SARS-CoV-2 Pneumonia: Advances in Diagnosis and Treatment
Abstract
1. Introduction
2. Pathophysiology
3. Diagnosis of Severe SARS-CoV-2 Pneumonia
4. Management of Severe Pneumonia Due to SARS-CoV-2
4.1. Supportive Care
4.2. Ventilatory Support
4.3. Non-Invasive Ventilation (NIV)
- (a)
- Persistent or worsening respiratory distress.
- ◦
- Increased breathing effort (e.g., the use of accessory muscles, nasal flaring, or paradoxical breathing).
- ◦
- The respiratory rate remains high despite HFNC support.
- (b)
- Worsening gas exchange.
- ◦
- SpO2 < 90% despite FiO2 ≥ 60%.
- ◦
- PaO2/FiO2 (P/F) ratio < 200.
- ◦
- Rising PaCO2 (hypercapnia) and/or respiratory acidosis (pH < 7.35).
- (c)
- Hemodynamic instability.
- ◦
- Hypotension, altered mental status, or signs of organ dysfunction.
- (d)
- Inability to maintain an airway or impending respiratory failure.
- ◦
- Fatigue or signs of impending respiratory arrest.
4.4. Invasive Mechanical Ventilation
4.5. Prone Positioning
4.6. Extracorporeal Membrane Oxygenation (ECMO)
4.7. Ventilator-Associated Lung Injury (VILI) Prevention
4.8. Weaning and Extubation
4.9. Ventilatory Support for Specific Populations
4.10. Antiviral Treatments
4.11. Corticosteroids
4.12. Anti-Inflammatory and Immunomodulatory Therapies
4.13. Antibiotics and Antifungals
4.14. Management of Coagulation Abnormalities
4.15. Monitoring and Supportive Measures
4.16. Sedation, Analgesia, and Psychosocial Support
4.17. Preventing Complications and Secondary Infections
4.18. Rehabilitation and Long-Term Care
4.19. Clinical and Treatment Features of COVID-19 Pneumonia Due to the Omicron Strain
5. Prognosis and Outcome of Severe COVID-19 Pneumonia
6. Future Outlook
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AC | Assist-Control |
ACE2 | Angiotensin-converting enzyme 2 receptors |
aPTT | Activated Partial Thromboplastin Time |
ARDS | Acute respiratory distress syndrome |
ABG | Arterial Blood Gas |
BiPAP | Bilevel positive airway pressure |
CPAC | Continuous positive airway pressure |
CRP | C- reactive protein |
CT | Computer tomography |
DIC | Disseminated intravascular coagulation |
DVT | Deep vein thrombosis |
DOAC | Direct oral anticoagulants |
ECG | Electrocardiogram |
ECMO | Extracorporeal membrane oxygenation |
HFNC | High-Flow Nasal Cannula |
HRCT | High-Resolution Chest CT Scan |
IL | Interleukins |
INR | International Normalized Ratio |
LMWH | Low-molecular-weight heparin |
MIS-C | Multisystem inflammatory syndrome in children |
NIC | Non-invasive ventilation |
PCR | Polymerase chain reaction |
PE | Pulmonary embolism |
PEEP | Positive End-Expiratory Pressure |
PICS | Post-Intensive Care Syndrome |
PT | Prothrombin time |
RT-PCR | Reverse transcription polymerase chain reaction |
SBT | Spontaneous Breathing Trials |
TNF-α | Tumor Necrosis Factor |
VILI | Ventilator-induced lung injury |
VTE | Venous thromboembolism |
References
- Wu, Z.; McGoogan, J.M. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China. JAMA J. Am. Med. Assoc. 2020, 323, 1239–1242. [Google Scholar] [CrossRef]
- Hu, B.; Guo, H.; Zhou, P.; Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 2021, 19, 141–154. [Google Scholar] [CrossRef]
- Grasselli, G.; Zangrillo, A.; Zanella, A.; Antonelli, M.; Cabrini, L.; Castelli, A.; Cereda, D.; Coluccello, A.; Foti, G.; Fumagalli, R.; et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA 2020, 323, 1574–1581. [Google Scholar] [CrossRef]
- Lamers, M.M.; Haagmans, B.L. SARS-CoV-2 pathogenesis. Nat. Rev. Microbiol. 2022, 20, 270–284. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, M.; Saito, J.; Zhao, H.; Sakamoto, A.; Hirota, K.; Ma, D. Inflammation triggered by SARS-CoV-2 and ACE2 augment drives multiple organ failure of severe COVID-19: Molecular mechanisms and implications. Inflammation 2021, 44, 13–34. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.-R.; Zhu, Y.; Li, B.; Huang, C.-L.; et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273. [Google Scholar] [CrossRef] [PubMed]
- Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature 2020, 581, 215–220. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280.e278. [Google Scholar] [CrossRef]
- Walls, A.C.; Park, Y.-J.; Tortorici, M.A.; Wall, A.; McGuire, A.T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181, 281–292.e6. [Google Scholar] [CrossRef]
- Yin, X.; Riva, L.; Pu, Y.; Martin-Sancho, L.; Kanamune, J.; Yamamoto, Y.; Sakai, K.; Gotoh, S.; Miorin, L.; De Jesus, P.D.; et al. MDA5 Governs the Innate Immune Response to SARS-CoV-2 in Lung Epithelial Cells. Cell Rep. 2021, 34, 108628. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Khanmohammadi, S.; Rezaei, N. Role of Toll-like receptors in the pathogenesis of COVID-19. J. Med. Virol. 2021, 93, 2735–2739. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vora, S.M.; Lieberman, J.; Wu, H. Inflammasome activation at the crux of severe COVID-19. Nat. Rev. Immunol. 2021, 21, 694–703. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Siu, Y.L.; Teoh, K.T.; Lo, J.; Chan, C.M.; Kien, F.; Escriou, N.; Tsao, S.W.; Nicholls, J.M.; Altmeyer, R.; Peiris, J.S.M.; et al. The M, E, and N Structural Proteins of the Severe Acute Respiratory Syndrome Coronavirus Are Required for Efficient Assembly, Trafficking, and Release of Virus-Like Particles. J. Virol. 2008, 82, 11318–11330. [Google Scholar] [CrossRef]
- Hadjadj, J.; Yatim, N.; Barnabei, L.; Corneau, A.; Boussier, J.; Smith, N.; Péré, H.; Charbit, B.; Bondet, V.; Chenevier-Gobeaux, C.; et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 2020, 369, 718–724. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ferreira, A.C.; Soares, V.C.; de Azevedo-Quintanilha, I.G.; Dias, S.d.S.G.; Fintelman-Rodrigues, N.; Sacramento, C.Q.; Mattos, M.; de Freitas, C.S.; Temerozo, J.R.; Teixeira, L.; et al. SARS-CoV-2 engages inflammasome and pyroptosis in human primary monocytes. Cell Death Discov. 2021, 7, 43, Erratum in: Cell Death Discov. 2021, 7, 116. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, J.; Wu, H.; Yao, X.; Zhang, D.; Zhou, Y.; Fu, B.; Wang, W.; Li, H.; Wang, Z.; Hu, Z.; et al. Pyroptotic macrophages stimulate the SARS-CoV-2-associated cytokine storm. Cell. Mol. Immunol. 2021, 18, 1305–1307. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, R.; Lan, Z.; Ye, J.; Pang, L.; Liu, Y.; Wu, W.; Qin, X.; Guo, Y.; Zhang, P. Cytokine Storm: The Primary Determinant for the Pathophysiological Evolution of COVID-19 Deterioration. Front. Immunol. 2021, 12, 589095. [Google Scholar] [CrossRef]
- Karki, R.; Sharma, B.R.; Tuladhar, S.; Williams, E.P.; Zalduondo, L.; Samir, P.; Zheng, M.; Sundaram, B.; Banoth, B.; Malireddi, R.K.S.; et al. Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell 2021, 184, 149–168.e17. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, Y.; Zhang, C.; Huang, F.; Wang, F.; Yuan, J.; Wang, Z.; Li, J.; Li, J.; Feng, C.; et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci. China Life Sci. 2020, 63, 364–374. [Google Scholar] [CrossRef]
- Cardinal-Fernández, P.; Lorente, J.A.; Ballén-Barragán, A.; Matute-Bello, G. Acute respiratory distress syndrome and diffuse alveolar damage. new insights on a complex relationship. Ann. Am. Thorac. Soc. 2017, 14, 844–850. [Google Scholar] [CrossRef]
- Carsana, L.; Sonzogni, A.; Nasr, A.; Rossi, R.S.; Pellegrinelli, A.; Zerbi, P.; Rech, R.; Colombo, R.; Antinori, S.; Corbellino, M.; et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: A two-centre descriptive study. Lancet Infect. Dis. 2020, 20, 1135–1140. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Q.; Yang, K.; Wang, W.; Jiang, L.; Song, J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020, 46, 846–848. [Google Scholar] [CrossRef]
- Menter, T.; Haslbauer, J.D.; Nienhold, R.; Savic, S.; Hopfer, H.; Deigendesch, N.; Frank, S.; Turek, D.; Willi, N.; Pargger, H.; et al. Post-mortem examination of COVID-19 patients reveals diffuse alveolar damage with severe capillary congestion and variegated findings in lungs and other organs suggesting vascular dysfunction. Histopathology 2020, 77, 198–209. [Google Scholar] [CrossRef]
- Sinha, A.; Deshwal, H.; Vashisht, R. Mechanical Ventilation and Extracorporeal Membrane Oxygenation Considerations in COVID-19. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Delorey, T.M.; Ziegler, C.G.K.; Heimberg, G.; Normand, R.; Yang, Y.; Segerstolpe, Å.; Abbondanza, D.; Fleming, S.J.; Subramanian, A.; Montoro, D.T.; et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 2021, 595, 107–113. [Google Scholar] [CrossRef]
