Validation of Gamma Raindrop Size Distribution Estimates Using Approximate Expressions with a Vertically Pointing Very-High-Frequency Radar
Abstract
:1. Introduction
2. Theoretical Background and Retrieval Method
3. Validation of Precipitation Parameter Retrieval Using Simulated Data
4. Experimental Results
4.1. Two-Dimensional Video Disdrometer (2DVD)
4.2. Chung-Li VHF Radar
5. Discussion and Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DSD | Drop size distribution |
VHF | Very high frequency |
UHF | Ultra high frequency |
SNR | Signal-to-noise ratio |
2DVD | Two-dimensional video disdrometer |
RMSE | Root mean square error |
References
- Hocking, W.K. Recent advances in radar instrumentation and techniques for studies of the mesosphere, stratosphere and troposphere. Radio Sci. 1997, 32, 2241–2270. [Google Scholar] [CrossRef]
- Hocking, W.K. A review of mesosphere-stratosphere-troposphere (MST) radar developments and studies, circa 1997–2008. J. Atmos. Sol.-Terr. Phys. 2011, 73, 848–882. [Google Scholar] [CrossRef]
- Atlas, D.; Srivastava, R.C.; Sekhon, R.S. Doppler radar characteristics of precipitation at vertical incidence. Rev. Geophys. 1973, 11, 1–35. [Google Scholar] [CrossRef]
- Su, C.-L.; Chu, Y.-H.; Lo, I.-Y. Negative correlation between terminal velocity and VHF radar reflectivity: Observation and plausible explanation. Ann. Geophys. 2009, 27, 1631–1642. [Google Scholar] [CrossRef]
- Ralph, F.M. Using radar-measured radial vertical velocities to distinguish Precipitation scattering from Clear-air scattering. J. Atmos. Ocean. Technol. 1995, 12, 257–267. [Google Scholar] [CrossRef]
- Maguire, W.B.; Avery, S.K. Retrieval of raindrop size distributions using two Doppler wind profilers: Model sensitivity testing. J. Appl. Meteor. 1994, 33, 1623–1635. [Google Scholar] [CrossRef]
- Wilks, D.S. Rainfall intensity, the Weibull distribution, and estimation of daily surface runoff. J. Appl. Meteor. 1989, 28, 52–58. [Google Scholar] [CrossRef]
- Feingold, G.; Levin, Z. Application of the lognormal raindrop distribution to differential reflectivity radar measurement (ZDR). J. Atmos. Ocean. Technol. 1987, 4, 377–382. [Google Scholar] [CrossRef]
- Ulbrich, C.W. Natural variation in the analytical form of the raindrop size distribution. J. Climate Appl. Meteor. 1983, 22, 1764–1775. [Google Scholar] [CrossRef]
- Zhang, G.; Vivekanandan, J.; Brandes, E.A. A method for estimating rain rate and drop size distribution from polarimetric radar measurements. IEEE Trans. Geosci. Remote Sens. 2001, 39, 830–841. [Google Scholar] [CrossRef]
- Brandes, E.A.; Zhang, G.; Vivekanandan, J. Comparison of Polarimetric Radar Drop Size Distribution Retrieval Algorithms. J. Atmos. Ocean. Technol. 1987, 4, 377–382. [Google Scholar] [CrossRef]
- Rajopadhyaya, D.K.; Avery, S.K.; May, P.T.; Cifelli, R.C. Comparison of precipitation estimation using single- and dual-frequency wind profilers: Simulations and experimental results. J. Atmos. Ocean. Technol. 1999, 16, 165–173. [Google Scholar] [CrossRef]
