Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (623)

Search Parameters:
Keywords = vertical stiffness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2772 KiB  
Article
Cable Force Optimization of Circular Ring Pylon Cable-Stayed Bridges Based on Response Surface Methodology and Multi-Objective Particle Swarm Optimization
by Shengdong Liu, Fei Chen, Qingfu Li and Xiyu Ma
Buildings 2025, 15(15), 2647; https://doi.org/10.3390/buildings15152647 - 27 Jul 2025
Viewed by 161
Abstract
Cable force distribution in cable-stayed bridges critically impacts structural safety and efficiency, yet traditional optimization methods struggle with unconventional designs due to nonlinear mechanics and computational inefficiency. This study proposes a hybrid approach combining Response Surface Methodology (RSM) and Multi-Objective Particle Swarm Optimization [...] Read more.
Cable force distribution in cable-stayed bridges critically impacts structural safety and efficiency, yet traditional optimization methods struggle with unconventional designs due to nonlinear mechanics and computational inefficiency. This study proposes a hybrid approach combining Response Surface Methodology (RSM) and Multi-Objective Particle Swarm Optimization (MOPSO) to overcome these challenges. RSM constructs surrogate models for strain energy and mid-span displacement, reducing reliance on finite element analysis, while MOPSO optimizes Pareto solution sets for rapid cable force adjustment. Validated through an engineering case, the method reduces the main girder’s max bending moment by 8.7%, mid-span displacement by 31.2%, and strain energy by 7.1%, improving stiffness and mitigating stress concentrations. The response surface model demonstrates prediction errors of 0.35% for strain energy and 5.1% for maximum vertical mid-span deflection. By synergizing explicit modeling with intelligent algorithms, this methodology effectively resolves the longstanding efficiency–accuracy trade-off in cable force optimization for cable-stayed bridges. It achieves over 80% reduction in computational costs while enhancing critical structural performance metrics. Engineers are thereby equipped with a rapid and reliable optimization framework for geometrically complex cable-stayed bridges, delivering significant improvements in structural safety and construction feasibility. Ultimately, this approach establishes both theoretical substantiation and practical engineering benchmarks for designing non-conventional cable-stayed bridge configurations. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 2523 KiB  
Article
Application of Machine Learning Algorithms for Predicting the Dynamic Stiffness of Rail Pads Based on Static Stiffness and Operating Conditions
by Isaac Rivas, Jose A. Sainz-Aja, Diego Ferreño, Víctor Calzada, Isidro Carrascal, Jose Casado and Soraya Diego
Appl. Sci. 2025, 15(15), 8310; https://doi.org/10.3390/app15158310 - 25 Jul 2025
Viewed by 189
Abstract
The vertical stiffness of railway tracks is crucial for ensuring safe and efficient rail transport. Rail-pad dynamic stiffness is a key component influencing track performance. Determining the dynamic stiffness of rail pads poses a challenge because it depends not only on the material [...] Read more.
The vertical stiffness of railway tracks is crucial for ensuring safe and efficient rail transport. Rail-pad dynamic stiffness is a key component influencing track performance. Determining the dynamic stiffness of rail pads poses a challenge because it depends not only on the material and geometry of the rail pad but also on the testing conditions, due to the non-linear material response. To address this issue, a methodology is proposed in this paper to estimate dynamic stiffness using static stiffness measurements. This approach enables the prediction of dynamic stiffness for different situations from a single laboratory test. This study further examines whether this correlation remains valid for different types of rail pads, even when their mechanical behavior has been degraded by temperature, wear, or chemical agents. Experiments were conducted under varying temperatures and on rail pads that underwent mechanical and chemical degradation. The analysis assesses the validity of the static-to-dynamic stiffness correlation under degraded conditions and investigates the influence of each testing condition on the ability to estimate dynamic stiffness from static stiffness and operational parameters. The findings provide insights into the reliability of this predictive model and highlight the impact of degradation mechanisms on the dynamic behavior of rail pads. This research enhances the understanding of rail pad performance and offers a practical approach for evaluating dynamic stiffness. By considering all of the variables used in the analysis, the approach achieves R2 values of up to 0.99, which carries significant implications for track design and maintenance. Full article
Show Figures