- Wichmann, D.; Sperhake, J.P.; Lütgehetmann, M.; Steurer, S.; Edler, C.; Heinemann, A.; Heinrich, F.; Mushumba, H.; Kniep, I.; Schröder, A.S.; et al. Autopsy Findings and Venous Thromboembolism in Patients with COVID-19. Ann. Intern. Med. 2020, 173, 268–277. [Google Scholar] [CrossRef]
- Xiang-Hua, Y.; Le-Min, W.; Ai-Bin, L.; Zhu, G.; Riquan, L.; Xu-You, Z.; Wei-Wei, R.; Ye-Nan, W. Severe Acute Respiratory Syndrome and Venous Thromboembolism in Multiple Organs. Am. J. Respir. Crit. Care Med. 2010, 182, 436–437. [Google Scholar] [CrossRef]
- Cunningham, R.M.J.; Moore, K.L.; Moore, J.S. Coagulopathy during COVID-19 infection: A brief review. Clin. Exp. Med. 2022, 23, 655–666. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, M.; Zhang, S.; Xia, P.; Cao, W.; Jiang, W.; Chen, H.; Ding, X.; Zhao, H.; Zhang, H.; et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N. Engl. J. Med. 2020, 382, e38. [Google Scholar] [CrossRef]
- Al-Samkari, H.; Leaf, R.S.K.; Dzik, W.H.; Carlson, J.C.T.; Fogerty, A.E.; Waheed, A.; Goodarzi, K.; Bendapudi, P.K.; Bornikova, L.; Gupta, S.; et al. COVID-19 and coagulation: Bleeding and thrombotic manifestations of SARS-CoV-2 infection. Blood 2020, 136, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Klok, F.A.; Kruip, M.J.H.A.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; et al. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: An updated analysis. Thromb. Res. 2020, 191, 148–150. [Google Scholar] [CrossRef] [PubMed]
- Grasselli, G.; Tonetti, T.; Protti, A.; Langer, T.; Girardis, M.; Bellani, G.; Laffey, J.; Carrafiello, G.; Carsana, L.; Rizzuto, C.; et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: A multicentre prospective observational study. Lancet Respir. Med. 2020, 8, 1201–1208. [Google Scholar] [CrossRef]
- Bonaventura, A.; Vecchié, A.; Dagna, L.; Martinod, K.; Dixon, D.L.; Van Tassell, B.W.; Dentali, F.; Montecucco, F.; Massberg, S.; Levi, M.; et al. Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19. Nat. Rev. Immunol. 2021, 21, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Tang, N.; Li, D.; Wang, X.; Sun, Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J. Thromb. Haemost. 2020, 18, 844–847. [Google Scholar] [CrossRef] [PubMed]
- Rentsch, C.T.; Beckman, J.A.; Tomlinson, L.; Gellad, W.F.; Alcorn, C.; Kidwai-Khan, F.; Skanderson, M.; Brittain, E.; King, J.T.; Ho, Y.-L.; et al. Early initiation of prophylactic anticoagulation for prevention of coronavirus disease 2019 mortality in patients admitted to hospital in the United States: Cohort study. BMJ 2021, 372. [Google Scholar] [CrossRef] [PubMed]
- Naseef, H.A.; Mohammad, U.; Al-Shami, N.; Sahoury, Y.; Abukhalil, A.D.; Dreidi, M.; Alsahouri, I.; Farraj, M. Bacterial and fungal co-infections among ICU COVID-19 hospitalized patients in a Palestinian hospital: A retrospective cross-sectional study. F1000Research 2022, 11, 30. [Google Scholar] [CrossRef]
- Rabaan, A.A.; Smajlović, S.; Tombuloglu, H.; Ćordić, S.; Hajdarević, A.; Kudić, N.; Al Mutai, A.; Turkistani, S.A.; Al-Ahmed, S.H.; Al-Zaki, N.A.; et al. SARS-CoV-2 infection and multi-organ system damage: A review. Bosn. J. Basic Med. Sci. 2022, 23, 37–52. [Google Scholar] [CrossRef]
- Peluso, M.J.; Deeks, S.G. Mechanisms of long COVID and the path toward therapeutics. Cell 2024, 187, 5500–5529. [Google Scholar] [CrossRef]
- Khaswal, A.; Kumar, V.; Kumar, S. Long-Term Health Consequences of SARS-CoV-2: Assumptions Based on SARS-CoV-1 and MERS-CoV Infections. Diagnostics 2022, 12, 1852. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chodick, G. Long-term infectious sequelae after SARS-CoV-2 infection should be considered in mild cases too. Lancet Infect. Dis. 2025, 25, 828–829. [Google Scholar] [CrossRef]
- Ewing, A.G.; Salamon, S.; Pretorius, E.; Joffe, D.; Fox, G.; Bilodeau, S.; Bar-Yam, Y. Review of organ damage from COVID and Long COVID: A disease with a spectrum of pathology. Med. Rev. 2024, 5, 66–75. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gheorghita, R.; Soldanescu, I.; Lobiuc, A.; Sturdza, O.A.C.; Filip, R.; Constantinescu–Bercu, A.; Dimian, M.; Mangul, S.; Covasa, M. The knowns and unknowns of long COVID-19: From mechanisms to therapeutical approaches. Front. Immunol. 2024, 15, 1344086. [Google Scholar] [CrossRef]
- Sun, Z.; Shi, C.; Jin, L. Mechanisms by Which SARS-CoV-2 Invades and Damages the Central Nervous System: Apart from the Immune Response and Inflammatory Storm, What Else Do We Know? Viruses 2024, 16, 663. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Caliman-Sturdza, O.A.; Gheorghita, R.; Lobiuc, A. Neuropsychiatric Manifestations of Long COVID-19: A Narrative Review of Clinical Aspects and Therapeutic Approaches. Life 2025, 15, 439. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Naughton, S.X.; Raval, U.; Pasinetti, G.M. Potential Novel Role of COVID-19 in Alzheimer’s Disease and Preventative Mitigation Strategies. J. Alzheimer’s Dis. 2020, 76, 21–25. [Google Scholar] [CrossRef]
- Satterfield, B.A.; Bhatt, D.L.; Gersh, B.J. Cardiac involvement in the long-term implications of COVID-19. Nat. Rev. Cardiol. 2022, 19, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Xu, E.; Bowe, B.; Al-Aly, Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 2022, 28, 583–590. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef]
- Attaway, A.H.; Scheraga, R.G.; Bhimraj, A.; Biehl, M.; Hatipoğlu, U. Severe COVID-19 pneumonia: Pathogenesis and clinical management. BMJ 2021, 372, n436. [Google Scholar] [CrossRef]
- Goyal, D.; Inada-Kim, M.; Mansab, F.; Iqbal, A.; McKinstry, B.; Naasan, A.P.; Millar, C.; Thomas, S.; Bhatti, S.; Lasserson, D.; et al. Improving the early identification of COVID-19 pneumonia: A narrative review. BMJ Open Respir. Res. 2021, 8, e000911. [Google Scholar] [CrossRef]
- Shao, C.; Shi, Y.; Chen, R.; Liu, X.; Huang, H.; Zhao, Y.; Xu, K.; Chen, K.; Wang, M.; Xu, Z. Risk factors associated with COVID-19 pneumonia in Chinese patients with pre-existing interstitial lung disease during the SARS-CoV-2 pandemic. J. Med. Virol. 2023, 95, e29098. [Google Scholar] [CrossRef]
- Stokes, E.K.; Zambrano, L.D.; Anderson, K.N.; Marder, E.P.; Raz, K.M.; El Burai Felix, S.; Tie, Y.; Fullerton, K.E. Coronavirus Disease 2019 Case Surveillance—United States, 22 January–30 May 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, D.C.; Olusanya, O.; Harlan, E. Critical care trainees call for pulse oximetry reform. Lancet Respir. Med. 2021, 9, e37. [Google Scholar] [CrossRef] [PubMed]
- Sanghani, H.; Bansal, S.; Parmar, V.; Shah, R. Study of Arterial Blood Gas Analysis in Moderate-to-Severe COVID-19 Patients. Cureus 2022, 14, e26715. [Google Scholar] [CrossRef] [PubMed]
- Wilson-Baig, N. Happy hypoxia in COVID19: Pathophysiology and pulse oximetry accuracy. J. Paramed. Pract. 2021, 13, 288–296. [Google Scholar] [CrossRef]
- Kimura, H. Happy hypoxia in COVID19 patients associated with hypoxic ventilatory depression. Acta Med. Nagasakiensia 2022, 65, 73–75. [Google Scholar] [CrossRef]
- Dhont, S.; Derom, E.; Van Braeckel, E.; Depuydt, P.; Lambrecht, B.N. The pathophysiology of ‘happy’ hypoxemia in COVID-19. Respir. Res. 2020, 21, 198. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wong, H.Y.F.; Lam, H.Y.S.; Fong, A.H.-T.; Leung, S.T.; Chin, T.W.-Y.; Lo, C.S.Y.; Lui, M.M.-S.; Lee, J.C.Y.; Chiu, K.W.-H.; Chung, T.W.-H.; et al. Frequency and Distribution of Chest Radiographic Findings in Patients Positive for COVID-19. Radiology 2020, 296, E72–E78. [Google Scholar] [CrossRef]
- Bao, C.; Liu, X.; Zhang, H.; Li, Y.; Liu, J. Coronavirus Disease 2019 (COVID-19) CT Findings: A Systematic Review and Meta-analysis. J. Am. Coll. Radiol. 2020, 17, 701–709. [Google Scholar] [CrossRef]
- Kwee, T.C.; Kwee, R.M. Chest CT in COVID-19: What the Radiologist Needs to Know. RadioGraphics 2020, 40, 1848–1865. [Google Scholar] [CrossRef]
- Chung, M.; Bernheim, A.; Mei, X.; Zhang, N.; Huang, M.; Zeng, X.; Cui, J.; Xu, W.; Yang, Y.; Fayad, Z.A.; et al. CT Imaging Features of 2019 Novel Coronavirus (2019–nCoV). Radiology 2020, 295, 202–207. [Google Scholar] [CrossRef]
- Rajpurkar, P.; Irvin, J.; Zhu, K.; Yang, B.; Mehta, H.; Duan, T.; Ding, D.; Bagul, A.; Ball, R.L.; Langlotz, C.; et al. CheXNet: Radiologist-Level Pneumonia Detection on Chest X-Rays with Deep Learning. arXiv 2017, arXiv:1711.05225. [Google Scholar]