- Schafer, R.; Avery, S.; May, P.; Rajopadhyaya, D.; Williams, C. Estimation of rainfall drop size distributions from dual-frequency wind profiler spectra using deconvolution and a nonlinear least squares fitting technique. J. Atmos. Ocean. Technol. 2002, 19, 864–874. [Google Scholar] [CrossRef]
- Mardiana, R.; Iguchi, T.; Takahashi, N.; Hanado, H. Study of quantization effects on rainfall rate estimation from GPM dual-frequency radar. IEEE Geosci. Remote Sens. Lett. 2004, 1, 220–223. [Google Scholar] [CrossRef]
- Chu, Y.-H. Effects of along- and cross-radar-beam winds on Doppler radar spectrum. Ann. Geophys. 2005, 23, 681–692. [Google Scholar] [CrossRef]
- Chen, M.-Y.; Chu, Y.-H. Beam broadening effect on Doppler spectral width of wind profiler. Radio Sci. 2011, 46, RS5031. [Google Scholar] [CrossRef]
- Kanofsky, L.; Chilson, P. An analysis of errors in drop size distribution retrievals and rain bulk parameters with a UHF wind profiling radar and a two-dimensional video disdrometer. J. Atmos. Ocean. Technol. 2008, 25, 2282–2292. [Google Scholar] [CrossRef]
- Rajopadhyaya, D.K.; May, P.T.; Cifelli, R.C.; Avery, S.K.; Williams, C.; Ecklund, W.L. The effect of vertical wind motions on rain rates and median volume diameter determined from combined UHF and VHF wind profiler measurements and comparisons with rain gauge measurements. J. Atmos. Ocean. Technol. 1998, 15, 1306–1319. [Google Scholar] [CrossRef]
- Zhang, G. Weather Radar Polarimetry, 1st ed.; CRC Press: Boca Raton, FL, USA, 2017; p. 304. [Google Scholar]
- Tsai, S.-C.; Chu, Y.-H.; Chen, J.-S. Identification of concurrent clear-air and precipitation Doppler profiles for VHF radar and an incorporating study of strongly convective precipitation with dual-polarized microwave radiometer. Atmosphere 2022, 13, 557. [Google Scholar] [CrossRef]
- Kumar, S.; Rao, T.N.; Radhakrishna, B. Identification and separation of turbulence echo from the multi peaked VHF radar spectra during precipitation. IEEE Trans. Geosci. Remote Sens. 2019, 57, 5729–5737. [Google Scholar] [CrossRef]
- Wakasugi, K.; Mizutani, A.; Matsuo, M.; Fukao, S.; Kato, S. A direct method for deriving drop-size distribution and vertical air velocities from VHF Doppler radar spectra. J. Atmos. Ocean. Technol. 1986, 3, 623–629. [Google Scholar] [CrossRef]
- Sato, T.; Doji, H.; Iwai, H.; Kimura, I.; Fukao, S.; Yamamoto, M.; Tsuda, T.; Kato, S. Computer processing for deriving drop-size distributions and vertical air velocities from VHF Doppler radar spectra. Radio Sci. 1990, 25, 961–973. [Google Scholar] [CrossRef]
- Currier, P.E.; Avery, S.K.; Balsley, B.B.; Gage, K.S. Use of two wind profilers for precipitation studies. Geophys. Res. Lett. 1992, 19, 1017–1020. [Google Scholar] [CrossRef]
- Kim, D.K.; Lee, D. Raindrop size distribution properties associated with vertical air motion in the stratiform region of a springtime rain event from 1290 MHz wind profiler, Micro Rain Radar and Parsivel disdrometer measurements. Meteor. Appl. 2016, 23, 562. [Google Scholar] [CrossRef]
- Rajopadhyaya, D.K.; May, P.T.; Vincent, R.A. A general approach to the retrieval of raindrop size distributions from wind profiler doppler spectra: Modeling results. J. Atmos. Ocean. Technol. 1993, 10, 710–717. [Google Scholar] [CrossRef]