Figure 1

17 pages, 5711 KiB  
Article
Impact of High-Temperature Exposure on Reinforced Concrete Structures Supported by Steel Ring-Shaped Shear Connectors
by Atsushi Suzuki, Runze Yang and Yoshihiro Kimura
Buildings 2025, 15(15), 2626; https://doi.org/10.3390/buildings15152626 - 24 Jul 2025
Viewed by 275
Abstract
Ensuring the structural integrity of reinforced concrete (RC) components in nuclear facilities exposed to extreme conditions is essential for safe decommissioning. This study investigates the impact of high-temperature exposure on RC pedestal structures supported by steel ring-shaped shear connectors—critical elements for maintaining vertical [...] Read more.
Ensuring the structural integrity of reinforced concrete (RC) components in nuclear facilities exposed to extreme conditions is essential for safe decommissioning. This study investigates the impact of high-temperature exposure on RC pedestal structures supported by steel ring-shaped shear connectors—critical elements for maintaining vertical and lateral load paths in containment systems. Scaled-down cyclic loading tests were performed on pedestal specimens with and without prior thermal exposure, simulating post-accident conditions observed at a damaged nuclear power plant. Experimental results show that thermal degradation significantly reduces lateral stiffness, with failure mechanisms concentrating at the interface between the concrete and the embedded steel skirt. Complementary finite element analyses, incorporating temperature-dependent material degradation, highlight the crucial role of load redistribution to steel components when concrete strength is compromised. Parametric studies reveal that while geometric variations in the inner skirt have limited influence, thermal history is the dominant factor affecting vertical capacity. Notably, even with substantial section loss in the concrete, the steel inner skirt maintained considerable load-bearing capacity. This study establishes a validated analytical framework for assessing structural performance under extreme conditions, offering critical insights for risk evaluation and retrofit strategies in the context of nuclear facility decommissioning. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