- Archana, K.; Kaur, A.; Gulzar, Y.; Hamid, Y.; Mir, M.S.; Soomro, A.B. Deep learning models/techniques for COVID-19 detection: A survey. Front. Appl. Math. Stat. 2023, 9, 1303714. [Google Scholar] [CrossRef]
- Ye, Q.; Gao, Y.; Ding, W.; Niu, Z.; Wang, C.; Jiang, Y.; Wang, M.; Fang, E.F.; Menpes-Smith, W.; Xia, J.; et al. Robust weakly supervised learning for COVID-19 recognition using multi-center CT images. Appl. Soft Comput. 2022, 116, 108291. [Google Scholar] [CrossRef]
- Vaid, S.; Kalantar, R.; Bhandari, M. Deep learning COVID-19 detection bias: Accuracy through artificial intelligence. Int. Orthop. 2020, 44, 1539–1542. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, M.E.H.; Rahman, T.; Khandakar, A.; Mazhar, R.; Kadir, M.A.; Bin Mahbub, Z.; Islam, K.R.; Khan, M.S.; Iqbal, A.; Al Emadi, N.; et al. Can AI Help in Screening Viral and COVID-19 Pneumonia? IEEE Access 2020, 8, 132665–132676. [Google Scholar] [CrossRef]
- Hardy-Werbin, M.; Maiques, J.M.; Busto, M.; Cirera, I.; Aguirre, A.; Garcia-Gisbert, N.; Zuccarino, F.; Carbullanca, S.; Del Carpio, L.A.; Ramal, D.; et al. MultiCOVID: A multi modal deep learning approach for COVID-19 diagnosis. Sci. Rep. 2023, 13, 18761. [Google Scholar] [CrossRef] [PubMed]
- Wiersinga, W.J.; Rhodes, A.; Cheng, A.C.; Peacock, S.J.; Prescott, H.C. Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19). JAMA 2020, 324, 782–793. [Google Scholar] [CrossRef]
- Wang, L.; Lu, S.; Guo, Y.; Liu, J.; Wu, P.; Yang, S. Comparative study of diagnostic efficacy of sputum and bronchoalveolar lavage fluid specimens in community-acquired pneumonia children treated with fiberoptic bronchoscopy. BMC Infect. Dis. 2023, 23, 565. [Google Scholar] [CrossRef]
- Tomassetti, S.; Ciani, L.; Luzzi, V.; Gori, L.; Trigiani, M.; Giuntoli, L.; Lavorini, F.; Poletti, V.; Ravaglia, C.; Torrego, A.; et al. Utility of bronchoalveolar lavage for COVID-19: A perspective from the Dragon consortium. Front. Med. 2024, 11, 1259570. [Google Scholar] [CrossRef]
- Tong, X.; Cheng, A.; Yuan, X.; Zhong, X.; Wang, H.; Zhou, W.; Xu, X.; Li, Y. Characteristics of peripheral white blood cells in COVID-19 patients revealed by a retrospective cohort study. BMC Infect. Dis. 2021, 21, 1236. [Google Scholar] [CrossRef]
- Ansari-Moghaddam, B.; Ahmadi, S.A.Y.; Matouri, M.; Ghaemmaghami, A.; Amiri, A.; Tavakkol, E.; Shahsavar, F. Screening role of complete blood cell count indices and C reactive protein in patients who are symptomatic for COVID-19. Disaster Emerg. Med. J. 2022, 7, 176–181. [Google Scholar] [CrossRef]
- Potempa, L.A.; Rajab, I.M.; Hart, P.C.; Bordon, J.; Fernandez-Botran, R. Insights into the Use of C-Reactive Protein as a Diagnostic Index of Disease Severity in COVID-19 Infections. Am. J. Trop. Med. Hyg. 2020, 103, 561–563. [Google Scholar] [CrossRef] [PubMed]
- Kurian, S.J.; Mathews, S.P.; Paul, A.; Viswam, S.K.; Nagri, S.K.; Miraj, S.S.; Karanth, S. Association of serum ferritin with severity and clinical outcome in COVID-19 patients: An observational study in a tertiary healthcare facility. Clin. Epidemiol. Glob. Health 2023, 21, 101295. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.; Han, C.; Pei, S.; Yin, M.; Chen, X. Procalcitonin levels in COVID-19 patients. Int. J. Antimicrob. Agents 2020, 56, 106051. [Google Scholar] [CrossRef] [PubMed]
- Ibañez, C.; Perdomo, J.; Calvo, A.; Ferrando, C.; Reverter, J.C.; Tassies, D.; Blasi, A. High D dimers and low global fibrinolysis coexist in COVID19 patients: What is going on in there? J. Thromb. Thrombolysis 2021, 51, 308–312. [Google Scholar] [CrossRef]
- Wu, H.-Y.; Chang, P.-H.; Huang, Y.-S.; Tsai, C.-S.; Chen, K.-Y.; Lin, I.-F.; Hsih, W.-H.; Tsai, W.-L.; Chen, J.-A.; Yang, T.-L.; et al. Recommendations and guidelines for the diagnosis and management of Coronavirus Disease-19 (COVID-19) associated bacterial and fungal infections in Taiwan. J. Microbiol. Immunol. Infect. 2023, 56, 207–235. [Google Scholar] [CrossRef]
- Sagnelli, C.; Benito, C.; Monari, C.; Cirillo, S.; De Angelis, G.; Bianco, A.; Coppola, N. Management of SARS-CoV-2 pneumonia. J. Med. Virol. 2020, 93, 1276–1287. [Google Scholar] [CrossRef]
- Thirkell, P.; Griffiths, M.; Waller, M.D. Management of Coronavirus Disease 2019 (COVID-19) Pneumonia. In Encyclopedia of Respiratory Medicine; Elsevier: Amsterdam, The Netherlands, 2022; pp. 342–349. [Google Scholar] [CrossRef]
- Cajanding, R. Oxygen use and saturation targets in patients with COVID-19: Are we giving too much or aiming too low? Nurs. Crit. Care 2022, 27, 282–285. [Google Scholar] [CrossRef]
- Fan, E.; Beitler, J.R.; Brochard, L.; Calfee, C.S.; Ferguson, N.D.; Slutsky, A.S.; Brodie, D. COVID-19-associated acute respiratory distress syndrome: Is a different approach to management warranted? Lancet Respir. Med. 2020, 8, 816–821. [Google Scholar] [CrossRef]
- Ramadori, G.P. SARS-CoV-2-Infection (COVID-19): Clinical Course, Viral Acute Respiratory Distress Syndrome (ARDS) and Cause(s) of Death. Med. Sci. 2022, 10, 58. [Google Scholar] [CrossRef]
- Dondorp, A.M.; Hayat, M.; Aryal, D.; Beane, A.; Schultz, M.J. Respiratory Support in COVID-19 Patients, with a Focus on Resource-Limited Settings. Am. J. Trop. Med. Hyg. 2020, 102, 1191–1197. [Google Scholar] [CrossRef]
- Saffarini, L.; Sabobeh, N.; Lasfer, C.; Kazim, S. High-Flow Nasal Cannula in COVID-19 Patients with Moderate to Severe Respiratory Distress: A Retrospective Analysis. Cureus 2024, 16, e52518. [Google Scholar] [CrossRef]
- Dobler, C.C.; Murad, M.H.; Wilson, M.E. Noninvasive Positive Pressure Ventilation in Patients With COVID-19. Mayo Clin. Proc. 2020, 95, 2594–2601. [Google Scholar] [CrossRef]
- Groff, P.; Ferrari, R. Non-invasive respiratory support in the treatment of acute hypoxemic respiratory failure secondary to CoViD-19 related pneumonia. Eur. J. Intern. Med. 2021, 86, 17–21. [Google Scholar] [CrossRef]
- Tarif, A.S.; Salem, M.B.; Abdalrazik, F.S. Clinical outcome of severe and critical covid patient receiving NIV or invasive ventilation. Egypt. J. Bronchol. 2024, 18, 93. [Google Scholar] [CrossRef]
- Yau, C.E.; Lee, D.Y.X.; Vasudevan, A.; Goh, K.J.; Wong, E.; Ho, A.F.W.; Lim, D.Y.Z. Performance of the ROX index in predicting high flow nasal cannula failure in COVID-19 patients: A systematic review and meta-analysis. Crit. Care 2023, 27, 320. [Google Scholar] [CrossRef] [PubMed]
- Kenaan, M.; Hyzy, R. Mechanical Ventilation and Advanced Respiratory Support in the Cardiac Intensive Care Unit. In Cardiac Intensive Care, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 978-0-323-52993-8. [Google Scholar] [CrossRef]
- Tanios, M.; Wu, T.T.; Nguyen, H.; Smith, L.; Mahidhara, R.; Devlin, J.W. Comparing the impact of targeting limited driving pressure to low tidal volume ventilation on mortality in mechanically ventilated adults with COVID-19 ARDS: An exploratory target trial emulation. BMJ Open Respir. Res. 2024, 11, e002439. [Google Scholar] [CrossRef] [PubMed]
- Mora Carpio, A.L.; Mora, J.I. Assist-Control Ventilation. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Nijbroek, S.G.L.H.; Hol, L.; Ivanov, D.; Schultz, M.J.; Paulus, F.; Neto, A.S. Low tidal volume ventilation is associated with mortality in COVID-19 patients—Insights from the PRoVENT-COVID study. J. Crit. Care 2022, 70, 154047. [Google Scholar] [CrossRef]
- Abou-Arab, O.; Haye, G.; Beyls, C.; Huette, P.; Roger, P.-A.; Guilbart, M.; Bernasinski, M.; Besserve, P.; Trojette, F.; Dupont, H.; et al. Hypoxemia and prone position in mechanically ventilated COVID-19 patients: A prospective cohort study. Can. J. Anaesth. 2021, 68, 262–263. [Google Scholar] [CrossRef]
- Klaiman, T.; Silvestri, J.A.; Srinivasan, T.; Szymanski, S.; Tran, T.; Oredeko, F.; Sjoding, M.W.; Fuchs, B.D.; Maillie, S.; Jablonski, J.; et al. Improving Prone Positioning for Severe Acute Respiratory Distress Syndrome during the COVID-19 Pandemic. An Implementation-Mapping Approach. Ann. Am. Thorac. Soc. 2021, 18, 300–307. [Google Scholar] [CrossRef]
- Huang, D.; Tian, H.; Song, W.; Wang, J.; Yao, Z.; Xiong, L.; Jiang, C.; Zhang, A.; Ke, X. Effects of innovative modular prone positioning tools in patients with acute respiratory distress syndrome due to COVID-19 during awake prone position: A prospective randomized controlled trial. Eur. J. Med. Res. 2024, 29, 636. [Google Scholar] [CrossRef]
- Ma, X.; Liang, M.; Ding, M.; Liu, W.; Ma, H.; Zhou, X.; Ren, H. Extracorporeal Membrane Oxygenation (ECMO) in Critically Ill Patients with Coronavirus Disease 2019 (COVID-19) Pneumonia and Acute Respiratory Distress Syndrome (ARDS). Med. Sci. Monit. 2020, 26, e925364-1–e925364-10. [Google Scholar] [CrossRef]
