Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = vine tea

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 9287 KB  
Article
Inhibitory Mechanisms of Vine Tea Extract and Dihydromyricetin Against Escherichia coli: A Multidimensional Analysis from Cell Membrane to Protein Synthesis
by Wei Ma, Haiyun Liang, Keke He, Ting Li, Qiaoni Hui, Yao Zhang, Yuxuan Dong, Yan Jia and Liya Song
Foods 2025, 14(12), 2011; https://doi.org/10.3390/foods14122011 - 6 Jun 2025
Viewed by 655
Abstract
Microbial contamination is the leading cause of foodborne diseases and spoilage in food and personal care products. Previous studies by our group have demonstrated that vine tea extract (VTE) and dihydromyricetin (DMY) inhibit the growth of Escherichia coli. In this study, we [...] Read more.
Microbial contamination is the leading cause of foodborne diseases and spoilage in food and personal care products. Previous studies by our group have demonstrated that vine tea extract (VTE) and dihydromyricetin (DMY) inhibit the growth of Escherichia coli. In this study, we further explored the inhibitory mechanisms of VTE and DMY against E. coli through a label-free proteomics approach. The proteomic analysis detected 130 and 81 differentially expressed proteins (DEPs) in E.coli following VTE and DMY treatment, respectively. The analysis indicated that VTE and DMY inhibit bacterial growth through multiple-target mechanisms. Specifically, they inhibit E. coli growth by disrupting the cationic antimicrobial peptide resistance pathway, amino acid biosynthesis and metabolism, and nucleotide metabolism. Additionally, VTE disrupts various secondary metabolic pathways, while DMY interferes with E. coli ribosome assembly and function, and disrupts cell membrane lipid homeostasis by interfering with fatty acid metabolism. RT-qPCR validation confirmed transcriptional alterations in genes encoding key target proteins. Molecular docking results indicated that DMY may affect bacterial protein synthesis, cationic antimicrobial peptide resistance, and transcriptional regulation by binding to target proteins such as RplB, RplV, LpxA, and YafC. In conclusion, this study systematically deciphered the multi-target inhibitory mechanisms of VTE and DMY against E. coli, providing a theoretical basis for developing plant-derived antimicrobial agents. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Graphical abstract

20 pages, 2415 KB  
Article
Integrated Transcriptomic and Targeted Metabolomic Analyses Elucidate the Molecular Mechanism Underlying Dihydromyricetin Synthesis in Nekemias grossedentata
by Fuwen Wu, Zhi Feng, Zhi Yao, Peiling Zhang, Yiqiang Wang and Meng Li
Plants 2025, 14(10), 1561; https://doi.org/10.3390/plants14101561 - 21 May 2025
Viewed by 543
Abstract
Nekemias grossedentata (Hand.-Mazz.) J. Wen & Z. L. Nie is a medicinal and edible plant with a high dihydromyricetin (DHM) content in its bud tips. Vine tea made from its bud tips has served as a health tea and Chinese herbal medicine for [...] Read more.
Nekemias grossedentata (Hand.-Mazz.) J. Wen & Z. L. Nie is a medicinal and edible plant with a high dihydromyricetin (DHM) content in its bud tips. Vine tea made from its bud tips has served as a health tea and Chinese herbal medicine for nearly 700 years. However, the molecular mechanisms underlying the high DHM content in N. grossedentata bud tips remain inadequately elucidated. This study conducted qualitative and quantitative analyses of bud tip flavonoids utilizing HPLC and targeted metabolomics. Core genes influencing the substantial synthesis of DHM in N. grossedentata were identified through integrated transcriptome and metabolome analyses. The results revealed that 65 flavonoid metabolites were detected in bud tips, with DHM as the predominant flavonoid (37.5%), followed by myricetin (0.144%) and taxifolin (0.141%). Correlation analysis revealed a significant positive correlation between NgF3′5′H3 expression and DHM content. Co-expression analysis and qRT-PCR validation demonstrated a significant positive correlation between NgMYB71 and NgF3′5′H3, with consistent expression trends across three periods and four tissues. Consequently, NgF3′5′H3 and NgMYB71 were identified as core genes influencing the substantial synthesis of DHM in N. grossedentata. Elevated NgMYB71 expression in bud tips induced high NgF3′5′H3 expression, facilitating extensive DHM synthesis in bud tips. Molecular docking analysis revealed that NgF3′5′H3 had a strong binding affinity for taxifolin. NgF3′5′H3 was the pivotal core node gene in the dihydromyricetin biosynthesis pathway in N. grossedentata and was highly expressed in bud tips. The strong specific binding of NgF3′5′H3 to dihydromyricetin precursor metabolites catalyzed their conversion into DHM, resulting in higher DHM contents in bud tips than in other tissues or plants. This study aimed to elucidate the molecular mechanisms underlying the substantial synthesis of DHM in N. grossedentata, providing a theoretical foundation for enhancing DHM production and developing N. grossedentata resources. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