19 pages, 3654 KiB  
Article
Brazilian Potential of Eucalyptus benthamii Maiden & Cambage for Cross-Laminated Timber Panels: Structural Analysis and Comparison with Pinus spp. and European Standards
by Matheus Zanghelini Teixeira, Rodrigo Figueiredo Terezo, Camila Alves Corrêa, Samuel da Silva Santos, Helena Cristina Vieira and Alexsandro Bayestorff da Cunha
Buildings 2025, 15(15), 2606; https://doi.org/10.3390/buildings15152606 - 23 Jul 2025
Viewed by 247
Abstract
This study investigates the potential of Eucalyptus benthamii wood from planted forests in southern Brazil for the production of cross-laminated timber (CLT) panels. The performance of E. benthamii CLT panels is compared to that of Pinus spp. panels and European commercial panels (KLH [...] Read more.
This study investigates the potential of Eucalyptus benthamii wood from planted forests in southern Brazil for the production of cross-laminated timber (CLT) panels. The performance of E. benthamii CLT panels is compared to that of Pinus spp. panels and European commercial panels (KLH®), using the finite element method applied to a two-story building model. Class 2 of the Brazilian standard ABNT NBR 7190-2 was adopted as the reference for the physical and mechanical properties of Pinus spp., while the European commercial specifications from KLH® were used to represent European reference panels. The results indicate that E. benthamii wood exhibits superior mechanical properties, enabling reductions of 12.5% to 27.3% in panel thickness and a 20.7% decrease in wood volume when compared to Pinus spp., without compromising structural safety. Relative to the KLH® and ETA 06/0138 standards, E. benthamii wood demonstrates higher stiffness (modulus of elasticity of 15,325 MPa vs. 12,000 MPa) and greater flexural strength (109.11 MPa vs. 24 MPa), allowing for the use of thinner panels. Stress and displacement analyses confirm that E. benthamii CLT slabs can withstand critical loads (wind and vertical) within normative limits, with maximum displacements of 18.5 mm. The reduction in material volume (22.8 m3 versus 28.7 m3 for Pinus spp.) suggests potential benefits in terms of environmental impact and logistical efficiency. It can be concluded that E. benthamii represents a sustainable and efficient alternative for CLT panels, combining high structural performance with resource optimization and contributing to the decarbonization of the construction industry. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 3127 KiB  
Article
The Impact of Pile Diameter on the Performance of Single Piles: A Kinematic Analysis Based on the TBEC 2018 Guidelines
by Mehmet Hayrullah Akyıldız, Mehmet Salih Keskin, Senem Yılmaz Çetin, Sabahattin Kaplan and Gültekin Aktaş
Buildings 2025, 15(14), 2540; https://doi.org/10.3390/buildings15142540 - 19 Jul 2025
Viewed by 241
Abstract
This study investigates the effect of pile diameter on the seismic performance of single piles using the kinematic interaction framework outlined in Method III of the Turkish Building Earthquake Code TBEC-2018. Pile diameters of 65 cm, 80 cm, and 100 cm were analyzed [...] Read more.
This study investigates the effect of pile diameter on the seismic performance of single piles using the kinematic interaction framework outlined in Method III of the Turkish Building Earthquake Code TBEC-2018. Pile diameters of 65 cm, 80 cm, and 100 cm were analyzed under four different soil profiles—soft clay, stiff clay, very loose sand-A, and very loose sand-B. The methodology integrated nonlinear spring modeling (P-y, T-z, Q-z) for soil behavior, one-dimensional site response analysis using DEEPSOIL, and structural analysis with SAP2000. The simulation results showed that increasing the pile diameter led to a significant rise in internal forces: the maximum bending moment increased up to 4.0 times, and the maximum shear force increased 4.5 times from the smallest to the largest pile diameter. Horizontal displacements remained nearly constant, whereas vertical displacements decreased by almost 50%, indicating improved pile–soil stiffness interaction. The depth of the maximum moment shifted according to the soil stiffness, and stress concentrations were observed at the interfaces of stratified layers. The findings underline the importance of considering pile geometry and soil layering in seismic design. This study provides quantitative insights into the trade-off between displacement control and force demand in seismic pile design, contributing to safer foundation strategies in earthquake-prone regions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 3791 KiB  
Article
Voxel Interpolation of Geotechnical Properties and Soil Classification Based on Empirical Bayesian Kriging and Best-Fit Convergence Function
by Yelbek Utepov, Aliya Aldungarova, Assel Mukhamejanova, Talal Awwad, Sabit Karaulov and Indira Makasheva
Buildings 2025, 15(14), 2452; https://doi.org/10.3390/buildings15142452 - 12 Jul 2025
Viewed by 271
Abstract
To support bearing capacity estimates, this study develops and tests a geoprocessing workflow for predicting soil properties using Empirical Bayesian Kriging 3D and a classification function. The model covers a 183 m × 185 m × 24 m site in Astana (Kazakhstan), based [...] Read more.
To support bearing capacity estimates, this study develops and tests a geoprocessing workflow for predicting soil properties using Empirical Bayesian Kriging 3D and a classification function. The model covers a 183 m × 185 m × 24 m site in Astana (Kazakhstan), based on 16 boreholes (15–24 m deep) and 77 samples. Eight geotechnical properties were mapped in 3D voxel models (812,520 voxels at 1 m × 1 m × 1 m resolution): cohesion (c), friction angle (φ), deformation modulus (E), plasticity index (PI), liquidity index (LI), porosity (e), particle size (PS), and particle size distribution (PSD). Stratification patterns were revealed with ~35% variability. Maximum φ (34.9°), E (36.6 MPa), and PS (1.29 mm) occurred at 8–16 m; c (33.1 kPa) and PSD peaked below 16 m, while PI and e were elevated in the upper and lower strata. Strong correlations emerged in pairs φ-E-PS (0.91) and PI-e (0.95). Classification identified 10 soil types, including one absent in borehole data, indicating the workflow’s capacity to detect hidden lithologies. Predicted fractions of loams (51.99%), sandy loams (22.24%), and sands (25.77%) matched borehole data (52%, 26%, 22%). Adjacency analysis of 2,394,873 voxel pairs showed homogeneous zones in gravel–sandy soils (28%) and stiff loams (21.75%). The workflow accounts for lateral and vertical heterogeneity, reduces subjectivity, and is recommended for digital subsurface 3D mapping and construction design optimization. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 8142 KiB  
Article
Influence of Principal Stress Orientation on Cyclic Degradation of Soft Clay Under Storm Wave Loading
by Chengcong Hu, Feng Gao, Biao Huang, Peipei Li, Zheng Hu and Kun Pan
J. Mar. Sci. Eng. 2025, 13(7), 1227; https://doi.org/10.3390/jmse13071227 - 26 Jun 2025
Viewed by 294
Abstract
Coastal marine soft clays subjected to long-term storm wave loading often exhibit inclined initial principal stress orientation (α0) and subsequent cyclic principal stress rotation (PSR). These stress states critically influence soil mechanical behavior and failure mechanisms, threatening offshore structural stability. [...] Read more.
Coastal marine soft clays subjected to long-term storm wave loading often exhibit inclined initial principal stress orientation (α0) and subsequent cyclic principal stress rotation (PSR). These stress states critically influence soil mechanical behavior and failure mechanisms, threatening offshore structural stability. This study employs hollow cylinder apparatus testing to investigate the undrained cyclic loading behavior of reconstituted soft clay under controlled α0 and PSR conditions, simulating storm wave-induced stress paths. Results demonstrate that α0 governs permanent pore pressure and vertical strain accumulation with distinct mechanisms, e.g., a tension-dominated response with gradual pore pressure rise at α0 < 45° transitions to a compression-driven rapid strain accumulation at α0 > 45°. Rotational loading with PSR significantly intensifies permanent strain accumulation and stiffness degradation rates, exacerbating soil’s anisotropic behavior. Furthermore, the stiffness degradation index tends to uniquely correlate with the permanent axial or shear strain, which can be quantified by an exponential relationship that is independent of α0 and PSR, providing a unified framework for normalizing stiffness evolution across diverse loading paths. These findings advance the understanding of storm wave-induced degradation behavior of soft clay and establish predictive tools for optimizing marine foundation design under cyclic loading. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

