Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = very-high-frequency (VHF) radar

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3601 KiB  
Technical Note
Active and Passive Integrated Lightning Localization and Imaging Technology Based on Very-High-Frequency Radar
by Yide Tan, Chen Zhou, Xinmiao Zhang and Moran Liu
Remote Sens. 2025, 17(10), 1729; https://doi.org/10.3390/rs17101729 - 15 May 2025
Viewed by 393
Abstract
This paper aims to enhance lightning positioning technology and data processing algorithms using very-high-frequency (VHF) lightning radar. It focuses on achieving three-dimensional imaging of plasma channels formed during lightning. By extracting key features from lightning echo signals received by VHF radar, we utilize [...] Read more.
This paper aims to enhance lightning positioning technology and data processing algorithms using very-high-frequency (VHF) lightning radar. It focuses on achieving three-dimensional imaging of plasma channels formed during lightning. By extracting key features from lightning echo signals received by VHF radar, we utilize a unique active and passive integrated positioning technology to locate the lightning radiation source. This algorithm effectively overcomes the limitations of traditional positioning methods. Experimental results show that the integrated positioning algorithm maintains accuracy while significantly increasing the number of positioning points, which supports subsequent imaging of lightning plasma channels. To illustrate the dendritic structure of the lightning channel, we employed a density-based clustering algorithm to eliminate noise points unrelated to the lightning source, enhancing imaging clarity. The methods presented in this study successfully meet the experiment’s goals and are significant for locating lightning radiation sources and understanding the dendritic structure changes in plasma channels during lightning propagation. Full article
Show Figures

Graphical abstract

24 pages, 9651 KiB  
Article
Three-Dimensional Localization Method of Underground Target Based on Miniaturized Single-Frequency Acoustically Actuated Antenna Array
by Chaowen Ju, Yixuan Liu, Jianle Liu, Tianxiang Nan, Xinger Cheng and Zhuo Zhang
Electronics 2025, 14(9), 1859; https://doi.org/10.3390/electronics14091859 - 2 May 2025
Viewed by 433
Abstract
The acoustically actuated antenna technology enables a significant reduction in antenna dimension, facilitating miniaturization of ground-penetrating radar systems in the very high-frequency (VHF) band. However, the current acoustically actuated antennas suffer from narrow bandwidth and low range resolution. To address this issue, this [...] Read more.
The acoustically actuated antenna technology enables a significant reduction in antenna dimension, facilitating miniaturization of ground-penetrating radar systems in the very high-frequency (VHF) band. However, the current acoustically actuated antennas suffer from narrow bandwidth and low range resolution. To address this issue, this paper proposed a three-dimensional (3D) localization method for underground targets, which combined two-dimensional (2D) array direction-of-arrival (DOA) estimation with continuous spatial sampling without relying on range resolution. By leveraging the small dimension of acoustically actuated antennas, a 2D uniform linear array was formed to obtain the target’s angle using DOA estimation. Based on the variation pattern of 2D angles in continuous spatial sampling, the genetic algorithm was employed to estimate the 3D coordinates of underground targets. The numerical simulation results indicated that the root mean square error (RMSE) of the proposed 3D localization method is 1.68 cm, which outperforms conventional methods that utilize wideband frequency-modulated pulse signals with hyperbolic vertex detection in theoretical localization accuracy, while also demonstrating good robustness. The gprMax electromagnetic simulation results further confirmed that this method can effectively localize multiple targets in ideal homogeneous underground media. Full article
Show Figures