- Kobayashi, T.; Adachi, A. Retrieval of Arbitrarily Shaped Raindrop Size Distributions from Wind Profiler Measurements. J. Atmos. Ocean. Technol. 2005, 22, 433–442. [Google Scholar] [CrossRef]
- Pang, S.; Ruan, Z.; Yang, L.; Liu, X.; Huo, Z.; Li, F.; Ge, R. Estimating raindrop size distributions and vertical air motions with spectral difference using vertically pointing radar. J. Atmos. Ocean. Technol. 2021, 38, 1697–1713. [Google Scholar] [CrossRef]
- Williams, C.R. Simultaneous ambient air motion and raindrop size distributions retrieved from UHF vertical incident profiler observations. Radio sci. 2002, 2, 1024. [Google Scholar] [CrossRef]
- Williams, C.R.; Ecklund, W.L.; Johnston, P.E.; Gage, K.S. Cluster analysis techniques to separate air motion and hydrometeors in vertical incident profiler observations. J. Atmos. Ocean. Technol. 2000, 17, 949–962. [Google Scholar] [CrossRef]
- Fang, M.; Doviak, R.J.; Albrecht, B.A. Analytical expressions for Doppler spectra of scatter from hydrometers observed with a vertically directed radar beam. J. Atmos. Ocean. Technol. 2012, 29, 500–509. [Google Scholar] [CrossRef]
- Chen, C.-H.; Su, C.-L.; Chen, J.-H.; Chu, Y.-H. Vertical Wind Effect on Slope and Shape Parameters of Gamma Drop Size Distribution. J. Atmos. Ocean. Technol. 2020, 37, 243–262. [Google Scholar] [CrossRef]
- Zhang, G.; Vivekanandan, L.; Brandes, E.; Meneghini, R.; Kozu, T. The shape-slope relation in observed gamma raindrop size distribution: Statistical error or useful information? J. Atmos. Ocean. Technol. 2003, 20, 1106–1119. [Google Scholar] [CrossRef]
- Tokay, A.; D’Adderio, L.P.; Marks, D.A.; Pippitt, J.L.; Wolff, D.B.; Petersen, W.A. Comparison of raindrop size distribution between NASA’s s-band polarimetric radar and two-dimensional video disdrometers. J. Appl. Meteor. Climatol. 2020, 59, 517–533. [Google Scholar] [CrossRef]
- Tokay, A.; Petersen, W.A.; Gatlin, P.; Wingo, M. Comparison of raindrop size distribution measurements by collocated disdrometers. J. Atmos. Ocean. Technol. 2013, 30, 1672–1690. [Google Scholar] [CrossRef]
- Tokay, A.; Wolff, D.B.; Petersen, W.A. Evaluation of the new version of the laser-optical disdrometer, OTT parsivel. J. Atmos. Ocean. Technol. 2014, 31, 1276–1288. [Google Scholar] [CrossRef]
- Ignaccolo, M.; De Michele, C. Phase space parameterization of rain: The inadequacy of gamma distribution. J. Appl. Meteor. Climatol. 2014, 53, 548–562. [Google Scholar] [CrossRef]
- Doviak, R.J.; Zrnić, D.S. Doppler Radar and Weather Observations, 2nd ed.; Dover: Mineola, NY, USA, 2006; p. 562. [Google Scholar]
- Williams, C.R.; Gage, K.S. Raindrop size distribution variability estimated using ensemble statistics. Ann. Geophys. 2009, 27, 555–567. [Google Scholar] [CrossRef]
- Kruger, A.; Krajewski, W.F. Two-dimensional video disdrometer: A description. J. Atmos. Ocean. Technol. 2002, 19, 602–617. [Google Scholar] [CrossRef]
- Ulbrich, C.W.; Atlas, D. Rainfall microphysics and radar properties: Analysis methods for drop size spectra. J. Appl. Meteor. 1998, 37, 912–923. [Google Scholar] [CrossRef]