28 pages, 10940 KiB  
Article
Torsional Strengthening of RC Beams with Openings Using Hybrid SHCC–Glass Fiber Mesh Composites
by Ahmed Hamoda, Saad A. Yehia, Mizan Ahmed, Aref A. Abadel, Khaled Sennah, Vipulkumar Ishvarbhai Patel and Hussam Alghamdi
Buildings 2025, 15(13), 2237; https://doi.org/10.3390/buildings15132237 - 26 Jun 2025
Viewed by 396
Abstract
This study investigates the effectiveness of strain-hardening cementitious composites (SHCC) reinforced with glass fiber (GF) mesh in enhancing the torsional behavior of reinforced concrete (RC) beams with circular openings. Eight full-scale RC beams were tested under pure torsion, including two control beams and [...] Read more.
This study investigates the effectiveness of strain-hardening cementitious composites (SHCC) reinforced with glass fiber (GF) mesh in enhancing the torsional behavior of reinforced concrete (RC) beams with circular openings. Eight full-scale RC beams were tested under pure torsion, including two control beams and six strengthened beams with varying configurations of horizontal, vertical, and combined SHCC-GF mesh retrofitting. The experimental program evaluated the influence of single- and double-layer GF mesh reinforcement on torsional capacity, crack propagation, stiffness, and energy absorption. The results demonstrated that the presence of an opening reduced the ultimate torsional capacity by 29%, elastic stiffness by 48%, and energy absorption by 64% compared to the solid control beam. Strengthening with horizontal SHCC strips restored 21–35% of the lost capacity, while vertical strips performed even better, achieving 44–61% improvement. The combined horizontal–vertical configuration with a double-layer GF mesh proved the most effective, increasing ultimate load by 91% compared to the unstrengthened beam with an opening. Finite element models (FEM) are developed using ABAQUS to simulate the performance of the tested beams. Full article
(This article belongs to the Special Issue Research on Concrete Filled Steel Materials in Building Engineering)
Show Figures