Figure 1

19 pages, 10062 KiB  
Article
Validation of Gamma Raindrop Size Distribution Estimates Using Approximate Expressions with a Vertically Pointing Very-High-Frequency Radar
by Meng-Yuan Chen, Ching-Lun Su, Wei-Sung Jen, Yen-Hsyang Chu and Wei-Nai Chen
Remote Sens. 2025, 17(6), 983; https://doi.org/10.3390/rs17060983 - 11 Mar 2025
Cited by 2 | Viewed by 751
Abstract
Characterizing the size distribution of raindrops is fundamental to a variety of applications, including radar-based quantitative precipitation estimation. Atmospheric radars or wind profilers can be used to measure the drop size distribution (DSD) by analyzing the Doppler spectrum, which is inherently linked to [...] Read more.
Characterizing the size distribution of raindrops is fundamental to a variety of applications, including radar-based quantitative precipitation estimation. Atmospheric radars or wind profilers can be used to measure the drop size distribution (DSD) by analyzing the Doppler spectrum, which is inherently linked to raindrop velocity. This is achieved by mapping the Doppler spectrum from velocity space into diameter space directly. Since the general Gamma distribution is extensively used to model the DSD characteristic by numerous researchers in the meteorological community, it can be retrieved from the Doppler spectrum by applying appropriate relationships between drop diameter and terminal velocity. In this study, a retrieval method based on an approximate analytical solution was validated with both simulated data and very-high-frequency (VHF) radar observations, where the DSD followed the Gamma distribution. The advantage of using analytical solutions is their computational efficiency for the real-time processing of large data sets. In order to verify the applicability of this method, the mass-weighted mean drop diameter Dm, which is associated with the parameters of the Gamma DSD, was used to present the results. Simulations showed that the retrieval method is effective for 0.7 mm <Dm< 4 mm, with errors decreasing as the signal-to-noise ratio (SNR) increases. Furthermore, comparisons between radar data and simultaneous disdrometer observations revealed that the precipitation parameters retrieved from the VHF radar at 1.65 km maintain moderate correlations with the ground-based in situ instrument measurements. Whether for stratiform or convective precipitation, this retrieval method produced reasonable estimates of aloft precipitation parameters. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

17 pages, 5184 KiB  
Article
Analysis of Inverted Charge Structure and Lightning Activity during the 8.14 Local Hailstorm on the Qinghai–Tibet Plateau
by Yajun Li, Guangshu Zhang, Weitao Lyu and Yuxiang Zhao
Atmosphere 2023, 14(12), 1795; https://doi.org/10.3390/atmos14121795 - 7 Dec 2023
Cited by 1 | Viewed by 1443
Abstract
In this paper, the charge structure and lightning activity characteristics of the thunderstorm that occurred on the Qinghai–Tibet Plateau on 14 August 2014 were analyzed using data collected from a three-dimensional (3D) lightning very-high-frequency (VHF) radiation source location system and Doppler weather radar. [...] Read more.
In this paper, the charge structure and lightning activity characteristics of the thunderstorm that occurred on the Qinghai–Tibet Plateau on 14 August 2014 were analyzed using data collected from a three-dimensional (3D) lightning very-high-frequency (VHF) radiation source location system and Doppler weather radar. The analysis results showed that the charge structure of the hailstorm was maintained as an inverted dipole throughout the thunderstorm’s development process. The negatively charged region height was distributed in the 5–7 km range (above ground level (AGL)), and the positively charged region was distributed from 2 to 5 km (AGL). The lightning flash types included only cloud flashes and negative cloud–to–ground (CG) flashes in the hailstorm, and cloud flashes accounted for 93% of the total lightning flashes. Cloud flashes accounted for a high proportion of the total flashes, which may have been related to the deep lower positively charged region observed throughout the thunderstorm process. In the hailstorm development stage, the electric field was dominated by positive polarity. When the hail fell, the electric field changed negatively. When the hail ended, the electric field was dominated by negative polarity. A hail event occurred only once and lasted for a long time in the development stage, but in the mature stage, hail fell many times and every time for only a short time, and in the dissipating stage, hail events also occurred many times and each time for a long time. By comparing the radar echoes of the hailstorm cells and normal thunderstorm cells, we found that the area of the 50 dBZ echo in the hailstorm was small, the occurrence time was late, and the duration was short. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