- Alessandri, F.; Di Nardo, M.; Ramanathan, K.; Brodie, D.; MacLaren, G. Extracorporeal membrane oxygenation for COVID-19-related acute respiratory distress syndrome: A narrative review. J. Intensive Care 2023, 11, 5. [Google Scholar] [CrossRef]
- Lee, S.-I.; Kang, D.H.; Ahn, H.J.; Kim, M.J.; Shim, M.-S.; Lee, J.E. Age is an important prognostic factor in COVID-19 patients treated with extracorporeal membrane oxygenation. J. Thorac. Dis. 2022, 14, 3094–3097. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Hu, M.; Zheng, R.; Wang, Y.; Kang, H.; Jiang, L.; Zhong, M.; Sang, L.; Zheng, X.; Pan, C.; et al. Delayed Initiation of ECMO Is Associated With Poor Outcomes in Patients With Severe COVID-19: A Multicenter Retrospective Cohort Study. Front. Med. 2021, 8, 716086. [Google Scholar] [CrossRef]
- Lee, S.; Kang, G.; Song, S.; Lee, K.; Yoo, W.; Jang, H.; Jang, M.H. Factors Associated with Outcomes of Patients with Veno-Venous Extracorporeal Membrane Oxygenation for COVID-19. J. Clin. Med. 2024, 13, 5922. [Google Scholar] [CrossRef] [PubMed]
- Rudym, D.; Pham, T.; Rackley, C.R.; Grasselli, G.; Anderson, M.; Baldwin, M.R.; Beitler, J.; Agerstrand, C.; Serra, A.; Winston, L.A.; et al. Mortality in Patients with Obesity and Acute Respiratory Distress Syndrome Receiving Extracorporeal Membrane Oxygenation: The Multicenter ECMObesity Study. Am. J. Respir. Crit. Care Med. 2023, 208, 685–694. [Google Scholar] [CrossRef] [PubMed]
- Chang, K.; Li, Y.; Qin, Z.; Zhang, Z.; Wang, L.; Yang, Q.; Geng, J.; Deng, N.; Chen, S.; Su, B. Effect of extracorporeal hemoadsorption in critically ill patients with COVID-19: A narrative review. Front. Immunol. 2023, 14, 1074465. [Google Scholar] [CrossRef]
- Supady, A.; Weber, E.; Rieder, M.; Lother, A.; Niklaus, T.; Zahn, T.; Frech, F.; Müller, S.; Kuhl, M.; Benk, C.; et al. Cytokine adsorption in patients with severe COVID-19 pneumonia requiring extracorporeal membrane oxygenation (CYCOV): A single centre, open-label, randomised, controlled trial. Lancet Respir. Med. 2021, 9, 755–762. [Google Scholar] [CrossRef]
- Supady, A.; Brodie, D.; Wengenmayer, T. Extracorporeal haemoadsorption: Does the evidence support its routine use in critical care? Lancet Respir. Med. 2022, 10, 307–312. [Google Scholar] [CrossRef]
- Ohshimo, S. Oxygen administration for patients with ARDS. J. Intensive Care 2021, 9, 17. [Google Scholar] [CrossRef]
- Akella, P.; Voigt, L.P.; Chawla, S. To Wean or Not to Wean: A Practical Patient Focused Guide to Ventilator Weaning. J. Intensive Care Med. 2022, 37, 1417–1425. [Google Scholar] [CrossRef]
- Dorado, J.H.; Pérez, J.; Accoce, M.; Navarro, E.; Gilgado, D.I.; Cardoso, G.P.; Telias, I.; Brochard, L.J. Oxygenation or Driving Pressure for Setting PEEP in Obese Patients With COVID-19 ARDS. Respir. Care 2023, 68, 260–264. [Google Scholar] [CrossRef]
- Bhimraj, A.; Morgan, R.L.; Shumaker, A.H.; Baden, L.R.; Cheng, V.C.-C.; Edwards, K.M.; Gallagher, J.C.; Gandhi, R.T.; Muller, W.J.; Nakamura, M.M.; et al. Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19 (September 2022). Clin. Infect. Dis. 2022, 78, e250–e349. [Google Scholar] [CrossRef]
- Pereira, L.F.; Dallagnol, C.A.; Moulepes, T.H.; Hirota, C.Y.; Kutsmi, P.; dos Santos, L.V.; Pirich, C.L.; Picheth, G.F. Oxygen therapy alternatives in COVID19: From classical to nanomedicine. Heliyon 2023, 9, e15500. [Google Scholar] [CrossRef]
- Chatterjee, B.; Thakur, S.S. Remdesivir and Its Combination With Repurposed Drugs as COVID-19 Therapeutics. Front. Immunol. 2022, 13, 830990. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Hilgenfeld, R.; Whitley, R.; De Clercq, E. Therapeutic strategies for COVID-19: Progress and lessons learned. Nat. Rev. Drug Discov. 2023, 22, 449–475. [Google Scholar] [CrossRef] [PubMed]
- Thiruchelvam, K.; Kow, C.S.; Hadi, M.A.; Hasan, S.S. The use of remdesivir for the management of patients with moderate-to-severe COVID-19: A systematic review. Expert Rev. Anti-Infect. Ther. 2022, 20, 211–229. [Google Scholar] [CrossRef] [PubMed]
- Cocuz, M.-E.; Cocuz, I.G.; Rodina, L.; Tataranu, E.; Caliman-Sturdza, O.A.; Filip, F. Treatment with Remdesivir of Children with SARS-CoV-2 Infection: Experience from a Clinical Hospital in Romania. Life 2024, 14, 410. [Google Scholar] [CrossRef]
- Shabbir, B.; Malik, U.; Sarfraz, Z.; Saeed, F.; Nawaz, K.; Khalid, I.; Gondal, K.M. Efficacy of Remdesivir on Clinical Outcomes in COVID-19 Patients: A Study in a Tertiary Care Hospital in Pakistan. J. Community Hosp. Intern. Med. Perspect. 2024, 14, 4–31. [Google Scholar] [CrossRef]
- Akinosoglou, K.; Rigopoulos, E.A.; Schinas, G.; Kaiafa, G.; Polyzou, E.; Tsoupra, S.; Tzouvelekis, A.; Gogos, C.; Savopoulos, C. Remdesivir Use in the Real-World Setting: An Overview of Available Evidence. Viruses 2023, 15, 1167. [Google Scholar] [CrossRef]
- Mozaffari, E.; Chandak, A.; Gottlieb, R.L.; Chima-Melton, C.; Berry, M.; Amin, A.N.; Sax, P.E.; Kalil, A.C. Remdesivir-Associated Survival Outcomes Among Immunocompromised Patients Hospitalized for COVID-19: Real-world Evidence From the Omicron-Dominant Era. Clin. Infect. Dis. 2024, 79, S149–S159. [Google Scholar] [CrossRef]
- Batool, S.; Chokkakula, S.; Jeong, J.H.; Baek, Y.H.; Song, M.S. SARS-CoV-2 drug resistance and therapeutic approaches. Heliyon 2025, 11, e41980. [Google Scholar] [CrossRef]
- Study Details|Study of Obeldesivir in Participants With COVID-19 Who Have a High Risk of Developing Serious or Severe Illness|ClinicalTrials.gov n.d. Available online: https://clinicaltrials.gov/study/NCT05603143?cond=NCT05603143&rank=1 (accessed on 8 April 2025).
- Gounden, V.; Bhatt, H.; Jialal, I. Renal Function Tests. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507821/ (accessed on 8 April 2025).
- FakhriRavari, A.; Malakouti, M. Remdesivir and the Liver: A Concise Narrative Review of Remdesivir-Associated Hepatotoxicity in Patients Hospitalized Due to COVID-19. Pharmacoepidemiology 2024, 3, 69–81. [Google Scholar] [CrossRef]
- Hashemian, S.M.R.; Sheida, A.; Taghizadieh, M.; Memar, M.Y.; Hamblin, M.R.; Baghi, H.B.; Nahand, J.S.; Asemi, Z.; Mirzaei, H. Paxlovid (Nirmatrelvir/Ritonavir): A new approach to COVID-19 therapy? Biomed. Pharmacother. 2023, 162, 114367. [Google Scholar] [CrossRef] [PubMed]
- Hammond, J.; Leister-Tebbe, H.; Gardner, A.; Abreu, P.; Bao, W.; Wisemandle, W.; Baniecki, M.; Hendrick, V.M.; Damle, B.; Simón-Campos, A.; et al. Oral Nirmatrelvir for High-Risk, Nonhospitalized Adults with COVID-19. N. Engl. J. Med. 2022, 386, 1397–1408. [Google Scholar] [CrossRef] [PubMed]
- Takashita, E.; Kinoshita, N.; Yamayoshi, S.; Sakai-Tagawa, Y.; Fujisaki, S.; Ito, M.; Iwatsuki-Horimoto, K.; Halfmann, P.; Watanabe, S.; Maeda, K.; et al. Efficacy of Antiviral Agents against the SARS-CoV-2 Omicron Subvariant BA.2. N. Engl. J. Med. 2022, 386, 1475–1477. [Google Scholar] [CrossRef]
- Imai, M.; Ito, M.; Kiso, M.; Yamayoshi, S.; Uraki, R.; Fukushi, S.; Watanabe, S.; Suzuki, T.; Maeda, K.; Sakai-Tagawa, Y.; et al. Efficacy of Antiviral Agents against Omicron Subvariants BQ.1.1 and XBB. N. Engl. J. Med. 2023, 388, 89–91. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.J.; Choudhary, M.C.; Deo, R.; Yousuf, F.; Gomez, A.N.; Edelstein, G.E.; Boucau, J.; Glover, O.T.; Barry, M.; Gilbert, R.F.; et al. Emerging SARS-CoV-2 Resistance After Antiviral Treatment. JAMA Netw. Open 2024, 7, e2435431. [Google Scholar] [CrossRef]
- Sanderson, T.; Hisner, R.; Donovan-Banfield, I.; Hartman, H.; Løchen, A.; Peacock, T.P.; Ruis, C. A molnupiravir-associated mutational signature in global SARS-CoV-2 genomes. Nature 2023, 623, 594–600. [Google Scholar] [CrossRef]
- Fountain-Jones, N.M.; Vanhaeften, R.; Williamson, J.; Maskell, J.; Chua, I.-L.J.; Charleston, M.; Cooley, L. Effect of molnupiravir on SARS-CoV-2 evolution in immunocompromised patients: A retrospective observational study. Lancet Microbe 2024, 5, e452–e458. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-C.; Hsieh, C.-C.; Ko, W.-C. Molnupiravir—A Novel Oral Anti-SARS-CoV-2 Agent. Antibiotics 2021, 10, 1294. [Google Scholar] [CrossRef] [PubMed]
- FDA Approves Veklury Remdesivir for COVID 19 Treatment in Patients With Severe Renal Impairment Including Those on Dialysis n.d. Available online: https://www.gilead.com/news/news-details/2023/fda-approves-veklury-remdesivir-for-covid-19-treatment-in-patients-with-severe-renal-impairment-including-those-on-dialysis (accessed on 8 April 2025).