Figure 1

17 pages, 528 KiB  
Systematic Review
Advances in Badminton Footwear Design: A Systematic Review of Biomechanical and Performance Implications
by Meixi Pan, Zihao Chen, Dongxu Huang, Zixin Wu, Fengjiao Xue, Jorge Diaz-Cidoncha Garcia, Qing Yi and Siqin Shen
Appl. Sci. 2025, 15(13), 7066; https://doi.org/10.3390/app15137066 - 23 Jun 2025
Viewed by 488
Abstract
This systematic review, registered in PROSPERO (CRD42025101243), aimed to evaluate how specific badminton shoe design features influence lower-limb biomechanics, injury risk, and sport-specific performance. A comprehensive search in six databases yielded 445 studies, from which 10 met inclusion criteria after duplicate removal and [...] Read more.
This systematic review, registered in PROSPERO (CRD42025101243), aimed to evaluate how specific badminton shoe design features influence lower-limb biomechanics, injury risk, and sport-specific performance. A comprehensive search in six databases yielded 445 studies, from which 10 met inclusion criteria after duplicate removal and eligibility screening. The reviewed studies focused on modifications involving forefoot bending stiffness, torsional stiffness, lateral-wedge hardness, insole and midsole hardness, sole structure, and heel curvature. The most consistent biomechanical benefits were associated with moderate levels of forefoot and torsional stiffness (e.g., 60D) and rounded heel designs. Increased forefoot bending stiffness was associated with reduced foot torsion and knee loading during forward lunges. Torsional stiffness around 60D provided favorable ankle support and reduced knee abduction, suggesting potential protection against ligament strain. Rounded heels reduced vertical impact forces and promoted smoother knee–ankle coordination, especially in experienced athletes. Lateral-wedge designs improved movement efficiency by reducing contact time and enhancing joint stiffness. Harder midsoles, however, resulted in increased impact forces upon landing. Excessive stiffness in any component may restrict joint mobility and responsiveness. Studies included 127 male-dominated (aged 18–28) competitive athletes, assessing kinematics, impact forces, and coordination during sport-specific tasks. The reviewed studies predominantly involved male participants, with little attention to sex-specific biomechanical differences such as joint alignment and foot structure. Differences in testing methods and movement tasks further limited direct comparisons. Future research should explore real-game biomechanics, include diverse athlete populations, and investigate long-term adaptations. These efforts will contribute to the development of performance-enhancing, injury-reducing badminton shoes tailored to the unique demands of the sport. Full article
(This article belongs to the Section Biomedical Engineering)
Show Figures