27 pages, 20567 KiB  
Article
Fast Factorized Backprojection Algorithm in Orthogonal Elliptical Coordinate System for Ocean Scenes Imaging Using Geosynchronous Spaceborne–Airborne VHF UWB Bistatic SAR
by Xiao Hu, Hongtu Xie, Lin Zhang, Jun Hu, Jinfeng He, Shiliang Yi, Hejun Jiang and Kai Xie
Remote Sens. 2023, 15(8), 2215; https://doi.org/10.3390/rs15082215 - 21 Apr 2023
Cited by 14 | Viewed by 2627
Abstract
Geosynchronous (GEO) spaceborne–airborne very high-frequency ultra-wideband bistatic synthetic aperture radar (VHF UWB BiSAR) can conduct high-resolution and wide-swath imaging for ocean scenes. However, GEO spaceborne–airborne VHF UWB BiSAR imaging faces some challenges such as the geometric configuration, huge amount of echo data, serious [...] Read more.
Geosynchronous (GEO) spaceborne–airborne very high-frequency ultra-wideband bistatic synthetic aperture radar (VHF UWB BiSAR) can conduct high-resolution and wide-swath imaging for ocean scenes. However, GEO spaceborne–airborne VHF UWB BiSAR imaging faces some challenges such as the geometric configuration, huge amount of echo data, serious range–azimuth coupling, large spatial variance, and complex motion error, which increases the difficulty of the high-efficiency and high-precision imaging. In this paper, we present an improved bistatic fast factorization backprojection (FFBP) algorithm for ocean scene imaging using the GEO satellite-unmanned aerial vehicle (GEO-UAV) VHF UWB BiSAR, which can solve the above issues with high efficiency and high precision. This method reconstructs the subimages in the orthogonal elliptical polar (OEP) coordinate system based on the GEO satellite and UAV trajectories as well as the location of the imaged scene, which can further reduce the computational burden. First, the imaging geometry and signal model of the GEO-UAV VHF UWB BiSAR are established, and the construction of the OEP coordinate system and the subaperture imaging method are proposed. Moreover, the Nyquist sampling requirements for the subimages in the OEP coordinate system are derived from the range error perspective, which can offer a near-optimum tradeoff between precision and efficiency. In addition, the superiority of the OEP coordinate system is analyzed, which demonstrates that the angular dimensional sampling rate of the subimages is significantly reduced. Finally, the implementation processes and computational burden of the proposed algorithm are provided, and the speed-up factor of the proposed FFBP algorithm compared with the BP algorithm is derived and discussed. Experimental results of ideal point targets and natural ocean scenes demonstrate the correctness and effectiveness of the proposed algorithm, which can achieve near-optimal imaging performance with a low computational burden. Full article
(This article belongs to the Special Issue Radar Signal Processing and Imaging for Ocean Remote Sensing)
Show Figures

Figure 1

14 pages, 4351 KiB  
Technical Note
High-Resolution Observation of Ionospheric E-Layer Irregularities Using Multi-Frequency Range Imaging Technology
by Bo Chen, Yi Liu, Jian Feng, Yuqiang Zhang, Yufeng Zhou, Chen Zhou and Zhengyu Zhao
Remote Sens. 2023, 15(1), 285; https://doi.org/10.3390/rs15010285 - 3 Jan 2023
Cited by 1 | Viewed by 2701
Abstract
E-region field-aligned irregularities (FAIs) are a hot topic in space research, since electromagnetic signal propagation through ionospheric irregularities can undergo sporadic enhancements and fading known as ionospheric scintillation, which could severely affect communication, navigation, and radar systems. However, the range resolution of very-high-frequency [...] Read more.
E-region field-aligned irregularities (FAIs) are a hot topic in space research, since electromagnetic signal propagation through ionospheric irregularities can undergo sporadic enhancements and fading known as ionospheric scintillation, which could severely affect communication, navigation, and radar systems. However, the range resolution of very-high-frequency (VHF) radars, which is widely used to observe E-region FAIs, is limited due to its bandwidth. As a technology that is widely used in atmosphere radars to improve the range resolution of pulsed radars by transmitting multiple frequencies, this paper employed the multifrequency radar imaging (RIM) technique in a Wuhan VHF radar. The results showed that the range resolution of E-region FAIs greatly improved when compared with the results in traditional single-frequency mode, and that finer structures of E-region FAIs can be obtained. Specifically, the imaging results in multifrequency mode show that E-region FAIs demonstrate an overall descending trend at night, and it could be related to the tides or gravity waves due to their downward phase velocities or even driven by downwind shear. In addition, typical quasi-periodic (QP) echoes with a time period of around 10 min could be clearly seen using the RIM technique, and the features of the echoes suggest that they could be modulated by gravity waves. Furthermore, the RIM technique can be used to obtain the fine structure of irregularities within a short time period, and the hierarchical structure of E-region FAIs can be easily found. Therefore, the multifrequency imaging RIM technique is suitable for observing E-region FAIs and their evolution, as well as for identifying the different layers of E-region FAIs. Combined with the RIM technique, a VHF radar provides an effective and promising way to observe the structure of E-region FAIs in more detail to study the physical mechanism behind the formation and evolution of ionospheric E-region irregularities. Full article
(This article belongs to the Special Issue Ionosphere Monitoring with Remote Sensing II)
Show Figures