- Chu, Y.-H.; Su, C.-L. An investigation of the slope-shape relation for Gamma raindrop size distribution. J. Appl. Meteor. Climatol. 2008, 47, 2531–2544. [Google Scholar] [CrossRef]
- Morrison, H.; Van Lier-Walqui, M.; Kumjian, M.R.; Prat, O.P. A Bayesian approach for statistical-physical bulk parameterization of rain microphysics. Part I: Scheme description. J. Atmos. Sci. 2019, 77, 1019–1041. [Google Scholar] [CrossRef]
- Bringi, V.N.; Mishra, K.V.; Thurai, M.; Kennedy, P.C.; Raupach, T.H. Retrieval of lower-order moments of the drop size distribution using CSU-CHILL X-band polarimetric radar: A case study. Atmos. Meas. Tech. 2020, 13, 4727–4750. [Google Scholar] [CrossRef]
- Bringi, V.N.; Chandrasekar, V.; Zrnić, D.S.; Ulbrich, C.W. Comments on “The need to represent raindrop size spectra as normalized gamma distributions for interpretation of polarization radar observations”. J. Appl. Meteor. 2003, 42, 1184–1189. [Google Scholar] [CrossRef]
- Röttger, J.; Liu, C.-H.; Chao, L.-K.; Chen, A.-J.; Chu, Y.-H.; Fu, I.-J.; Huang, C.-M.; Kiang, Y.-W.; Kuo, F.-S.; Lin, C.-H.; et al. The Chung-Li VHF radar: Technical layout and a summary of initial results. Radio Sci. 1990, 25, 487–502. [Google Scholar] [CrossRef]
- Su, C.-L.; Chen, H.-C.; Chu, Y.-H.; Chung, M.-Z.; Kuong, R.-M.; Lin, T.-H.; Tzeng, K.-J.; Wang, C.-Y.; Wu, K.-H.; Yang, K.-F. Meteor radar wind over Chung-Li (24.9°N, 121°E), Taiwan, for the period 10–25 November 2012 which includes Leonid meteor shower: Comparison with empirical model and satellite measurements. Radio Sci. 2014, 49, 597–615. [Google Scholar] [CrossRef]
- Chen, M.-Y.; Su, C.-L.; Chang, Y.-H.; Chu, Y.-H. Identification and removal of aircraft clutter to improve wind velocity measurement made with Chung-Li VHF radar. J. Atmos. Ocean. Technol. 2022, 39, 1217–1228. [Google Scholar] [CrossRef]
- Kobayashi, T.; Adachi, A. Measurements of rain-drop breakup by using UHF wind profilers. Geophys. Res. Lett. 2001, 28, 4071–4072. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.-Y.; Su, C.-L.; Jen, W.-S.; Chu, Y.-H.; Chen, W.-N. Validation of Gamma Raindrop Size Distribution Estimates Using Approximate Expressions with a Vertically Pointing Very-High-Frequency Radar. Remote Sens. 2025, 17, 983. https://doi.org/10.3390/rs17060983
Chen M-Y, Su C-L, Jen W-S, Chu Y-H, Chen W-N. Validation of Gamma Raindrop Size Distribution Estimates Using Approximate Expressions with a Vertically Pointing Very-High-Frequency Radar. Remote Sensing. 2025; 17(6):983. https://doi.org/10.3390/rs17060983
Chicago/Turabian StyleChen, Meng-Yuan, Ching-Lun Su, Wei-Sung Jen, Yen-Hsyang Chu, and Wei-Nai Chen. 2025. "Validation of Gamma Raindrop Size Distribution Estimates Using Approximate Expressions with a Vertically Pointing Very-High-Frequency Radar" Remote Sensing 17, no. 6: 983. https://doi.org/10.3390/rs17060983
APA StyleChen, M.-Y., Su, C.-L., Jen, W.-S., Chu, Y.-H., & Chen, W.-N. (2025). Validation of Gamma Raindrop Size Distribution Estimates Using Approximate Expressions with a Vertically Pointing Very-High-Frequency Radar. Remote Sensing, 17(6), 983. https://doi.org/10.3390/rs17060983