Figure 1

31 pages, 8101 KiB  
Article
Sequential Nonlinear Time History Analysis of Asymmetric Reinforced Concrete Buildings Under the 2011 Great Japan Earthquake and Tsunami
by Pramod Kumar, Seeram Madhuri and Mizan Ahmed
Buildings 2025, 15(13), 2170; https://doi.org/10.3390/buildings15132170 - 21 Jun 2025
Viewed by 392
Abstract
A nonlinear incremental time history analysis is performed on plan and vertical asymmetric reinforced concrete (RC) buildings under sequential events of the 2011 Great Japan earthquake and tsunami. The symmetric and plan asymmetric buildings with a unidirectional eccentricity of 6 m to 18 [...] Read more.
A nonlinear incremental time history analysis is performed on plan and vertical asymmetric reinforced concrete (RC) buildings under sequential events of the 2011 Great Japan earthquake and tsunami. The symmetric and plan asymmetric buildings with a unidirectional eccentricity of 6 m to 18 m with an interval of 6 m are considered. The vertical mass and stiffness asymmetric structures are also analyzed considering material nonlinearity. Maximum inundation depths of 6.0 m and 3.0 m are simulated to account for the near-shore and far-shore conditions. A total time duration of 58.69 min. is taken for the earthquake and tsunami, including a time gap of 30 min. between the earthquake and tsunami. The symmetric structure showed structural adequacy against earthquakes and tsunamis, with a maximum inundation depth of 3.0 m. The plan asymmetric structure with 6.0 m eccentricity has shown displacements below the yield displacement (i.e., the maximum lateral displacement before inelastic behavior) under the earthquake, but yielded under the tsunami a time of structural adequacy (the time duration during which the building remains within elastic limits under sequential loading) of up to 42.56 min. In comparison to the symmetric building, the buildings with higher eccentricities (12.0 m and 18.0 m) failed under seismic loading alone, exhibiting 94.12% and 45.94% greater displacements, respectively, both exceeding the yield threshold. Vertical stiffness asymmetric structures displaced more than yield displacement under the earthquake, whereas mass asymmetric structures with asymmetry at the first or second floors have been found resilient under the sequential earthquake and tsunami up to the inundation depth of 3.0 m. From this, it is concluded that vertical evacuation is limited to the first or second floors of the studied building. It is recommended to construct the RC buildings away from the seashore to ensure the safety of the occupants. The construction of the plan and stiffness of asymmetric structures shall be avoided in the seashore locations. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 5960 KiB  
Article
Experimental Study on the Flexural Resistance of Damaged Reinforced Concrete Beams Strengthened by Carbon Fiber Nets
by Zhengqiang Zhong and Zhiyong Yang
Buildings 2025, 15(12), 2097; https://doi.org/10.3390/buildings15122097 - 17 Jun 2025
Viewed by 275
Abstract
To study the flexural performance of damaged reinforced concrete beams reinforced with carbon fiber nets (CFNs), seven beams were designed for a flexural test. The physical parameters, such as damage phenomena, characteristic load, deflection variation, concrete strain, reinforcement strain, and CFRP mesh strain, [...] Read more.
To study the flexural performance of damaged reinforced concrete beams reinforced with carbon fiber nets (CFNs), seven beams were designed for a flexural test. The physical parameters, such as damage phenomena, characteristic load, deflection variation, concrete strain, reinforcement strain, and CFRP mesh strain, were analyzed using different forms of U-hoops and the preload amplitude as variables. The results show that the magnitude of the preload and the different U-hoop forms affect the ultimate load capacity, crack distribution, and deflection of the beams. Compared with the unreinforced beams, the yield load, ultimate load, and cracking load of the reinforced beams were significantly increased; CFNs reinforcement could significantly improve the flexural load-carrying capacity of the beams. Under the same preload amplitude, the X-shaped diagonal U-hoop has better diagonal crack suppression capability than the vertical U-hoop. Under secondary stress conditions, CFNs reinforcement inhibits the appearance and development of cracks and increases the flexural load capacity, which can effectively alleviate the stiffness degradation caused by the preload. The simulation of the test results using the ANSYS (v2023 R1) 2016 platform produced good agreement, with an error of about 10%, which verifies the feasibility of using the finite element method to simulate the test beam. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 4334 KiB  
Article
Dynamic Monitoring of a Bridge from GNSS-RTK Sensor Using an Improved Hybrid Denoising Method
by Chunbao Xiong, Zhi Shang, Meng Wang and Sida Lian
Sensors 2025, 25(12), 3723; https://doi.org/10.3390/s25123723 - 13 Jun 2025
Viewed by 360
Abstract
This study focused on the monitoring of a bridge using the global navigation satellite system real-time kinematic (GNSS-RTK) sensor. An improved hybrid denoising method was developed to enhance the GNSS-RTK’s accuracy. The improved hybrid denoising method consists of the improved complete ensemble empirical [...] Read more.
This study focused on the monitoring of a bridge using the global navigation satellite system real-time kinematic (GNSS-RTK) sensor. An improved hybrid denoising method was developed to enhance the GNSS-RTK’s accuracy. The improved hybrid denoising method consists of the improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), the detrended fluctuation analysis (DFA), and an improved wavelet threshold denoising method. The stability experiment demonstrated the superiority of the improved wavelet threshold denoising method in reducing the noise of the GNSS-RTK. A noisy simulation signal was created to assess the performance of the proposed method. Compared to the ICEEMDAN method and the CEEMDAN-WT method, the proposed method achieves lower RMSE and higher SNR. The signal obtained by the proposed method is similar to the original signal. Then, GNSS-RTK was used to monitor a bridge in maintenance and rehabilitation construction. The bridge monitoring experiment lasted for four hours. (Considering the space limitation of the article, only representative 600 s data is displayed in the paper.) The bridge is located in Tianjin, China. The original displacement ranges are −14.9~19.3 in the north–south direction; −26.9~24.7 in the east–west direction; and −46.7~52.3 in the vertical direction. The displacement ranges processed by the proposed method are −12.3~17.2 in the north–south direction; −24.6~24.1 in the east–west direction; and −46.7~51.1 in the vertical direction. The proposed method processed fewer displacements than the initial monitoring displacements. It indicates the proposed method reduces noise significantly when monitoring the bridge based on the GNSS-RTK sensor. The average sixth-order frequency from PSD is 1.0043 Hz. The difference between the PSD and FEA is only 0.99%. The sixth-order frequency from the PSD is similar to that from the FEA. The lower modes’ natural frequencies from the PSD are smaller than those from the FEA. It illustrates the fact that, during the repair process, the missing load-bearing rods made the bridge less stiff and strong. The smaller natural frequencies of the bridge, the complex construction environment, the diversity of workers’ operations, and some unforeseen circumstances occurring in the construction all bring risks to the safety of the bridge. We should pay more attention to the dynamic monitoring of the bridge during construction in order to understand the structural status in time to prevent accidents. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