- Reis, G.; Silva, E.A.M.; Silva, D.C.M.; Thabane, L.; Campos, V.H.S.; Ferreira, T.S.; Santos, C.V.; Nogueira, A.M.; Almeida, A.P.; Savassi, L.C.; et al. Early Treatment with Pegylated Interferon Lambda for COVID-19. N. Engl. J. Med. 2023, 388, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Ai, J.; Lin, N.; Zhang, H.; Li, Y.; Wang, H.; Wang, S.; Wang, Z.; Li, T.; Sun, F.; et al. An open, prospective cohort study of VV116 in Chinese participants infected with SARS-CoV-2 omicron variants. Emerg. Microbes Infect. 2022, 11, 1518–1523. [Google Scholar] [CrossRef]
- Yotsuyanagi, H.; Ohmagari, N.; Doi, Y.; Yamato, M.; Fukushi, A.; Imamura, T.; Sakaguchi, H.; Sonoyama, T.; Sanaki, T.; Ichihashi, G.; et al. Prevention of post COVID-19 condition by early treatment with ensitrelvir in the phase 3 SCORPIO-SR trial. Antivir. Res. 2024, 229, 105958. [Google Scholar] [CrossRef]
- Yotsuyanagi, H.; Ohmagari, N.; Doi, Y.; Yamato, M.; Bac, N.H.; Cha, B.K.; Imamura, T.; Sonoyama, T.; Ichihashi, G.; Sanaki, T.; et al. Efficacy and Safety of 5-Day Oral Ensitrelvir for Patients With Mild to Moderate COVID-19. JAMA Netw. Open 2024, 7, e2354991. [Google Scholar] [CrossRef]
- Xocova® (Ensitrelvir Fumaric Acid) Tablets 125mg Approved in Japan for the Treatment of SARS-CoV-2 Infection, Under the Emergency Regulatory Approval System | News | Shionogi Co., Ltd. n.d. Available online: https://www.shionogi.com/global/en/news/2022/11/e20221122.html (accessed on 8 April 2025).
- Barnette, K.G.; Gordon, M.S.; Rodriguez, D.; Bird, T.G.; Skolnick, A.; Schnaus, M.; Skarda, P.K.; Lobo, S.; Sprinz, E.; Arabadzhiev, G.; et al. Oral Sabizabulin for High-Risk, Hospitalized Adults with COVID-19: Interim Analysis. NEJM Evid. 2022, 1. [Google Scholar] [CrossRef]
- Mortezavi, M.; Sloan, A.; Singh, R.S.P.; Chen, L.F.; Kim, J.H.; Shojaee, N.; Toussi, S.S.; Prybylski, J.; Baniecki, M.L.; Bergman, A.; et al. Virologic Response and Safety of Ibuzatrelvir, A Novel SARS-CoV-2 Antiviral, in Adults With COVID-19. Clin. Infect. Dis. 2025, 80, 673–680. [Google Scholar] [CrossRef]
- Liu, Z.; Shi, F.; Liu, J.-X.; Liu, J.-Q.; Li, J.; Wang, Q.; Wang, H.; Gao, C.-L.; Li, J.-M.; Zhao, D.-F. Clinical Efficacy of Corticosteroids in the Early Stages of Deterioration in COVID-19 Pneumonia. Infect. Drug Resist. 2021, 14, 2667–2674. [Google Scholar] [CrossRef]
- Shamim, L.; Musharaf, I.; Nashwan, A.J. Dexamethasone in coronavirus disease 2019 care: Dosage and utilization insights. World J. Virol. 2025, 14, 98765. [Google Scholar] [CrossRef]
- El Mezzeoui, S.; El Aidouni, G.; Merbouh, M.; El Kaouini, A.; Aftiss, F.Z.; Berrichi, S.; Berrajaa, S.; Bkiyer, H.; Abda, N.; Housni, B. Dexamethasone or methylprednisolone therapy in COVID-19 pneumonia: A retrospective and comparative study of 513 cases. Ann. Med. Surg. 2021, 70, 102858. [Google Scholar] [CrossRef]
- The RECOVERY Collaborative Group. Dexamethasone in Hospitalized Patients with COVID-19. N. Engl. J. Med. 2021, 384, 693–704. [Google Scholar] [CrossRef]
- Lipworth, B.J.; Chan, R.; Kuo, C.R. Tocilizumab for severe COVID-19 pneumonia. Lancet Rheumatol. 2020, 2, e660. [Google Scholar] [CrossRef]
- Edinoff, A.N.; Alpaugh, E.S.; Newgaard, O.; Wajid, I.; Klapper, R.J.; Cornett, E.M.; Kaye, A.M.; Iyer, P.; Kaye, A.D. Tocilizumab for Severe COVID-19 Infection and Multisystem Inflammatory Syndrome in Adults and Children. Life 2023, 13, 889. [Google Scholar] [CrossRef]
- Mao, Y.; Guo, A.; Zhang, Y.; Lai, J.; Yuan, D.; Zhang, H.; Diao, W.; Chen, W.; Yan, F. Baricitinib treatment for hospitalized patients with severe COVID-19 on invasive mechanical ventilation: A propensity score-matched and retrospective analysis. Front. Med. 2025, 12, 1445809. [Google Scholar] [CrossRef] [PubMed]
- Balkhair, A.; Al-Zakwani, I.; Al Busaidi, M.; Al-Khirbash, A.; Al Mubaihsi, S.; BaTaher, H.; Al Aghbari, J.; Al Busaidi, I.; Al Kindi, M.; Baawain, S.; et al. Anakinra in hospitalized patients with severe COVID-19 pneumonia requiring oxygen therapy: Results of a prospective, open-label, interventional study. Int. J. Infect. Dis. 2021, 103, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.C.; Adams, A.C.; Hufford, M.M.; de la Torre, I.; Winthrop, K.; Gottlieb, R.L. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat. Rev. Immunol. 2021, 21, 382–393. [Google Scholar] [CrossRef] [PubMed]
- Cugno, M.; Meroni, P.L.; Gualtierotti, R.; Griffini, S.; Grovetti, E.; Torri, A.; Panigada, M.; Aliberti, S.; Blasi, F.; Tedesco, F.; et al. Complement activation in patients with COVID-19: A novel therapeutic target. J. Allergy Clin. Immunol. 2020, 146, 215–217. [Google Scholar] [CrossRef]
- Carvelli, J.; Piperoglou, C.; Farnarier, C.; Vely, F.; Mazodier, K.; Audonnet, S.; Nitschke, P.; Bole-Feysot, C.; Boucekine, M.; Cambon, A.; et al. Functional and genetic testing in adults with HLH reveals an inflammatory profile rather than a cytotoxicity defect. Blood 2020, 136, 542–552. [Google Scholar] [CrossRef]
- Benmansour, N.C.; Carvelli, J.; Vivier, E. Complement cascade in severe forms of COVID-19: Recent advances in therapy. Eur. J. Immunol. 2021, 51, 1652–1659. [Google Scholar] [CrossRef]
- Gordon, A.C.; Mouncey, P.R.; Al-Beidh, F.; Rowan, K.M.; Nichol, A.D.; Arabi, Y.M.; Annane, D.; Beane, A.; Van Bentum-Puijk, W.; Berry, L.R.; et al. Interleukin-6 Receptor Antagonists in Critically Ill Patients with COVID-19. N. Engl. J. Med. 2021, 384, 1491–1502. [Google Scholar] [CrossRef]
- Hermine, O.; Mariette, X.; Tharaux, P.-L.; Resche-Rigon, M.; Porcher, R.; Ravaud, P.; Bureau, S.; Dougados, M.; Tibi, A.; CORIMUNO-19 Collaborative Group; et al. Effect of Tocilizumab vs Usual Care in Adults Hospitalized With COVID-19 and Moderate or Severe Pneumonia. JAMA Intern. Med. 2021, 181, 32–40. [Google Scholar] [CrossRef]
- Salama, C.; Han, J.; Yau, L.; Reiss, W.G.; Kramer, B.; Neidhart, J.D.; Criner, G.J.; Kaplan-Lewis, E.; Baden, R.; Pandit, L.; et al. Tocilizumab in Patients Hospitalized with COVID-19 Pneumonia. N. Engl. J. Med. 2021, 384, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Salvarani, C.; Dolci, G.; Massari, M.; Merlo, D.F.; Cavuto, S.; Savoldi, L.; Bruzzi, P.; Boni, F.; Braglia, L.; Turrà, C.; et al. Effect of Tocilizumab vs Standard Care on Clinical Worsening in Patients Hospitalized With COVID-19 Pneumonia. JAMA Intern. Med. 2021, 181, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Veiga, V.C.; Prats, J.A.G.G.; Farias, D.L.C.; Rosa, R.G.; Dourado, L.K.; Zampieri, F.G.; Machado, F.R.; Lopes, R.D.; Berwanger, O.; Azevedo, L.C.P.; et al. Effect of tocilizumab on clinical outcomes at 15 days in patients with severe or critical coronavirus disease 2019: Randomised controlled trial. BMJ 2021, 372, n84. [Google Scholar] [CrossRef] [PubMed]
- RECOVERY Collaborative Group. Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): A randomised, controlled, open-label, platform trial. Lancet 2021, 397, 1637–1645. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, A.; Ji, P.; Ma, Y.; Zhang, Z.; Chen, J.; Mao, Q.; Xiong, X.; Rehati, P.; Wang, Y.; et al. A bispecific antibody exhibits broad neutralization against SARS-CoV-2 Omicron variants XBB.1.16, BQ.1.1 and sarbecoviruses. Nat. Commun. 2024, 15, 5127. [Google Scholar] [CrossRef]
- Center for Biologics Evaluation and Research (CBER)|FDA n.d. Available online: https://www.fda.gov/about-fda/fda-organization/center-biologics-evaluation-and-research-cber (accessed on 8 April 2025).