Graphical abstract

19 pages, 797 KiB  
Article
Low-Elevation Target DOA Estimation Based on Multi-Scattering Center Equivalent Model
by Jianjun Ma, Hongwei Liu and Hui Ma
Remote Sens. 2022, 14(15), 3533; https://doi.org/10.3390/rs14153533 - 23 Jul 2022
Cited by 1 | Viewed by 2077
Abstract
In very-high-frequency (VHF) radar, the direction-of-arrival (DOA) estimation performance of low-angle targets tracking is strongly affected by the multipath phenomenon. Especially in the complex terrain conditions, the multipath echo comes from a region where the different scattering media make the multipath echo show [...] Read more.
In very-high-frequency (VHF) radar, the direction-of-arrival (DOA) estimation performance of low-angle targets tracking is strongly affected by the multipath phenomenon. Especially in the complex terrain conditions, the multipath echo comes from a region where the different scattering media make the multipath echo show the characteristics of multi-channel and uneven energy distribution. In this case, the received signal mismatches with the signal model, which leads to performance degradation and even failure of the traditional DOA algorithm. To deal with this problem, the authors propose a new signal model based on multiple scattering center. A multipath signal equivalent model is deduced and analyzed using multipath vector synthesis. Subsequently, the fitness function is established based on the equivalent model, and the target elevation angle is estimated by particle swarm optimization (PSO) algorithm. Simulation results and real data analysis show that the proposed model and algorithm can effectively improve the DOA estimation accuracy of low elevation target under complex terrain and less snapshot condition. Full article
Show Figures

Graphical abstract

25 pages, 7448 KiB  
Article
Identification of Concurrent Clear-Air and Precipitation Doppler Profiles for VHF Radar and an Incorporating Study of Strongly Convective Precipitation with Dual-Polarized Microwave Radiometer
by Shih-Chiao Tsai, Yen-Hsyang Chu and Jenn-Shyong Chen
Atmosphere 2022, 13(4), 557; https://doi.org/10.3390/atmos13040557 - 30 Mar 2022
Cited by 5 | Viewed by 2922
Abstract
Two approaches were designed to identify the echoes of clear air and precipitation when both coexist in the very-high-frequency (VHF) radar spectra: contour-based and peak-finding methods. The contour-based approach was used to model a 2D Doppler spectra to determine the locations of multiple [...] Read more.
Two approaches were designed to identify the echoes of clear air and precipitation when both coexist in the very-high-frequency (VHF) radar spectra: contour-based and peak-finding methods. The contour-based approach was used to model a 2D Doppler spectra to determine the locations of multiple spectral humps, and the peak-finding approach was used to find the spectral peaks on request. Grouping, sifting, and Gaussian fitting were performed further for such obtained contour centres and spectral peaks to yield Doppler velocities and spectral widths. In general, the two approaches resulted in corresponding outcomes and can be complementary to find the spectral peaks as fully as possible. The Doppler velocities retrieved from the two approaches were cooperatively used to develop an effective process of Doppler profiling for treating a great amount of radar data, which was validated with the radar data collected during a rainy and strongly convective atmosphere. As an application of Doppler profiling results, the hydrometeor parameters measured by a dual-polarized microwave radiometer were investigated jointly with radar observation, showing that a strong updraft air could bring the liquid water to a height above the melting layer and then the Bergeron effect and coalescence processes on formation of ice crystals and graupel particles occur accordingly. Full article
(This article belongs to the Special Issue Radar Sensing Atmosphere: Modelling, Imaging and Prediction)
Show Figures