19 pages, 4445 KiB  
Article
Experimental Study on Residual Stress and Deformation Control During Machining of TC18 Titanium Alloy Long Axis
by Xiangyou Xue, Dongyan Shi and Liang Zhao
Materials 2025, 18(12), 2788; https://doi.org/10.3390/ma18122788 - 13 Jun 2025
Viewed by 385
Abstract
The residual stress induced during the processing of titanium alloy materials can significantly influence the deformation control of precision-machined workpieces, especially for workpieces characterized by low stiffness and high-precision requirements. In this study, TC18 titanium alloy forgings with a dense structure were manufactured via forging. By conducting turning and [...] Read more.
The residual stress induced during the processing of titanium alloy materials can significantly influence the deformation control of precision-machined workpieces, especially for workpieces characterized by low stiffness and high-precision requirements. In this study, TC18 titanium alloy forgings with a dense structure were manufactured via forging. By conducting turning and heat treatment experiments on the workpiece, the distribution and evolution of residual stress and the deformation characteristics of TC18 titanium alloy on slender shafts were systematically investigated under different turning and heat treatment conditions. Based on the experimental results, the effects of the turning parameters, including feed rate, cutting speed, cutting depth, and axial thrust force of machine tool center, on workpiece deformation were quantitatively analyzed, and an optimal heat treatment strategy was proposed. The findings indicate that between-centers turning is recommended to control workpiece deformation. Optimal turning parameters include a cutting speed of 640–800 r/min, a feed rate of 0.05–0.1 mm/r, a cutting depth of 0.1 mm, and a thrust force of the center set to 10% of the rated value, resulting in minimal deformation and superior surface quality. In addition, during the heat treatment annealing of slender shaft titanium alloys, residual stress is effectively eliminated at temperatures ranging from 640 to 680 °C with a holding time of 1–3 h. Furthermore, the vertically fixed placement method during heat treatment reduced deformation by approximately 50% compared to free placement. These results provide valuable insights for optimizing machining and heat treatment processes to enhance the dimensional stability of titanium alloy components. Full article
(This article belongs to the Special Issue Numerical Analysis of Sandwich and Laminated Composites)
Show Figures

