective observational study including 407 patients treated for HSIL/CIN. The recurrence rate and the validity parameters of E6/E7 mRNA testing were analyzed. Results: The recurrence rate for high-grade lesions was 1.7%. This low percentage might be related to the vaccination of patients who were not immunized before treatment. The sensitivity of the E6/E7 mRNA test was 88% at the first clinical visit, reaching 100% in the second and third reviews. Specificity was 91% at the first visit, 92% at the second, and 85% at the third. Regarding predictive values, the positive predictive value was 18% at the first visit, 10% at the second, and 14% at the third, while the negative predictive value was 100% across all follow-up visits. Conclusions: The E6/E7 mRNA test appears to be an effective tool for ruling out recurrence after treatment for HSIL/CIN lesions in HPV-immunized patients. Full article
18 pages, 706 KiB  
Review
Hyaluronic Acid in Female Reproductive Health: Tailoring Molecular Weight to Clinical Needs in Obstetric and Gynecological Fields
by Giuseppina Porcaro, Ilenia Mappa, Francesco Leonforte, Giorgio Maria Baldini, Maria Francesca Guarneri, Marco La Verde, Felice Sorrentino and Antonio Simone Laganà
Pharmaceutics 2025, 17(8), 991; https://doi.org/10.3390/pharmaceutics17080991 (registering DOI) - 30 Jul 2025
Viewed by 248
Abstract
Hyaluronic acid (HA) is a ubiquitous glycosaminoglycan with distinct biological functions, dependent on its molecular weight. High-molecular-weight HA (HMWHA) primarily exhibits structural and anti-inflammatory roles, whereas low-(LMWHA) and very low-molecular-weight HAs (vLMWHA) actively participate in tissue regeneration and angiogenesis. This review highlights the [...] Read more.
Hyaluronic acid (HA) is a ubiquitous glycosaminoglycan with distinct biological functions, dependent on its molecular weight. High-molecular-weight HA (HMWHA) primarily exhibits structural and anti-inflammatory roles, whereas low-(LMWHA) and very low-molecular-weight HAs (vLMWHA) actively participate in tissue regeneration and angiogenesis. This review highlights the pivotal roles of HA across the female reproductive lifespan, emphasizing how molecular weight dictates its therapeutic potential. In gynecology, LMWHA effectively alleviates symptoms of genitourinary syndrome of menopause, restores vaginal architecture, and mitigates complications following pelvic radiotherapy, improving both tissue integrity and patient quality of life. vLMWHA shows promise in enhancing viral clearance and lesion regression in human papillomavirus (HPV) infections. In obstetrics, HMWHA plays crucial roles in implantation, immunotolerance, and embryogenesis and maintains cervical barrier integrity to prevent ascending infections and preterm birth. Moreover, emerging clinical evidence supports oral HMWHA supplementation for reducing pregnancy complications, such as threatened miscarriage, subchorionic hematomas, and preterm delivery. This review underscores the necessity of considering HA’s molecular weight to optimize interventions in gynecological and obstetric care, offering tailored strategies to support women’s health throughout their lives. Full article
(This article belongs to the Special Issue Hyaluronic Acid for Medical Applications)
Show Figures

Figure 1

52 pages, 4770 KiB  
Review
Biomaterial-Based Nucleic Acid Delivery Systems for In Situ Tissue Engineering and Regenerative Medicine
by Qi-Xiang Wu, Natalia De Isla and Lei Zhang
Int. J. Mol. Sci. 2025, 26(15), 7384; https://doi.org/10.3390/ijms26157384 - 30 Jul 2025
Viewed by 438
Abstract
Gene therapy is a groundbreaking strategy in regenerative medicine, enabling precise cellular behavior modulation for tissue repair. In situ nucleic acid delivery systems aim to directly deliver nucleic acids to target cells or tissues to realize localized genetic reprogramming and avoid issues like [...] Read more.
Gene therapy is a groundbreaking strategy in regenerative medicine, enabling precise cellular behavior modulation for tissue repair. In situ nucleic acid delivery systems aim to directly deliver nucleic acids to target cells or tissues to realize localized genetic reprogramming and avoid issues like donor cell dependency and immune rejection. The key to success relies on biomaterial-engineered delivery platforms that ensure tissue-specific targeting and efficient intracellular transport. Viral vectors and non-viral carriers are strategically modified to enhance nucleic acid stability and cellular uptake, and integrate them into injectable or 3D-printed scaffolds. These scaffolds not only control nucleic acid release but also mimic native extracellular microenvironments to support stem cell recruitment and tissue regeneration. This review explores three key aspects: the mechanisms of gene editing in tissue repair; advancements in viral and non-viral vector engineering; and innovations in biomaterial scaffolds, including stimuli-responsive hydrogels and 3D-printed matrices. We evaluate scaffold fabrication methodologies, nucleic acid loading–release kinetics, and their biological impacts. Despite progress in spatiotemporal gene delivery control, challenges remain in balancing vector biocompatibility, manufacturing scalability, and long-term safety. Future research should focus on multifunctional “smart” scaffolds with CRISPR-based editing tools, multi-stimuli responsiveness, and patient-specific designs. This work systematically integrates the latest methodological advances, outlines actionable strategies for future investigations and advances clinical translation perspectives beyond the existing literature. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