Figure 1

16 pages, 2561 KiB  
Article
A Wavelength-Resolution SAR Change Detection Method Based on Image Stack through Robust Principal Component Analysis
by Lucas P. Ramos, Alexandre B. Campos, Christofer Schwartz, Leonardo T. Duarte, Dimas I. Alves, Mats I. Pettersson, Viet T. Vu and Renato Machado
Remote Sens. 2021, 13(5), 833; https://doi.org/10.3390/rs13050833 - 24 Feb 2021
Cited by 14 | Viewed by 2889
Abstract
Recently, it was demonstrated that low-frequency wavelength-resolution synthetic aperture radar (SAR) images could be considered to follow an additive mixing model due to their backscatter characteristics. This simplification allows for the use of source separation methods, such as robust principal component analysis (RPCA) [...] Read more.
Recently, it was demonstrated that low-frequency wavelength-resolution synthetic aperture radar (SAR) images could be considered to follow an additive mixing model due to their backscatter characteristics. This simplification allows for the use of source separation methods, such as robust principal component analysis (RPCA) via principal component pursuit (PCP), for detecting changes in those images. In this manuscript, a change detection method for wavelength-resolution SAR images based on image stack through RPCA is proposed. The method aims to explore both the temporal and flight heading diversity of a set of wavelength-resolution multitemporal SAR images in order to detect concealed targets in forestry areas. A heuristic based on three rules for better exploring the RPCA results is introduced, and a new configurable parameter for false alarm reduction based on the analysis of image windows is proposed. The method is evaluated using real data obtained from measurements of the ultrawideband (UWB) very high-frequency (VHF) SAR system CARABAS-II. Experiments for stacks of four and seven reference images are conducted, and the use of reference images acquired with different flight headings is explored. The results indicate that a gain in performance can be achieved by using large image stacks containing, at least, one image of each possible flight heading of the data set, which can result in a probability of detection (PD) above 99% for a false alarm rate (FAR) as low as one false alarm per three square kilometers. Furthermore, it is demonstrated that high PD and low FAR can be achieved, also considering images from similar flight headings as reference images. Full article
Show Figures

Graphical abstract

12 pages, 6133 KiB  
Article
Investigation of Polar Mesospheric Summer Echoes Using Linear Discriminant Analysis
by Dorota Jozwicki, Puneet Sharma and Ingrid Mann
Remote Sens. 2021, 13(3), 522; https://doi.org/10.3390/rs13030522 - 2 Feb 2021
Cited by 4 | Viewed by 3874
Abstract
Polar Mesospheric Summer Echoes (PMSE) are distinct radar echoes from the Earth’s upper atmosphere between 80 to 90 km altitude that form in layers typically extending only a few km in altitude and often with a wavy structure. The structure is linked to [...] Read more.
Polar Mesospheric Summer Echoes (PMSE) are distinct radar echoes from the Earth’s upper atmosphere between 80 to 90 km altitude that form in layers typically extending only a few km in altitude and often with a wavy structure. The structure is linked to the formation process, which at present is not yet fully understood. Image analysis of PMSE data can help carry out systematic studies to characterize PMSE during different ionospheric and atmospheric conditions. In this paper, we analyze PMSE observations recorded using the European Incoherent SCATter (EISCAT) Very High Frequency (VHF) radar. The collected data comprises of 18 observations from different days. In our analysis, the image data is divided into regions of a fixed size and grouped into three categories: PMSE, ionosphere, and noise. We use statistical features from the image regions and employ Linear Discriminant Analysis (LDA) for classification. Our results suggest that PMSE regions can be distinguished from ionosphere and noise with around 98 percent accuracy. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Graphical abstract

23 pages, 3861 KiB  
Article
A Three-Stage Inter-Channel Calibration Approach for Passive Radar on Moving Platforms Exploiting the Minimum Variance Power Spectrum
by Philipp Wojaczek, Diego Cristallini, Daniel W. O’Hagan, Fabiola Colone, Giovanni Paolo Blasone and Pierfrancesco Lombardo
Sensors 2021, 21(1), 69; https://doi.org/10.3390/s21010069 - 24 Dec 2020
Cited by 4 | Viewed by 2638
Abstract
Research in passive radar has moved its focus towards passive radar on moving platforms in recent years with the purpose of moving target indication and ground imaging via synthetic aperture radar. This is also fostered by the progress in hardware miniaturization, which alleviates [...] Read more.
Research in passive radar has moved its focus towards passive radar on moving platforms in recent years with the purpose of moving target indication and ground imaging via synthetic aperture radar. This is also fostered by the progress in hardware miniaturization, which alleviates the installation of the required hardware on moving platforms. Terrestrial transmitters, commonly known as illuminators of opportunity in the passive radar community, usually emit the signals in the Very High Frequency (VHF) or Ultra High Frequency (UHF) band. Due to the long wavelengths of the VHF/UHF band, there are constraints on the size of the used antenna elements, and therefore, the number of antenna elements to be employed is limited, especially as the platform carrying the passive radar system is intended to be small, potentially even an unmanned aerial vehicle. In order to detect moving targets hidden by Doppler shifted clutter returns, one common approach is to suppress the clutter returns by applying clutter suppression techniques that rely on spatial and temporal degrees of freedom, such as Displaced Phase Center Antenna (DPCA) or Space-Time Adaptive Processing. It has been shown that the DPCA approach is a meaningful technique to suppress the clutter if two antenna elements are employed. However, if the employed receiving channels are not carefully calibrated, the clutter suppression is shown to be not effective. Here, we suggest a three-stage calibration technique in order to perform the calibration of two receiving channels, which involves the exploitation of the direct signal, a data-adaptive amplitude calibration, and finally, a data-adaptive calibration of phase mismatches between both receiving channels by the estimation of the Minimum Variance Power Spectrum of the clutter. The validity of the proposed approach is shown with simulated data and demonstrated on real data from a fast ground moving platform, showing improved clutter cancellation capabilities. Full article
(This article belongs to the Special Issue Active and Passive Radars on Mobile Platforms)
Show Figures