23 pages, 9918 KB  
Article
Structural Characterization and Bioactivity Evaluation of Selenium-Modified Dihydromyricetin from Vine Tea
by Kaixuan Cheng, Guangqian Hou, Shengqi Mei, Xingxing Gao, Chi Zhang, Longchen Shang and Shuai Chen
Foods 2025, 14(10), 1735; https://doi.org/10.3390/foods14101735 - 13 May 2025
Viewed by 640
Abstract
Dihydromyricetin, the predominant bioactive constituent in vine tea, manifests diverse bioactivities, including anti-tumoral and anti-inflammatory effects. However, the deep processing of vine tea remains underdeveloped, thereby curtailing its economic benefits. Concurrently, as the demand for organic selenium products escalates, the exploration and development [...] Read more.
Dihydromyricetin, the predominant bioactive constituent in vine tea, manifests diverse bioactivities, including anti-tumoral and anti-inflammatory effects. However, the deep processing of vine tea remains underdeveloped, thereby curtailing its economic benefits. Concurrently, as the demand for organic selenium products escalates, the exploration and development of selenium-containing compounds bearing synergistic effects has emerged as a research frontier. In this investigation, dihydromyricetin underwent selenium modification through a SeO2- and HCl-catalyzed reaction, leading to the successful synthesis of selenium-modified dihydromyricetin. A comprehensive array of characterization techniques—encompassing Fourier-transform infrared spectroscopy and solid-state nuclear magnetic resonance—was employed for structural elucidation. The results demonstrated that selenium was covalently tethered to the 4’-hydroxyl group of the B-ring of dihydromyricetin via an O-Se-O bond. Activity assays revealed that selenium-modified dihydromyricetin exhibited significantly augmented inhibitory effects on α-amylase and α-glucosidase (p < 0.05) relative to dihydromyricetin, with IC50 values of 0.0459 mg/mL and 0.01728 mg/mL, respectively. Moreover, selenium-modified dihydromyricetin exerted marked inhibitory effects on the proliferation of HepG2 and A549 cells, with IC50 values of 49.05 μg/mL and 515.60 μg/mL, respectively. These findings collectively furnish experimental evidence underpinning the potential application of selenium-modified dihydromyricetin as a functional food ingredient, particularly within blood glucose regulation. Full article
(This article belongs to the Special Issue Functional Foods and Their Benefits for Health Regulation)
Show Figures

Graphical abstract

17 pages, 3736 KB  
Article
Molecular Mechanism of Vine Tea Dihydromyricetin Extract on Alleviating Glucolipid Metabolism Disorder in db/db Mice: Based on Liver RNA-Seq and TLR4/MyD88/NF-κB Pathway
by Xixin Zhou, Xin Liu, Yuhang Yi, Shiyun Chen, Yi Zhang, Wei Fan, Chenghao Lv and Si Qin
Int. J. Mol. Sci. 2025, 26(5), 2169; https://doi.org/10.3390/ijms26052169 - 28 Feb 2025
Viewed by 850
Abstract
The primary active compound in vine tea is dihydromyricetin (DMY), which has a longstanding history as a dietary supplement and traditional ethnic medicine. However, the precise molecular mechanism by which vine tea dihydromyricetin extract (VDMY) regulates glucolipid metabolic disorder remains unclear. In this [...] Read more.
The primary active compound in vine tea is dihydromyricetin (DMY), which has a longstanding history as a dietary supplement and traditional ethnic medicine. However, the precise molecular mechanism by which vine tea dihydromyricetin extract (VDMY) regulates glucolipid metabolic disorder remains unclear. In this study, we first assessed the effect of VDMY on various physiological parameters in db/db mice, followed by RNA sequencing (RNA-seq) to identify key signaling pathways affected by VDMY in liver tissues. We also examined the impact of VDMY on the liver’s TLR4/MyD88/NF-κB and FOXO1 pathways using Western blotting. Our results showed that VDMY significantly reduced fasting blood glucose (FBG), total cholesterol (TC), triglycerides (TGs), and low-density lipoprotein cholesterol (LDL-C), while increasing high-density lipoprotein cholesterol (HDL-C) levels. Additionally, VDMY enhanced the liver’s antioxidant capacity by upregulating superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH), while lowering malondialdehyde (MDA), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), thus alleviating liver damage. RNA-seq analysis further revealed that VDMY influenced multiple biological processes, including transcription, glycolysis, gluconeogenesis, and redox reactions, suggesting that its effects may be mediated through the TLR4/MyD88/NF-κB and FOXO1 pathways. Additionally, Western blot analysis revealed that VDMY effectively downregulated the expressions of TLR4, MyD88, NF-κB, and FOXO1 proteins in the liver of db/db mice, indicating that VDMY could target these pathways to intervene glucolipid metabolism dysfunction. Full article
(This article belongs to the Special Issue Biological Research on Plant Bioactive Compounds)
Show Figures