- Pickens, C.O.; Gao, C.A.; Cuttica, M.J.; Smith, S.B.; Pesce, L.L.; Grant, R.A.; Kang, M.; Morales-Nebreda, L.; Bavishi, A.A.; Arnold, J.M.; et al. Bacterial Superinfection Pneumonia in Patients Mechanically Ventilated for COVID-19 Pneumonia. Am. J. Respir. Crit. Care Med. 2021, 204, 921–932. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Raybardhan, S.; Leung, V.; Soucy, J.-P.R.; Westwood, D.; Daneman, N.; MacFadden, D.R. Antibiotic prescribing in patients with COVID-19: Rapid review and meta-analysis. Clin. Microbiol. Infect. 2021, 27, 520–531. [Google Scholar] [CrossRef]
- Zayet, S.; Klopfenstein, T. Antibiotics and Therapeutic Agent Prescription in COVID-19 Management. Antibiotics 2022, 11, 423. [Google Scholar] [CrossRef]
- Hoenigl, M.; Seidel, D.; Sprute, R.; Cunha, C.; Oliverio, M.; Goldman, G.H.; Ibrahim, A.S.; Carvalho, A. COVID-19-associated fungal infections. Nat. Microbiol. 2022, 7, 1127–1140. [Google Scholar] [CrossRef]
- Gezer, D.; Yurtsever, S.; Ülger, S.T. Bacterial and Fungal Infections Among COVID-19 Patients in Intensive Care Unit. Med. Rec. 2025, 7, 216–222. [Google Scholar] [CrossRef]
- Rovina, N.; Koukaki, E.; Romanou, V.; Ampelioti, S.; Loverdos, K.; Chantziara, V.; Koutsoukou, A.; Dimopoulos, G. Fungal Infections in Critically Ill COVID-19 Patients: Inevitabile Malum. J. Clin. Med. 2022, 11, 2017. [Google Scholar] [CrossRef]
- Dimopoulos, G.; Almyroudi, M.-P.; Myrianthefs, P.; Rello, J. COVID-19-Associated Pulmonary Aspergillosis (CAPA). J. Intensive Med. 2021, 1, 71–80. [Google Scholar] [CrossRef]
- Theodosiou, A.A.; Jones, C.E.; Read, R.C.; Bogaert, D. Microbiotoxicity: Antibiotic usage and its unintended harm to the microbiome. Curr. Opin. Infect. Dis. 2023, 36, 371–378. [Google Scholar] [CrossRef]
- Nafea, A.M.; Wang, Y.; Wang, D.; Salama, A.M.; Aziz, M.A.; Xu, S.; Tong, Y. Application of next-generation sequencing to identify different pathogens. Front. Microbiol. 2024, 14, 1329330. [Google Scholar] [CrossRef] [PubMed]
- Candel, F.J.; Salavert, M.; Cantón, R.; del Pozo, J.L.; Galán-Sánchez, F.; Navarro, D.; Rodríguez, A.; Rodríguez, J.C.; Rodríguez-Aguirregabiria, M.; Suberviola, B.; et al. The role of rapid multiplex molecular syndromic panels in the clinical management of infections in critically ill patients: An experts-opinion document. Crit. Care 2024, 28, 440. [Google Scholar] [CrossRef] [PubMed]
- Fragkou, P.C.; Palaiodimou, L.; Stefanou, M.I.; Katsanos, A.H.; Lambadiari, V.; Paraskevis, D.; Andreadou, E.; Dimopoulou, D.; Zompola, C.; Ferentinos, P.; et al. Effects of low molecular weight heparin and fondaparinux on mortality, hemorrhagic and thrombotic complications in COVID-19 patients. Ther. Adv. Neurol. Disord. 2022, 15. [Google Scholar] [CrossRef] [PubMed]
- Bikdeli, B.; Madhavan, M.V.; Jimenez, D.; Chuich, T.; Dreyfus, I.; Driggin, E.; Nigoghossian, C.D.; Ageno, W.; Madjid, M.; Guo, Y.; et al. COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up. J. Am. Coll. Cardiol. 2020, 75, 2950–2973. [Google Scholar] [CrossRef]
- Bradbury, C.A.; McQuilten, Z. Anticoagulation in COVID-19. Lancet 2022, 399, 5–7. [Google Scholar] [CrossRef]
- Zhao, R.; Su, Z.; Komissarov, A.A.; Liu, S.-L.; Yi, G.; Idell, S.; Matthay, M.A.; Ji, H.-L. Associations of D-Dimer on Admission and Clinical Features of COVID-19 Patients: A Systematic Review, Meta-Analysis, and Meta-Regression. Front. Immunol. 2021, 12, 691249. [Google Scholar] [CrossRef] [PubMed]
- Goswami, J.; MacArthur, T.A.; Sridharan, M.; Pruthi, R.K.; McBane, R.D.; Witzig, T.E.; Park, M.S. A Review of Pathophysiology, Clinical Features, and Management Options of COVID-19 Associated Coagulopathy. Shock 2021, 55, 700–716. [Google Scholar] [CrossRef] [PubMed]
- Makarem, A.; Zareef, R.; Abourjeili, J.; Nassar, J.E.; Bitar, F.; Arabi, M. Low molecular weight heparin in COVID-19: Benefits and concerns. Front. Pharmacol. 2023, 14, 1159363. [Google Scholar] [CrossRef]
- Rahi, M.S.; Jindal, V.; Reyes, S.-P.; Gunasekaran, K.; Gupta, R.; Jaiyesimi, I. Hematologic disorders associated with COVID-19: A review. Ann. Hematol. 2021, 100, 309–320. [Google Scholar] [CrossRef]
- Ragnoli, B.; Da Re, B.; Galantino, A.; Kette, S.; Salotti, A.; Malerba, M. Interrelationship between COVID-19 and Coagulopathy: Pathophysiological and Clinical Evidence. Int. J. Mol. Sci. 2023, 24, 8945. [Google Scholar] [CrossRef] [PubMed]
- Braz-de-Melo, H.A.; Faria, S.S.; Pasquarelli-do-Nascimento, G.; Santos, I.D.O.; Kobinger, G.P.; Magalhães, K.G. The Use of the Anticoagulant Heparin and Corticosteroid Dexamethasone as Prominent Treatments for COVID-19. Front. Med. 2021, 8, 615333. [Google Scholar] [CrossRef]
- Xu, S.; Ilyas, I.; Weng, J. Endothelial dysfunction in COVID-19: An overview of evidence, biomarkers, mechanisms and potential therapies. Acta Pharmacol. Sin. 2023, 44, 695–709. [Google Scholar] [CrossRef]
- Kerna, N.A.; Flores, J.V.; Pruitt, K.D.; Carsrud, N.D.V.; Ngwu, D.C.; Rodriguez, D.; Holets, H.M.; Nwokorie, U.; Jomsky, B.M.; Senat, A.J.B.; et al. Hematological Conditions Associated with COVID-19: Pathophysiology, Clinical Manifestations, and Therapeutic Approaches. Eur. J. Med. Health Res. 2024, 2, 27–47. [Google Scholar] [CrossRef]
- Nicolai, L.; Leunig, A.; Brambs, S.; Kaiser, R.; Weinberger, T.; Weigand, M.; Muenchhoff, M.; Hellmuth, J.C.; Ledderose, S.; Schulz, H.; et al. Immunothrombotic Dysregulation in COVID-19 Pneumonia Is Associated With Respiratory Failure and Coagulopathy. Circulation 2020, 142, 1176–1189. [Google Scholar] [CrossRef]
- Pfortmueller, C.A.; Spinetti, T.; Urman, R.D.; Luedi, M.M.; Schefold, J.C. COVID-19-associated acute respiratory distress syndrome (CARDS): Current knowledge on pathophysiology and ICU treatment—A narrative review. Best Pr. Res. Clin. Anaesthesiol. 2021, 35, 351–368. [Google Scholar] [CrossRef]
- Wu, T.; Zuo, Z.; Kang, S.; Jiang, L.; Luo, X.; Xia, Z.; Liu, J.; Xiao, X.; Ye, M.; Deng, M. Multi-organ Dysfunction in Patients with COVID-19: A Systematic Review and Meta-analysis. Aging Dis. 2020, 11, 874–894. [Google Scholar] [CrossRef] [PubMed]
- Keswani, M.; Mehta, N.; Mazer-Amirshahi, M.; Tran, Q.K.; Pourmand, A. Sedation in mechanically ventilated COVID-19 patients: A narrative review for emergency medicine providers. Am. J. Emerg. Med. 2022, 54, 309–311. [Google Scholar] [CrossRef] [PubMed]
- Kubde, D.; Badge, A.K.; Ugemuge, S.; Shahu, S. Importance of Hospital Infection Control. Cureus 2023, 15, e50931. [Google Scholar] [CrossRef] [PubMed]
- Ölmez, H.; Tosun, M. Significance of laboratory biomarkers in monitoring patients with COVID-19 pneumonia. Health Sci. Q. 2023, 3, 13–25. [Google Scholar] [CrossRef]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-acute COVID-19 syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef]
- Zhang, H.; Weng, Z.; Zheng, Y.; Zheng, M.; Chen, W.; He, H.; Ye, X.; Zheng, Y.; Xie, J.; Zheng, K.; et al. Epidemiological and clinical features of SARS-CoV-2 Omicron variant infection in Quanzhou, Fujian province: A retrospective study. Sci. Rep. 2023, 13, 22152. [Google Scholar] [CrossRef]
- Chatterjee, S.; Bhattacharya, M.; Nag, S.; Dhama, K.; Chakraborty, C. A Detailed Overview of SARS-CoV-2 Omicron: Its Sub-Variants, Mutations and Pathophysiology, Clinical Characteristics, Immunological Landscape, Immune Escape, and Therapies. Viruses 2023, 15, 167. [Google Scholar] [CrossRef]
- Qu, P.; Faraone, J.N.; Evans, J.P.; Zheng, Y.M.; Carlin, C.; Anghelina, M.; Stevens, P.; Fernandez, S.; Jones, D.; Panchal, A.R.; et al. Enhanced evasion of neutralizing antibody response by Omicron XBB.1.5, CH.1.1, and CA.3.1 variants. Cell Rep. 2023, 42, 112443. [Google Scholar] [CrossRef]
- Lasrado, N.; Collier, A.-R.Y.; Hachmann, N.P.; Miller, J.; Rowe, M.; Schonberg, E.D.; Rodrigues, S.L.; LaPiana, A.; Patio, R.C.; Anand, T.; et al. Neutralization escape by SARS-CoV-2 Omicron subvariant BA.2.86. Vaccine 2023, 41, 6904–6909. [Google Scholar] [CrossRef]
- Hoteit, R.; Yassine, H.M. Biological Properties of SARS-CoV-2 Variants: Epidemiological Impact and Clinical Consequences. Vaccines 2022, 10, 919. [Google Scholar] [CrossRef]
- Markov, P.V.; Ghafari, M.; Beer, M.; Lythgoe, K.; Simmonds, P.; Stilianakis, N.I.; Katzourakis, A. The evolution of SARS-CoV-2. Nat. Rev. Microbiol. 2023, 21, 361–379. [Google Scholar] [CrossRef]