22 pages, 8075 KiB  
Article
Integrative Transcriptomic and Network Pharmacology Analysis Reveals Key Targets and Mechanisms of Moschus (musk) Against Viral Respiratory Tract Infections
by Ke Tao, Li Shao, Haojing Chang, Xiangjun Chen, Hui Xia, Ruipeng Wu, Shaokang Wang and Hehe Liao
Pharmaceuticals 2025, 18(8), 1136; https://doi.org/10.3390/ph18081136 - 30 Jul 2025
Viewed by 325
Abstract
Background/Objectives: Moschus (musk) has long been used in traditional Tibetan medicine to prevent and treat epidemic febrile illnesses. However, its antiviral mechanisms remain poorly understood. Given the urgent need for effective treatments against viral respiratory tract infections (VRTIs), this study aimed to [...] Read more.
Background/Objectives: Moschus (musk) has long been used in traditional Tibetan medicine to prevent and treat epidemic febrile illnesses. However, its antiviral mechanisms remain poorly understood. Given the urgent need for effective treatments against viral respiratory tract infections (VRTIs), this study aimed to systematically investigate the molecular targets and pharmacological pathways through which Moschus may exert therapeutic effects. Methods: Based on the identification of bioactive compounds with favorable pharmacokinetics, we applied integrated network pharmacology and multi-omics analyses to systematically identify key therapeutic targets involved in VRTIs. Gene Set Enrichment Analysis (GSEA) and immune infiltration further revealed strong associations with multiple immune cell subsets, reflecting their pivotal roles in immunomodulatory mechanisms during viral infections. Molecular docking confirmed the strong binding affinities between Moschus compounds and these key targets. Results: Notably, testosterone exhibited the strongest and most consistent binding across key targets, suggesting its potential as a pivotal bioactive compound. Importantly, the antiviral effects of Moschus may be mediated in part by the downregulation of the key genes MCL1, MAPK3, and CDK2, which are involved in the regulation of viral replication, apoptosis, and host immune responses. Conclusions: This study provides a comprehensive mechanistic framework supporting the multi-target antiviral potential of Moschus, offering a scientific basis for its further development as a therapeutic agent against VRTIs. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

20 pages, 732 KiB  
Review
AI Methods Tailored to Influenza, RSV, HIV, and SARS-CoV-2: A Focused Review
by Achilleas Livieratos, George C. Kagadis, Charalambos Gogos and Karolina Akinosoglou
Pathogens 2025, 14(8), 748; https://doi.org/10.3390/pathogens14080748 - 30 Jul 2025
Viewed by 376
Abstract
Artificial intelligence (AI) techniques—ranging from hybrid mechanistic–machine learning (ML) ensembles to gradient-boosted decision trees, support-vector machines, and deep neural networks—are transforming the management of seasonal influenza, respiratory syncytial virus (RSV), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Symptom-based [...] Read more.
Artificial intelligence (AI) techniques—ranging from hybrid mechanistic–machine learning (ML) ensembles to gradient-boosted decision trees, support-vector machines, and deep neural networks—are transforming the management of seasonal influenza, respiratory syncytial virus (RSV), human immunodeficiency virus (HIV), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Symptom-based triage models using eXtreme Gradient Boosting (XGBoost) and Random Forests, as well as imaging classifiers built on convolutional neural networks (CNNs), have improved diagnostic accuracy across respiratory infections. Transformer-based architectures and social media surveillance pipelines have enabled real-time monitoring of COVID-19. In HIV research, support-vector machines (SVMs), logistic regression, and deep neural network (DNN) frameworks advance viral-protein classification and drug-resistance mapping, accelerating antiviral and vaccine discovery. Despite these successes, persistent challenges remain—data heterogeneity, limited model interpretability, hallucinations in large language models (LLMs), and infrastructure gaps in low-resource settings. We recommend standardized open-access data pipelines and integration of explainable-AI methodologies to ensure safe, equitable deployment of AI-driven interventions in future viral-outbreak responses. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

26 pages, 1474 KiB  
Review
Gene Therapy for Cardiac Arrhythmias: Mechanisms, Modalities and Therapeutic Applications
by Paschalis Karakasis, Panagiotis Theofilis, Panayotis K. Vlachakis, Nikias Milaras, Kallirhoe Kalinderi, Dimitrios Patoulias, Antonios P. Antoniadis and Nikolaos Fragakis
Med. Sci. 2025, 13(3), 102; https://doi.org/10.3390/medsci13030102 - 30 Jul 2025
Viewed by 431
Abstract
Cardiac arrhythmias remain a major source of morbidity and mortality, often stemming from molecular and structural abnormalities that are insufficiently addressed by current pharmacologic and interventional therapies. Gene therapy has emerged as a transformative approach, offering precise and durable interventions that directly target [...] Read more.
Cardiac arrhythmias remain a major source of morbidity and mortality, often stemming from molecular and structural abnormalities that are insufficiently addressed by current pharmacologic and interventional therapies. Gene therapy has emerged as a transformative approach, offering precise and durable interventions that directly target the arrhythmogenic substrate. Across the spectrum of inherited and acquired arrhythmias—including long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, atrial fibrillation, and post-infarction ventricular tachycardia—gene-based strategies such as allele-specific silencing, gene replacement, CRISPR-mediated editing, and suppression-and-replacement constructs are showing growing translational potential. Advances in delivery platforms, including cardiotropic viral vectors, lipid nanoparticle-encapsulated mRNA, and non-viral reprogramming tools, have further enhanced the specificity and safety of these approaches. Additionally, innovative applications such as biological pacemaker development and mutation-agnostic therapies underscore the versatility of genetic modulation. Nonetheless, significant challenges remain, including vector tropism, immune responses, payload limitations, and the translational gap between preclinical models and human electrophysiology. Integration of patient-derived cardiomyocytes, computational simulations, and large-animal studies is expected to accelerate clinical translation. This review provides a comprehensive synthesis of the mechanistic rationale, therapeutic strategies, delivery platforms, and translational frontiers of gene therapy for cardiac arrhythmias. Full article
Show Figures

Figure 1

Back to TopTop