Graphical abstract

16 pages, 8372 KB  
Article
Vine Tea Extract (VTE) Inhibits High-Fat Diet-Induced Adiposity: Evidence of VTE’s Anti-Obesity Effects In Vitro and In Vivo
by Wonchul Lim, Seongmin Choi, Jinhak Kim, Kwang-Soo Baek, Minkuk Park, Gakyung Lee and Tae-Gyu Lim
Int. J. Mol. Sci. 2024, 25(22), 12042; https://doi.org/10.3390/ijms252212042 - 9 Nov 2024
Cited by 1 | Viewed by 1593
Abstract
This study focused on evaluating the anti-obesity effects of an extract from Ampelopsis grossedentata (Hand.-Mazz.) W. T. Wang, also known as vine tea, in mature adipocytes and high-fat diet-induced obese mice. Vine tea extract (VTE) effectively decreased lipid accumulation in mature adipocytes without [...] Read more.
This study focused on evaluating the anti-obesity effects of an extract from Ampelopsis grossedentata (Hand.-Mazz.) W. T. Wang, also known as vine tea, in mature adipocytes and high-fat diet-induced obese mice. Vine tea extract (VTE) effectively decreased lipid accumulation in mature adipocytes without cytotoxicity, as confirmed by the regulation of several factors associated with adipogenesis, lipogenesis, or lipolysis. Subsequently, in a 12-week experiment with obese mice, oral VTE administration significantly reduced body weight gain induced with high-fat diet intake. Au-topsy findings showed reduced fat accumulation in various areas without liver damage. The VTE-administered group showed lower serum LDL levels, while increasing HDL, than the high-fat diet-administered group. Analysis of adipose tissue biomarkers indicated VTE’s ability to inhibit adipogenesis and lipogenesis, promote lipolysis, and regulate energy metabolism, contributing to reduced adiposity induced by the consumption of a high-fat diet. Full article
(This article belongs to the Special Issue Medicinal Plants and Bioactive Compounds in Health and Disease)
Show Figures

Figure 1

16 pages, 10397 KB  
Article
Stiff-Soft Hybrid Biomimetic Nano-Emulsion for Targeted Liver Delivery and Treatment of Early Nonalcoholic Fatty Liver Disease
by Juan Li, Mingxing Yin, Maoxian Tian, Jianguo Fang and Hanlin Xu
Pharmaceutics 2024, 16(10), 1303; https://doi.org/10.3390/pharmaceutics16101303 - 7 Oct 2024
Viewed by 1642
Abstract
Background: Nonalcoholic fatty liver disease (NAFLD) poses a risk for numerous metabolic diseases. To date, the U.S. Food and Drug Administration has not yet approved any medications for the treatment of NAFLD, for which developing therapeutic drugs is urgent. Dihydromyricetin (DMY), the most [...] Read more.
Background: Nonalcoholic fatty liver disease (NAFLD) poses a risk for numerous metabolic diseases. To date, the U.S. Food and Drug Administration has not yet approved any medications for the treatment of NAFLD, for which developing therapeutic drugs is urgent. Dihydromyricetin (DMY), the most abundant flavonoid in vine tea, has been shown to be hepatoprotective. Its application was limited by low bioavailability in vivo; Methods: In order to improve the bioavailability of DMY and achieve liver-targeted delivery, we designed a DMY-loaded stiff-soft hybrid biomimetic nano drug delivery system (DMY-hNE). The in vivo absorption, distribution, pharmacokinetic profiles, and anti-NAFLD efficacy of DMY-hNE were studied; Results: DMY-hNE was composed of a stiff core and soft shell, which led to enhanced uptake by gastrointestinal epithelial cells and increased penetration of the mucus barrier, thus improving the in vivo absorption, plasma DMY concentration, and liver distribution versus free DMY. In an early NAFLD mouse model, DMY-hNE effectively ameliorated fatty lesions accompanied with reduced lipid levels and liver tissue inflammation; Conclusions: These findings suggested that DMY-hNE is a promising platform for liver drug delivery and treatment of hepatopathy. Full article
(This article belongs to the Special Issue Delivery System for Biomacromolecule Drugs: Design and Application)
Show Figures