- Chung, Y.S.; Lam, C.Y.; Tan, P.H.; Tsang, H.F.; Wong, S.C.C. Comprehensive Review of COVID-19: Epidemiology, Pathogenesis, Advancement in Diagnostic and Detection Techniques, and Post-Pandemic Treatment Strategies. Int. J. Mol. Sci. 2024, 25, 8155. [Google Scholar] [CrossRef] [PubMed]
- Kainov, D.E.; Ravlo, E.; Ianevski, A. Seeking innovative concepts in development of antiviral drug combinations. Antivir. Res. 2025, 234, 106079. [Google Scholar] [CrossRef] [PubMed]
- Levy, M.E.; Chilunda, V.; Davis, R.E.; Heaton, P.R.; Pawloski, P.A.; Goldman, J.D.; Schandl, C.A.; McEwen, L.M.; Cirulli, E.T.; Wyman, D.; et al. Reduced Likelihood of Hospitalization With the JN.1 or HV.1 Severe Acute Respiratory Syndrome Coronavirus 2 Variants Compared With the EG.5 Variant. J. Infect. Dis. 2024, 230, 1197–1201. [Google Scholar] [CrossRef] [PubMed]
- Feng, B.; Fu, K. Latest development of approved COVID-19 drugs and COVID-19 drugs undergoing late stage clinical trials. Front. Drug Discov. 2023, 3, 1304129. [Google Scholar] [CrossRef]
- Giannitsioti, E.; Mavroudis, P.; Speggos, I.; Katsoulidou, A.; Pantazis, N.; Loupis, T.; Daniil, I.; Rekleiti, N.; Damianidou, S.; Louka, C.; et al. Real life treatment experience and outcome of consecutively hospitalised patients with SARS-CoV-2 pneumonia by Omicron-1 vs Delta variants. Infect. Dis. 2023, 55, 706–715. [Google Scholar] [CrossRef]
- Meyerowitz, E.A.; Li, Y. Review: The Landscape of Antiviral Therapy for COVID-19 in the Era of Widespread Population Immunity and Omicron-Lineage Viruses. Clin. Infect. Dis. 2024, 78, 908–917. [Google Scholar] [CrossRef]
- Wong, J.Y.; Cheung, J.K.; Lin, Y.; Bond, H.S.; Lau, E.H.Y.; Ip, D.K.M.; Cowling, B.J.; Wu, P. Intrinsic and Effective Severity of Coronavirus Disease 2019 Cases Infected With the Ancestral Strain and Omicron BA.2 Variant in Hong Kong. J. Infect. Dis. 2023, 228, 1231–1239. [Google Scholar] [CrossRef]
- Wafy, S.M.; Saman, M.O.; Ahmed, M.K. Predictors of mortality of hospitalized COVID-19 pneumonia patients in university hospital. Egypt. J. Bronchol. 2024, 18, 22. [Google Scholar] [CrossRef]
- Khurana, A.K.; Hussain, A.; Goyal, A.; Karna, S.T.; Care, A.A.C.; Saigal, S.; Soman, R.K.; Verma, M.; Khadanga, S.; Sahu, G.; et al. Six-Week Hospital-Based Pulmonary Rehabilitation in Covid Pneumonia ICU Survivors: Experience from a Tertiary Care Center in Central India. Turk. Thorac. J. 2022, 23, 89–96. [Google Scholar] [CrossRef]
- Hendrickson, K.W.; Peltan, I.D.; Brown, S.M. The Epidemiology of Acute Respiratory Distress Syndrome Before and After Coronavirus Disease 2019. Crit. Care Clin. 2021, 37, 703–716. [Google Scholar] [CrossRef] [PubMed]
- Kuzmin, B.; Movsisyan, A.; Praetsch, F.; Schilling, T.; Lux, A.; Fadel, M.; Azizzadeh, F.; Crackau, J.; Keyser, O.; Awad, G.; et al. Outcomes of patients with coronavirus disease versus other lung infections requiring venovenous extracorporeal membrane oxygenation. Heliyon 2023, 9, e17441. [Google Scholar] [CrossRef] [PubMed]
- Klimkiewicz, J.; Grzywacz, A.; Michałowski, A.; Gutowski, M.; Paryż, K.; Jędrych, E.; Lubas, A. Acute Kidney Injury and Chronic Kidney Disease and Their Impacts on Prognosis among Patients with Severe COVID-19 Pneumonia: An Expert Center Case–Cohort Study. J. Clin. Med. 2024, 13, 1486. [Google Scholar] [CrossRef] [PubMed]
- Martínez, E.; Aguilera, C.; Márquez, D.; Ziegler, G.; Plumet, J.; Tschopp, L.; Cominotti, C.; Sturzenegger, V.; Cimino, C.; Escobar, H.; et al. Post intensive care syndrome in survivors of COVID-19 who required mechanical ventilation during the third wave of the pandemic: A prospective study. Hear. Lung 2023, 62, 72–80. [Google Scholar] [CrossRef]
- Maison, D.P.; Tasissa, H.; Deitchman, A.; Peluso, M.J.; Deng, Y.; Miller, F.D.; Henrich, T.J.; Gerschenson, M. COVID-19 clinical presentation, management, and epidemiology: A concise compendium. Front. Public Health 2025, 13, 1498445. [Google Scholar] [CrossRef]
- Alkhalifa, H.A.; Darwish, E.; Alsalman, Z.; Alfaraj, A.; Alkhars, A.; Alkhalifa, F.; Algaraash, M.; Elshebiny, A.M.; Alkhoufi, E.; Elzorkany, K.M.A. Predictors of developing severe COVID-19 among hospitalized patients: A retrospective study. Front. Med. 2025, 11, 1494302. [Google Scholar] [CrossRef]
- DeWolf, S.; Laracy, J.C.; Perales, M.-A.; Kamboj, M.; van den Brink, M.R.M.; Vardhana, S. SARS-CoV-2 in immunocompromised individuals. Immunity 2022, 55, 1779–1798. [Google Scholar] [CrossRef]
- Rahmati, M.; Shamsi, M.M.; Khoramipour, K.; Malakoutinia, F.; Woo, W.; Park, S.; Yon, D.K.; Lee, S.W.; Shin, J.I.; Smith, L. Baseline physical activity is associated with reduced mortality and disease outcomes in COVID-19: A systematic review and meta-analysis. Rev. Med. Virol. 2022, 32, e2349. [Google Scholar] [CrossRef]
- Kumar, M.; Baig, M.S.; Bhardwaj, K. Advancements in the development of antivirals against SARS-Coronavirus. Front. Cell. Infect. Microbiol. 2025, 15, 1520811. [Google Scholar] [CrossRef]
- Diamond, M.; Peniston, H.L.; Sanghavi, D.K.; Mahapatra, S. Acute Respiratory Distress Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Meawed, T.E.; Ahmed, S.M.; Mowafy, S.M.; Samir, G.M.; Anis, R.H. Bacterial and fungal ventilator associated pneumonia in critically ill COVID-19 patients during the second wave. J. Infect. Public Health 2021, 14, 1375–1380. [Google Scholar] [CrossRef]
- Poggiali, E.; Bastoni, D.; Ioannilli, E.; Vercelli, A.; Magnacavallo, A. Deep Vein Thrombosis and Pulmonary Embolism: Two Complications of COVID-19 Pneumonia? Eur. J. Case Rep. Intern. Med. 2020, 7, 001646. [Google Scholar] [CrossRef]
- Shao, H.-H.; Yin, R.-X. Pathogenic mechanisms of cardiovascular damage in COVID-19. Mol. Med. 2024, 92. [Google Scholar] [CrossRef] [PubMed]
- Mirouse, A.; Friol, A.; Moreau, A.-S.; Jung, B.; Jullien, E.; Bureau, C.; Djibré, M.; de Prost, N.; Zafrani, L.; Argaud, L.; et al. Severe SARS-Cov2 pneumonia in vaccinated patients: A multicenter cohort study. Sci. Rep. 2023, 13, 1092. [Google Scholar] [CrossRef] [PubMed]
- Bogusławski, S.; Strzelak, A.; Gajko, K.; Peradzyńska, J.; Popielska, J.; Marczyńska, M.; Kulus, M.; Krenke, K. The outcomes of COVID-19 pneumonia in children—Clinical, radiographic, and pulmonary function assessment. Pediatr. Pulmonol. 2023, 58, 1042–1050. [Google Scholar] [CrossRef] [PubMed]
- Constantin, T.; Pék, T.; Horváth, Z.; Garan, D.; Szabó, A.J. Multisystem inflammatory syndrome in children (MIS-C): Implications for long COVID. Inflammopharmacology 2023, 31, 2221–2236. [Google Scholar] [CrossRef] [PubMed]
- Sundeep, H.K.; Litty, P.; Nimmi, K.; Hozaifah, M.; Faek, A.E.T.; Bashir, E.F.A.; Amar, H. Clinical characteristics, management, maternal and neonatal outcome among seven severe and critically ill pregnant women with COVID-19 pneumonia. Clin. J. Obstet. Gynecol. 2020, 3, 158–166. [Google Scholar] [CrossRef]
- Zampogna, E.; Paneroni, M.; Belli, S.; Aliani, M.; Gandolfo, A.; Visca, D.; Bellanti, M.T.; Ambrosino, N.; Vitacca, M. Pulmonary Rehabilitation in Patients Recovering from COVID-19. Respiration 2021, 100, 416–422. [Google Scholar] [CrossRef]
- Gu, X.; Zheng, M.; Gao, Y.; Lin, S.; Zhang, X.; Chen, C.; Zhu, H.; Sun, W.; Zhang, Y. Overview of host-directed antiviral targets for future research and drug development. Acta Pharm. Sin. B 2025, 15, 1723–1751. [Google Scholar] [CrossRef]
Stage | Criteria | Ventilatory Strategy | Key Considerations |
---|---|---|---|
Early Stage (Mild to Moderate Hypoxemia) | SpO2 90–96% on nasal cannula; RR < 30 | Nasal Cannula (2–6 L/min); High-Flow Nasal Oxygen (HFNO) (30–60 L/min, FiO2 titrated) | Monitor for increasing oxygen demand. FNO preferred over NIV due to better tolerance. |
Progressive Hypoxemia (Failure of HFNO/NIV) | SpO2 < 90% despite HFNO; RR > 30; signs of fatigue | Non-Invasive Ventilation (NIV, CPAP/BiPAP) (CPAP 5–10 cmH2O, or BiPAP: IPAP 10–15 cmH2O, EPAP 5–10 cmH2O) | Aerosol-generating; use in negative pressure room if possible. If worsening, proceed to intubation. |
Moderate to Severe ARDS (Intubation Required) | SpO2 < 88%, RR > 30, PaO2/FiO2 < 200 | Lung-Protective Ventilation (VT = 6 mL/kg PBW, PEEP 10–15 cmH2O); Prone Positioning (12–16 h/day if PaO2/FiO2 < 150); Neuromuscular Blockade if dyssynchrony | Avoid high tidal volumes to prevent ventilator-induced lung injury (VILI). Conservative fluid management. |