Figure 1

15 pages, 10096 KiB  
Article
The Use of the Reassignment Technique in the Time-Frequency Analysis Applied in VHF-Based Passive Forward Scattering Radar
by Marek Płotka, Karol Abratkiewicz, Mateusz Malanowski, Piotr Samczyński and Krzysztof Kulpa
Sensors 2020, 20(12), 3434; https://doi.org/10.3390/s20123434 - 17 Jun 2020
Cited by 9 | Viewed by 3106
Abstract
This paper presents the application of the time-frequency (TF) reassignment technique in passive forward scattering radar (FSR) using Digital Video Broadcasting – Terrestrial (DVB-T) transmitters of opportunity operating in the Very High Frequency (VHF) band. The validation of the proposed technique was done [...] Read more.
This paper presents the application of the time-frequency (TF) reassignment technique in passive forward scattering radar (FSR) using Digital Video Broadcasting – Terrestrial (DVB-T) transmitters of opportunity operating in the Very High Frequency (VHF) band. The validation of the proposed technique was done using real-life signals collected by the passive radar demonstrator during a measurement campaign. The scenario was chosen to test detection ranges and the capability of estimating the kinematic parameters of a cooperative airborne target in passive FSR geometry. Additionally, in the experiment the possibility of utilizing FSR geometry in foliage penetration conditions taking advantage of the VHF band of a DVB-T illuminator of opportunity was tested. The results presented in this paper show that the concentrated (reassigned) energy distribution of the signal in the TF domain allows a more precise target Doppler rate to be estimated using the Hough transform. Full article
(This article belongs to the Special Issue Recent Advancements in Radar Imaging and Sensing Technology)
Show Figures

Figure 1

11 pages, 1823 KiB  
Letter
Change Detection in UWB SAR Images Based on Robust Principal Component Analysis
by Christofer Schwartz, Lucas P. Ramos, Leonardo T. Duarte, Marcelo da S. Pinho, Mats I. Pettersson, Viet T. Vu and Renato Machado
Remote Sens. 2020, 12(12), 1916; https://doi.org/10.3390/rs12121916 - 13 Jun 2020
Cited by 25 | Viewed by 3691
Abstract
This paper addresses the use of a data analysis tool, known as robust principal component analysis (RPCA), in the context of change detection (CD) in ultrawideband (UWB) very high-frequency (VHF) synthetic aperture radar (SAR) images. The method considers image pairs of the same [...] Read more.
This paper addresses the use of a data analysis tool, known as robust principal component analysis (RPCA), in the context of change detection (CD) in ultrawideband (UWB) very high-frequency (VHF) synthetic aperture radar (SAR) images. The method considers image pairs of the same scene acquired at different time instants. The CD method aims to maximize the probability of detection (PD) and minimize the false alarm rate (FAR). Such aim fits into a multiobjective optimization problem, since maximizing the probability of detection generally implies an increase in the number of false alarms. In that sense, varying the RPCA regularization parameter leads to PD variation with respect to FAR, which is known as receiver operating characteristic (ROC) curve. To evaluate the proposed method, the CARABAS-II data set was considered. The experimental results show that RPCA via principal component pursuit (PCP) can provide a good trade-off between PD and FAR. A comparison between the results obtained with the proposed method and a classical CD algorithm based on the likelihood ratio test provides the pros and cons of the proposed method. Full article
Show Figures