Figure 1

13 pages, 6742 KB  
Article
Dihydromyricetin Nanoparticles Alleviate Lipopolysaccharide-Induced Acute Kidney Injury by Decreasing Inflammation and Cell Apoptosis via the TLR4/NF-κB Pathway
by Hongmei Yin, Qiaohua Yan, Yinglun Li and Huaqiao Tang
J. Funct. Biomater. 2024, 15(9), 249; https://doi.org/10.3390/jfb15090249 - 29 Aug 2024
Cited by 2 | Viewed by 2256
Abstract
Acute kidney injury (AKI) is the most severe and fatal complication of sepsis resulting from infectious trauma. Currently, effective treatment options are still lacking. Dihydromyricetin is the main component extracted from Vine tea (Ampelopsis megalophylla Diels et Gilg). In our previous [...] Read more.
Acute kidney injury (AKI) is the most severe and fatal complication of sepsis resulting from infectious trauma. Currently, effective treatment options are still lacking. Dihydromyricetin is the main component extracted from Vine tea (Ampelopsis megalophylla Diels et Gilg). In our previous research, chitosan–tripolyphosphate-encapsulated nanoparticles of dihydromyricetin (CS-DMY-NPs) have been proven to have potential protective effects against cisplatin-induced AKI. Here, we investigated the protective effects and mechanisms of DMY and its nano-formulations against LPS-induced AKI by assessing pathological and inflammatory changes in mice. In mice with LPS-AKI treated with 300 mg/kg CS-DMY-NPs, the levels of creatinine (Cr), blood urea nitrogen (BUN), and KIM-1 were significantly reduced by 56%, 49%, and 88%, respectively. CS-DMY-NPs can upregulate the levels of GSH, SOD, and CAT by 47%, 7%, and 14%, respectively, to inhibit LPS-induced oxidative stress. Moreover, CS-DMY-NPs decreased the levels of IL-6, IL-1β, and MCP-1 by 31%, 49%, and 35%, respectively, to alleviate the inflammatory response. TUNEL and immunohistochemistry showed that CS-DMY-NPs reduced the number of apoptotic cells, increased the Bcl-2/Bax ratio by 30%, and attenuated renal cell apoptosis. Western blot analysis of renal tissue indicated that CS-DMY-NPs inhibited TLR4 expression and downregulated the phosphorylation of NF-κB p65 and IκBα. In summary, DMY prevented LPS-induced AKI by increasing antioxidant capacity, reducing inflammatory responses, and blocking apoptosis, and DMY nanoparticles were shown to have a better protective effect for future applications. Full article
(This article belongs to the Special Issue Nanostructured Materials/Biomaterials for Healthcare Applications)
Show Figures

Figure 1

19 pages, 4893 KB  
Article
Effects of Several Tea-like Plants on Liver Injury Induced by Alcohol via Their Antioxidation, Anti-Inflammation, and Regulation of Gut Microbiota
by Jin Cheng, Min Luo, Dan-Dan Zhou, Siyu Huang, Ruogu Xiong, Sixia Wu, Adila Saimaiti, Bangyan Li, Ao Shang, Guo-Yi Tang and Huabin Li
Foods 2024, 13(16), 2521; https://doi.org/10.3390/foods13162521 - 13 Aug 2024
Cited by 1 | Viewed by 1998
Abstract
Liver injury induced by alcohol is a serious global health problem. Several tea-like plants are widely used as beverages, which are drunk like tea. In this study, the hepatoprotective effects of eight tea-like plant extracts with the intake of 200 mg/kg.bw/day were investigated [...] Read more.
Liver injury induced by alcohol is a serious global health problem. Several tea-like plants are widely used as beverages, which are drunk like tea. In this study, the hepatoprotective effects of eight tea-like plant extracts with the intake of 200 mg/kg.bw/day were investigated and compared using a C57BL/6J mouse model of acute alcohol exposure, including sweet tea, vine tea, Rabdosia serra kudo, broadleaf holly leaf, mulberry leaf, bamboo leaf, Camellia nitidissima, and Akebia trifoliata peels. The results showed that the eight tea-like plants had hepatoprotective effects to different degrees against acute alcohol exposure via enhancing the activities of alcoholic metabolism enzymes, ameliorating oxidative stress and inflammation in the liver, as well as regulating gut microbiota. In particular, sweet tea, bamboo leaf, mulberry leaf, and Camellia nitidissima increased the activities of alcohol dehydrogenase or aldehyde dehydrogenase. Among these tea-like plants, sweet tea and Camellia nitidissima had the greatest hepatoprotective effects, and their bioactive compounds were determined by high-performance liquid chromatography. Chlorogenic acid, rutin, and ellagic acid were identified in sweet tea, and epicatechin, rutin, and ellagic acid were identified in Camellia nitidissima, which could contribute to their hepatoprotective action. These tea-like plants could be drunk or developed into functional food against alcoholic liver injury, especially sweet tea and Camellia nitidissima. In the future, the effects of sweet tea and Camellia nitidissima on chronic alcoholic liver diseases should be further investigated. Full article
(This article belongs to the Special Issue Plant-Based Food:From Nutritional Value to Health Benefits)
Show Figures