Severe ARDS/Refractory Hypoxemia | PaO2/FiO2 < 80 despite ventilation | Rescue Therapies: - Higher PEEP (>15 cm H2O); Inhaled Pulmonary Vasodilators (NO, epoprostenol); Neuromuscular blockade (48 h) | Careful PEEP titration to avoid overdistension. - High risk of barotrauma. |
ECMO Consideration (Last Resort) | PaO2/FiO2 < 80, pH < 7.15, high plateau pressures (>35 cmH2O) | VV-ECMO (Venovenous ECMO) | Age < 65, no multi-organ failure. |
Weaning from Ventilation | SpO2 > 94% on FiO2 < 40%, PEEP ≤ 8 | Spontaneous Breathing Trial (SBT) (PSV trial); HFNO or NIV post-extubation | Swallow assessment before oral intake to prevent aspiration. |
Treatment (Route) | Mechanism of Action | Key Efficacy Data (Clinical Trials) | Regulatory Status (as of 2025) | Activity vs. Omicron Variants |
---|---|---|---|---|
Nirmatrelvir + Ritonavir (Paxlovid, oral) | 3CL protease inhibitor (blocks viral replication), boosted by ritonavir for PK. | 89% reduction in hospitalization or death in high-risk unvaccinated (EPIC-HR trial) [121]. Observational studies show benefit in vaccinated patients, though absolute risk reduction is smaller. | FDA Approved (2023) for high-risk adults [128]; EUA for ≥12 year pediatric. Widely recommended first-line outpatient therapy. | Active against all Omicron subvariants. Targets conserved protease, so efficacy is unaffected by spike mutations [122]. No widespread resistance observed [123,124]. |
Remdesivir (Veklury, IV) | Nucleoside analog; inhibits RNA-dependent RNA polymerase (viral replication). | 87% reduction in hospitalization (3-day outpatient course) shortened recovery time by ~5 days in hospitalized (ACTT-1). May improve survival when given early. | FDA Approved (2020) for hospitalized adults; expanded to severe renal impairment (2022) [129]. Standard care for moderate-to-severe hospitalized COVID. | Active against all variants. Polymerase target conserved; retains potency vs. XBB.1.5, BQ.1.1, BA.2.86, etc. [114,115]. Rare resistance mutations in immunocompromised patients, usually with fitness cost [88,89]. |
Molnupiravir (Lagevrio, oral) | Nucleoside analog; induces lethal mutagenesis in viral RNA. | ~30% reduction in hospitalization in high-risk unvaccinated (MOVe-OUT trial). No significant effect on mortality. Lower efficacy than other antivirals. | FDA EUA (2021–2025) for high-risk adults only if other options are unavailable [128]. Not first-line; use declining. | Active against all variants (targets polymerase). However, induces SARS-CoV-2 mutations; molnupiravir-linked mutation signatures detected in global sequences [129,130]. No evidence of more pathogenic variants from this, but use sparingly to avoid resistance. |
Ensitrelvir (Xocova, oral) | 3CL protease inhibitor (once-daily dosing; no ritonavir required). | Shortened duration of COVID-19 symptoms by ~24 h in largely vaccinated, low-risk. patients (Phase 3 SCORPIO-SR) [131,132]. Met the primary endpoint for faster symptom resolution (p = 0.04). Demonstrated viral load reduction vs. placebo. | Approved in Japan (2022–2023) [133]; Singapore (2023). Not yet approved in the U.S./EU (Fast Track status). Phase 3 trials are ongoing globally. | Presumed active vs. Omicron subvariants (same target as nirmatrelvir). Tested during BA.2 wave with success [134]. In vitro studies show no resistance issues to date. Monitoring ongoing for emergent protease mutations. |
Peginterferon Lambda (SC injection) | Pegylated type III interferon; stimulates antiviral immunity in lung epithelium (host-targeted). | ~50% reduction in hospitalization/emergency visits in outpatients (TOGETHER trial, mixed variants) [130]. Benefits observed even in vaccinated patients. Single dose administration. | Not approved (investigational). Positive Phase 3 published in 2023; FDA declined EUA due to trial scope. May see further development for immunocompromised host therapy. | Active against all variants (boosts host immune response)—efficacy is variant-agnostic [130]. Would not be affected by viral spike mutations or antiviral resistance mechanisms. |
Anakinra (Kineret, IV) | Interleukin-1 receptor antagonist; immunomodulator reducing inflammation. | In hospitalized COVID pneumonia patients with high inflammation (elevated suPAR), anakinra improved outcomes (SAVE-MORE trial earlier). Reduction in progression to respiratory failure reported. | FDA EUA (November 2022) for COVID pneumonia requiring oxygen in adults with high suPAR (immune activation marker) [128]. Approved in EU for COVID with cytokine release risk. | Variant-independent (targets host). Efficacy linked to hyperinflammatory state rather than viral characteristics. |
Baricitinib (Olumiant, oral) | Janus kinase (JAK1/JAK2) inhibitor; dampens cytokine signaling (e.g., IL-6, interferons). | ~5% absolute reduction in 28-day mortality in hospitalized patients on oxygen (ACTT-2, COV-BARRIER trials). Accelerated recovery when added to standard care [128]. Benefit seen on top of steroids. | FDA Approved (May 2022) for hospitalized adults on oxygen/ventilator [128]. Incorporated into NIH/WHO treatment guidelines for severe COVID. | Variant-independent. Addresses downstream hyperinflammation. Remains effective regardless of viral variant (host-targeted immunomodulation). |
Tocilizumab (Actemra, IV) | IL-6 receptor monoclonal antibody; mitigates cytokine storm and immunopathology. | 4–8% reduction in mortality in severe COVID when given with steroids (RECOVERY, REMAP-CAP trials) [128]. In RECOVERY, mortality was 29% vs. 33% in controls; improved odds of discharge. | FDA Approved (December 2022) for hospitalized adults on systemic steroids and oxygen/ventilatory support [128]. WHO-recommended for severe/critical cases. | Variant-independent. Moderates host immune response. Effectiveness not affected by changes in viral spike proteins. |
Sabizabulin (oral) | Microtubule inhibitor; dual antiviral and anti-inflammatory actions (disrupts viral transport and dampens lung inflammation). | In a Phase 3 trial of critically ill COVID patients, sabizabulin reduced 60-day mortality from 45% (placebo) to 20% (sabizabulin) [108]. A 55% relative risk reduction. Small sample (150 patients) but marked benefit. | Not approved; FDA Fast Track status. EUA request (2022) was denied pending a larger confirmatory trial [134]. A new global Phase 3 trial (≈408 patients) is underway as of 2023 [134]. | Variant-independent (targets host cell processes). Would be expected to retain efficacy across variants. Needs confirmation in broader studies before clinical adoption. |
Severity | Recommended Treatments | Not Recommended |
---|---|---|
Severe COVID-19 | Corticosteroids (Dexamethasone preferred) Remdesivir (may decrease recovery time but no mortality benefit) IL-6 Inhibitors (Tocilizumab, Sarilumab) JAK Inhibitors (Baricitinib preferred over Tofacitinib) | Hydroxychloroquine Azithromycin Lopinavir/Ritonavir Convalescent plasma Ivermectin (outside clinical trials) |
Critically Ill (Non-Invasive Ventilation/HFNC) | Corticosteroids (Dexamethasone preferred, Hydrocortisone alternative) IL-6 Inhibitors (Tocilizumab preferred over Sarilumab) JAK Inhibitors (Baricitinib preferred over Tofacitinib) | Remdesivir (no benefit in this population) |
Critically Ill (Invasive Mechanical Ventilation/ECMO) | Corticosteroids (Dexamethasone preferred) IL-6 Inhibitors (Tocilizumab preferred over Sarilumab) Baricitinib (if IL-6 inhibitors not available) | Most other COVID-19 therapies lack evidence or have not been studied in this population |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caliman-Sturdza, O.A.; Soldanescu, I.; Gheorghita, R.E. SARS-CoV-2 Pneumonia: Advances in Diagnosis and Treatment. Microorganisms 2025, 13, 1791. https://doi.org/10.3390/microorganisms13081791
Caliman-Sturdza OA, Soldanescu I, Gheorghita RE. SARS-CoV-2 Pneumonia: Advances in Diagnosis and Treatment. Microorganisms. 2025; 13(8):1791. https://doi.org/10.3390/microorganisms13081791
Chicago/Turabian StyleCaliman-Sturdza, Olga Adriana, Iuliana Soldanescu, and Roxana Elena Gheorghita. 2025. "SARS-CoV-2 Pneumonia: Advances in Diagnosis and Treatment" Microorganisms 13, no. 8: 1791. https://doi.org/10.3390/microorganisms13081791
APA StyleCaliman-Sturdza, O. A., Soldanescu, I., & Gheorghita, R. E. (2025). SARS-CoV-2 Pneumonia: Advances in Diagnosis and Treatment. Microorganisms, 13(8), 1791. https://doi.org/10.3390/microorganisms13081791