Graphical abstract

17 pages, 5079 KiB  
Article
Initial Results of Meteor Wind with Langfang Medium Frequency Radar
by Bing Cai, Qingchen Xu, Xiong Hu and Junfeng Yang
Atmosphere 2020, 11(5), 507; https://doi.org/10.3390/atmos11050507 - 14 May 2020
Cited by 3 | Viewed by 2645
Abstract
We conducted meteor observations during the Leonid meteor shower on 16 November 2017 and 17 November 2018 with Langfang medium frequency (MF) radar (116° E, 40° N). This was the first nighttime meteor observation by MF radar in mid-latitude China. The observation period [...] Read more.
We conducted meteor observations during the Leonid meteor shower on 16 November 2017 and 17 November 2018 with Langfang medium frequency (MF) radar (116° E, 40° N). This was the first nighttime meteor observation by MF radar in mid-latitude China. The observation period was 12:00–22:00 (UT) and the observation range was 78–150 km. By using broad vertical beams, totally 94 and 92 meteor echoes were obtained, along with their spatial, time and height distribution. Quite a few meteor echoes are within 30° zenith angles, from the southwest direction, and with a mean height of 107 km which is almost 10 km higher than traditional VHF (Very High Frequency) meteor radar observations. Initial bi-hourly and nightly averaged wind profiles were calculated, and well fitted the wind estimations by co-located VHF meteor radar at the altitude of 100–110 km. On the other side, echoes around 140 km are successfully detected in our observation, which may suggest that for most running MF radars, meteor echoes around 140 km altitude could be detected with a sampling pulse frequency less than 100 Hz. Full article
Show Figures

Figure 1

22 pages, 10453 KiB  
Article
HF/VHF Radar Sounding of Ice from Manned and Unmanned Airborne Platforms
by Emily Arnold, Fernando Rodriguez-Morales, John Paden, Carl Leuschen, Shawn Keshmiri, Stephen Yan, Mark Ewing, Rick Hale, Ali Mahmood, Aaron Blevins, Akhilesh Mishra, Teja Karidi, Bailey Miller and John Sonntag
Geosciences 2018, 8(5), 182; https://doi.org/10.3390/geosciences8050182 - 16 May 2018
Cited by 18 | Viewed by 7800
Abstract
Ice thickness and bed topography of fast-flowing outlet glaciers are large sources of uncertainty for the current ice sheet models used to predict future contributions to sea-level rise. Due to a lack of coverage and difficulty in sounding and imaging with ice-penetrating radars, [...] Read more.
Ice thickness and bed topography of fast-flowing outlet glaciers are large sources of uncertainty for the current ice sheet models used to predict future contributions to sea-level rise. Due to a lack of coverage and difficulty in sounding and imaging with ice-penetrating radars, these regions remain poorly constrained in models. Increases in off-nadir scattering due to the highly crevassed surfaces, volumetric scattering (due to debris and/or pockets of liquid water), and signal attenuation (due to warmer ice near the bottom) are all impediments in detecting bed-echoes. A set of high-frequency (HF)/very high-frequency (VHF) radars operating at 14 MHz and 30–35 MHz were developed at the University of Kansas to sound temperate ice and outlet glaciers. We have deployed these radars on a small unmanned aircraft system (UAS) and a DHC-6 Twin Otter. For both installations, the system utilized a dipole antenna oriented in the cross-track direction, providing some performance advantages over other temperate ice sounders operating at lower frequencies. In this paper, we describe the platform-sensor systems, field operations, data-processing techniques, and preliminary results. We also compare our results with data from other ice-sounding radars that operate at frequencies both above (Center for Remote Sensing of Ice Sheets (CReSIS) Multichannel Coherent Depth Sounder (MCoRDS)) and below (Jet Propulsion Laboratory (JPL) Warm Ice Sounding Explorer (WISE)) our HF/VHF system. During field campaigns, both unmanned and manned platforms flew closely spaced parallel and repeat flight lines. We examine these data sets to determine image coherency between flight lines and discuss the feasibility of forming 2D synthetic apertures by using such a mission approach. Full article
(This article belongs to the Special Issue Remote Sensing of Land Ice)
Show Figures

Figure 1

Back to TopTop