Figure 1

20 pages, 4200 KB  
Article
The Evaluation of the Phytochemical Profiles and Antioxidant and α-Glucosidase Inhibitory Activities of Four Herbal Teas Originating from China: A Comparative Analysis of Aqueous and Ethanol Infusions
by Jin Zhang, Jinling Lv, Guodong Zhuang, Junjia Zhang, Feng Hu and Yongsheng Chen
Foods 2024, 13(11), 1705; https://doi.org/10.3390/foods13111705 - 29 May 2024
Cited by 6 | Viewed by 2145
Abstract
Recent research has demonstrated the positive impact of herbal tea consumption on postprandial blood glucose regulation. This study conducts a comparative analysis of aqueous and ethanol extractions on four herbal teas (Mallotus, Cyclocarya, Rubus, and Vine) to assess their phytochemical profiles and functional [...] Read more.
Recent research has demonstrated the positive impact of herbal tea consumption on postprandial blood glucose regulation. This study conducts a comparative analysis of aqueous and ethanol extractions on four herbal teas (Mallotus, Cyclocarya, Rubus, and Vine) to assess their phytochemical profiles and functional attributes. Phytochemical contents, antioxidant activities, α-glucosidase inhibitory activities, and chemical compositions are investigated via colorimetric analyses and UPLC-Q-Orbitrap HRMS/MS, respectively. Results indicate that Vine, among the teas studied, exhibits the most pronounced glucose-regulating effects under both extraction methods. While ethanol extractions yield higher phytochemical content overall, the compositions vary. Conversely, aqueous extracts demonstrate unexpectedly potent antioxidant activities and comparable α-glucosidase inhibitory activities to ethanol extracts. Phytochemical contents correlate positively with antioxidant activities and α-glucosidase inhibitory activities. However, antioxidant activities exhibit a weak positive correlation with α-glucosidase inhibitory activities. These findings provide evidence that aqueous extracts from herbal teas contain valuable phytochemical compositions beneficial for antioxidants and individuals with hyperglycemia, suggesting their potential as functional ingredients to enhance the nutritional value of herbal food products. Full article
(This article belongs to the Special Issue Functional Properties of Foods and Beverages)
Show Figures

Figure 1

17 pages, 3928 KB  
Article
Exploring the Therapeutic Potential of Ampelopsis grossedentata Leaf Extract as an Anti-Inflammatory and Antioxidant Agent in Human Immune Cells
by Arthur Chervet, Rawan Nehme, Caroline Decombat, Lucie Longechamp, Ola Habanjar, Amandine Rousset, Didier Fraisse, Christelle Blavignac, Edith Filaire, Jean-Yves Berthon, Laetitia Delort and Florence Caldefie-Chezet
Int. J. Mol. Sci. 2024, 25(1), 416; https://doi.org/10.3390/ijms25010416 - 28 Dec 2023
Cited by 6 | Viewed by 3187
Abstract
Inflammation is a vital protective response to threats, but it can turn harmful if chronic and uncontrolled. Key elements involve pro-inflammatory cells and signaling pathways, including the secretion of pro-inflammatory cytokines, NF-κB, reactive oxygen species (ROS) production, and the activation of the NLRP3 [...] Read more.
Inflammation is a vital protective response to threats, but it can turn harmful if chronic and uncontrolled. Key elements involve pro-inflammatory cells and signaling pathways, including the secretion of pro-inflammatory cytokines, NF-κB, reactive oxygen species (ROS) production, and the activation of the NLRP3 inflammasome. Ampelopsis grossedentata, or vine tea, contains dihydromyricetin (DHM) and myricetin, which are known for their various health benefits, including anti-inflammatory properties. Therefore, the aim of this study is to assess the impact of an extract of A. grossedentata leaves (50 µg/mL) on inflammation factors such as inflammasome, pro-inflammatory pathways, and macrophage polarization, as well as its antioxidant properties, with a view to combating the development of low-grade inflammation. Ampelopsis grossedentata extract (APG) significantly decreased ROS production and the secretion of pro-inflammatory cytokines (IFNγ, IL-12, IL-2, and IL-17a) in human leukocytes. In addition, APG reduced LPS/IFNγ -induced M1-like macrophage polarization, resulting in a significant decrease in the expression of the pro-inflammatory cytokines TNF-α and IL-6, along with a decrease in the percentage of M1 macrophages and an increase in M0 macrophages. Simultaneously, a significant decrease in NF-κB p65 phosphorylation and in the expression of inflammasome genes (NLRP3, IL-1β and Caspase 1) was observed. The results suggest that Ampelopsis grossedentata could be a promising option for managing inflammation-related chronic diseases. Further research is needed to optimize dosage and administration methods. Full article
Show Figures

Figure 1

50 pages, 5298 KB  
Review
Actinidia arguta (Sieb. et Zucc.) Planch. ex Miq.: A Review of Phytochemistry and Pharmacology
by Haifeng Zhang, Kun Teng and Hao Zang
Molecules 2023, 28(23), 7820; https://doi.org/10.3390/molecules28237820 - 28 Nov 2023
Cited by 10 | Viewed by 3483
Abstract
Actinidia arguta (Siebold & Zucc.) Planch ex Miq. (A. arguta) is a highly valued vine plant belonging to the Actinidia lindl genus. It is extensively utilized for its edible and medicinal properties. The various parts of A. arguta serve diverse purposes. [...] Read more.
Actinidia arguta (Siebold & Zucc.) Planch ex Miq. (A. arguta) is a highly valued vine plant belonging to the Actinidia lindl genus. It is extensively utilized for its edible and medicinal properties. The various parts of A. arguta serve diverse purposes. The fruit is rich in vitamins, amino acids, and vitamin C, making it a nutritious and flavorful raw material for producing jam, canned food, and wine. The flowers yield volatile oils suitable for essential oil extraction. The leaves contain phenolic compounds and can be used for tea production. Additionally, the roots, stems, and leaves of A. arguta possess significant medicinal value, as they contain a wide array of active ingredients that exert multiple pharmacological and therapeutic effects. These effects include quenching thirst, relieving heat, stopping bleeding, promoting blood circulation, reducing swelling, dispelling wind, and alleviating dampness. Comprehensive information on A. arguta was collected from scientific databases covering the period from 1970 to 2023. The databases used for this review included Web of Science, PubMed, ProQuest, and CNKI. The objective of this review was to provide a detailed explanation of A. arguta from multiple perspectives, such as phytochemistry and pharmacological effects. By doing so, it aimed to establish a solid foundation and propose new research ideas for further exploration of the plant’s potential applications and industrial development. To date, a total of 539 compounds have been isolated and identified from A. arguta. These compounds include terpenoids, flavonoids, phenolics, phenylpropanoids, lignin, organic acids, volatile components, alkanes, coumarins, anthraquinones, alkaloids, polysaccharides, and inorganic elements. Flavonoids, phenolics, alkaloids, and polysaccharides are the key bioactive constituents of A. arguta. Moreover, phenolics and flavonoids in A. arguta exhibit remarkable antioxidant, anti-inflammatory, and anti-tumor properties. Additionally, they show promising potential in improving glucose metabolism, combating aging, reducing fatigue, and regulating the immune system. While some fundamental studies on A. arguta have been conducted, further research is necessary to enhance our understanding of its mechanism of action, quality evaluation, and compatibility mechanisms. A more comprehensive investigation is highly warranted to explore the mechanism of action and expand the range of drug resources associated with A. arguta. This will contribute to the current hot topics of anti-aging and anti-tumor drug research and development, thereby promoting its further development and utilization. Full article
(This article belongs to the Special Issue Medicinal Value of Natural Bioactive Compounds and Plant Extracts)
Show Figures

Graphical abstract

12 pages, 2298 KB  
Article
Research on the Efficacy of Ganpu Vine Tea in Inhibiting Uric Acid Production
by Zhi-Xu Zhang, Run-Ming Mo, Dong-Bo Liu, Yi-Song Liu, Cong-Hui Liu, Yong-Shen Li, Zhong-Hua Liu and Dan Qin
Metabolites 2023, 13(6), 704; https://doi.org/10.3390/metabo13060704 - 29 May 2023
Cited by 5 | Viewed by 2692
Abstract
Ganpu vine tea is a new type of health care citrus fruit tea made from citrus shell, Pu-er tea, and vine tea baked as raw materials. In this study, the in vitro uric acid synthase inhibition system and hyperuric acid cell model were [...] Read more.
Ganpu vine tea is a new type of health care citrus fruit tea made from citrus shell, Pu-er tea, and vine tea baked as raw materials. In this study, the in vitro uric acid synthase inhibition system and hyperuric acid cell model were constructed to appraise the uric acid lowering efficacy of Ganpu vine tea, traditional Ganpu tea, and vine tea. Results showed that in the uric acid synthase inhibition system, the aqueous extract can inhibite the puric metabolically related enzymes, such as adenosine deaminase (ADA), purine nucleoside phosphorylase (PNP), and xanthine oxidase (XOD). The ability of the aqueous extract to inhibit the above enzyme was as follows: vine tea > Ganpu vine tea > Ganpu tea; all teas had a strong effect on XOD inhibition. The hyperuric acid cell model test showed that the aqueous extract inhibited uric acid production through accumulating inosine and hypoxanthine and hindering xanthine synthesis. The uric acid reductive ability was as follows: Vine tea > Ganpu vine tea > Ganpu tea. The inhibition of enzymes related to uric acid synthesis and the inhibition of uric acid production were significantly enhanced through adding vine tea to Ganpu tea. It also shows that flavonoids are the main factor driving this ability because they are the main active ingredients in these botanical drinks. Full article
(This article belongs to the Special Issue Polyphenols and Metabolic Diseases)
Show Figures

Graphical abstract

16 pages, 5037 KB  
Article
Inhibitory Effect and Control Efficacy of Picoxystrobin against Neopestalotiopsis clavispora, Causing Vine Tea Leaf Blight
by Zehua Zhou, Yicai Wang, Yabing Duan, Yannan He, Shuang Liu, Yan Chen, Wucheng Deng, Chunping Li, Weijun Hu, Youjun Gu, Yuhui Tang and Tuyong Yi
Agronomy 2023, 13(5), 1340; https://doi.org/10.3390/agronomy13051340 - 10 May 2023
Cited by 3 | Viewed by 2589
Abstract
Vine tea (Ampelopsis grossedentata) is a traditional herb widely consumed in southwestern China that possesses paramount potential for human health. In 2021, the outbreak of typical leaf blight disease was observed in almost all vine tea plantations in Zhangjiajie of Hunan [...] Read more.
Vine tea (Ampelopsis grossedentata) is a traditional herb widely consumed in southwestern China that possesses paramount potential for human health. In 2021, the outbreak of typical leaf blight disease was observed in almost all vine tea plantations in Zhangjiajie of Hunan province, resulting in significant economic losses of vine tea production. In this study, we identified Neopestalotiopsis clavispora as the causal agent of vine tea leaf blight via its morphological characteristics and molecular identification. The sensitivity distribution of N. clavispora isolates to picoxystrobin were determined based on mycelial growth and spore germination inhibition assays. The EC50 values for mycelial growth ranged from 0.0062 to 0.0658 µg/mL, with a mean of 0.0282 ± 0.0148 µg/mL. The EC50 values for spore germination ranged from 0.0014 to 0.0099 µg/mL, and the mean value was 0.0048 ± 0.0022 µg/mL. Picoxystrobin increased fungal cell membrane permeability, but inhibited fungal ATP biosynthesis. Moreover, picoxystrobin exhibited good in planta control efficacy on vine tea leaves. Three picoxystrobin-resistant mutants were obtained in the current study, but no mutations were detected in the N. clavispora Cytb gene. Competitive ability assays showed that the conidium production and pathogenicity of all picoxystrobin-resistant mutants decreased as compared to their progenitors, indicating that picoxystrobin-resistant mutants suffer fitness penalty. These findings provide important evidence for picoxystrobin in vine tea leaf blight management and increase understanding of the resistance mechanism of picoxystrobin against N. clavispora. Full article
(This article belongs to the Topic Integrated Pest Management of Crops)
Show Figures

Figure 1

13 pages, 3226 KB  
Communication
Standards-Based UPLC-Q-Exactive Orbitrap MS Systematically Identifies 36 Bioactive Compounds in Ampelopsis grossedentata (Vine Tea)
by Rongxin Cai, Xican Li, Chunhou Li, Jiayi Zhu, Jingyuan Zeng, Jianwu Li, Boxu Tang, Zheng Li, Shuqin Liu and Yan Yan
Separations 2022, 9(11), 329; https://doi.org/10.3390/separations9110329 - 27 Oct 2022
Cited by 25 | Viewed by 3063
Abstract
Ampelopsis grossedentata (vine tea) has been used as a detoxifying beverage in China for centuries. To systematically identify its bioactive compounds, the study adopted standards-based ultra-high-performance liquid chromatography coupled with quadrupole/electrostatic field orbitrap high-resolution mass spectrometry (UPLC-Q-Exactive Orbitrap MS) analysis. The analysis was [...] Read more.
Ampelopsis grossedentata (vine tea) has been used as a detoxifying beverage in China for centuries. To systematically identify its bioactive compounds, the study adopted standards-based ultra-high-performance liquid chromatography coupled with quadrupole/electrostatic field orbitrap high-resolution mass spectrometry (UPLC-Q-Exactive Orbitrap MS) analysis. The analysis was conducted under a negative ion model and the data were collected using the Xcalibur 4.1 software package. Based on comparisons with authentic standards, 36 bioactive compounds were putatively identified by four parameters: retention time, molecular ion peak, MS/MS profile, and characteristic fragments. These bioactive compounds include two chromones (noreugenin and 3,5,7-trihydroxychromone), 15 flavonoids (S-eriodictyol, S-naringenin, luteolin, ampelopsin, taxifolin, myricetin, quercetin, viscidulin I, kaempferol, myricetin 3-O-galactoside, myricitrin, avicularin, quercitrin, isorhamnetin-3-O-β-D-glucoside, and afzelin), four phenolic acids (gallic acid, 3,4-dihydroxy-5-methoxybenzoic acid, syringic acid, and ellagic acid), five tea polyphenols (epigallocatechin, epigallocatechin gallate, gallocatechin gallate, epicatechin gallate, and catechin gallate), three chalcones (phloridzin, phloretin, and naringenin chalcone), one stilbene (polydatin), two lipids (myristic acid and ethyl stearate), one sugar (D-gluconic acid), one amino acid (L-tryptophan), one triterpenoid (oleanolic acid) and one alkaloid (jervine). Notably, the jervine identification is the first report regarding the occurrence of alkaloid in the plant. Two chromones may be the parent skeleton to biosynthesize the flavonoid in A. grossedentata. Full article
(This article belongs to the Section Analysis of Food and Beverages)
Show Figures

Figure 1

15 pages, 3608 KB  
Article
Antioxidant Capacities and Polyphenol Contents of Kombucha Beverages Based on Vine Tea and Sweet Tea
by Adila Saimaiti, Si-Yu Huang, Ruo-Gu Xiong, Si-Xia Wu, Dan-Dan Zhou, Zhi-Jun Yang, Min Luo, Ren-You Gan and Hua-Bin Li
Antioxidants 2022, 11(9), 1655; https://doi.org/10.3390/antiox11091655 - 25 Aug 2022
Cited by 39 | Viewed by 5665
Abstract
Kombucha beverage is commonly prepared by black tea infusion fermentation without tea residues, and possesses various health benefits. In this paper, kombucha beverages of two non-Camellia sinensis teas, including vine tea (Ampelopsisgrossedentata) and sweet tea (Rubus suavissimus), [...] Read more.
Kombucha beverage is commonly prepared by black tea infusion fermentation without tea residues, and possesses various health benefits. In this paper, kombucha beverages of two non-Camellia sinensis teas, including vine tea (Ampelopsisgrossedentata) and sweet tea (Rubus suavissimus), were studied for the first time. The antioxidant activities and polyphenol contents of kombucha beverages were evaluated by ferric-reducing antioxidant power assay, Trolox equivalent antioxidant capacity assay, and Folin-Ciocalteu method, respectively. In addition, effects of tea residues on antioxidant capacities of kombucha beverages were evaluated. The results showed that kombucha beverages from vine tea and sweet tea possessed strong antioxidant activities (especially vine tea kombucha), and fermentation with tea residues could significantly increase antioxidant capacities (maximum increase of 38%) and total phenolic content (maximum increase of 55%) of two kombucha beverages compared with those without tea residues. Moreover, the sensory evaluations showed that the sensory evaluation scores of kombucha with tea residues could be improved compared with those without tea residues. Furthermore, the concentrations of several bioactive components in the kombucha beverages were detected by high-performance liquid chromatography. These kombucha beverages could be used for prevention of several diseases with related of oxidative stress. Full article
(This article belongs to the Special Issue Antioxidants and Bioactive Compounds in Fermented Foods Volume 2)
Show Figures

Figure 1

Back to TopTop