Figure 1

12 pages, 3107 KiB  
Article
A Comparative In Vitro Analysis of Attachment and Enhanced Structural Features for Molar Distalization in Clear Aligner Therapy
by Youn-Kyung Choi, Min-Jeong Jee, Sung-Hun Kim, Seong-Sik Kim, Soo-Byung Park and Yong-Il Kim
Appl. Sci. 2025, 15(12), 6655; https://doi.org/10.3390/app15126655 - 13 Jun 2025
Viewed by 355
Abstract
This study evaluated the effects of different clear aligner (CA) designs on forces and moments during maxillary second molar distalization. Four designs were tested: attachment only (group 1), neither attachment nor enhanced structure (group 2), a combination of attachment and enhanced structure (group [...] Read more.
This study evaluated the effects of different clear aligner (CA) designs on forces and moments during maxillary second molar distalization. Four designs were tested: attachment only (group 1), neither attachment nor enhanced structure (group 2), a combination of attachment and enhanced structure (group 3), and enhanced structure only (group 4). CAs were fabricated from thermoformed polyethylene terephthalate glycol with 30 CAs per group. Forces and moments were measured using a multi-axis transducer as the molars were distally displaced by 0.25 mm. All groups experienced buccodistal and intrusive forces. Group 3 showed the highest distalizing force (Fy = 2.51 ± 0.37 N) and intrusive force (Fz = −2.04 ± 0.48 N) and also the largest rotational moment (Mz = 3.89 ± 0.71 Nmm). Groups 3 and 4 (with enhanced structures) demonstrated significant intrusive forces (p < 0.05). Most groups exhibited mesiodistal angulation, lingual inclination, and distal rotational moments. Group 2 had the lowest moment-to-force ratio (Mx/Fy = 3.27 ± 0.44 mm), indicating inefficient bodily movement. Group 3 demonstrated significantly greater moments across all axes compared to other groups. The results indicate that designs incorporating enhanced structures with attachments increase CA stiffness and applied forces/moments, enhancing distalization efficiency while minimizing vertical side effects. This suggests that, clinically, reinforced CAs can serve as a simple yet effective modification to existing protocols in Class II orthodontic cases, enabling more efficient molar distalization without requiring complete appliance redesign or additional fabrication and allowing easy adaptation to individual treatment needs. Full article
(This article belongs to the Special Issue Advances in Orthodontics and Dentofacial Orthopedics)
Show Figures

Figure 1

14 pages, 3831 KiB  
Article
Research on Online Non-Contact Test Device and Test Method for Bearing Stiffness of Electric Spindle
by Chuanhai Chen, Liang Zhang, Chunlei Hua, Zhifeng Liu, Qingyu Meng and Junze Shi
Machines 2025, 13(6), 516; https://doi.org/10.3390/machines13060516 - 13 Jun 2025
Viewed by 415
Abstract
To enable experimental research on the dynamic support stiffness of electric spindle bearings, the authors designed a magnetic non-contact excitation and test device that can test the support stiffness of electric spindle bearings under a rotating state. The device includes load excitation and [...] Read more.
To enable experimental research on the dynamic support stiffness of electric spindle bearings, the authors designed a magnetic non-contact excitation and test device that can test the support stiffness of electric spindle bearings under a rotating state. The device includes load excitation and displacement detection components, which can collect the load loading and displacement data of electric spindle bearings under machine state in real time. The radial and axial loads can be applied at the same time, and the displacement detection component adopts a high-precision displacement sensor, which can measure the displacement data generated by the electric spindle bearing under the action of the excitation component in real time. A magnetic loading method was proposed for testing the supporting stiffness of the front and rear bearings in electric spindles along the three orthogonal directions of radial X/Y and axial Z. According to the designed device and test method, the dynamic support stiffness of an electric spindle bearing in a vertical machining center is tested, and the variation trend of the bearing support stiffness under the combined action of axial load, radial load and rotational speed is analyzed. Full article
(This article belongs to the Section Advanced Manufacturing)
Show Figures

Figure 1

Back to TopTop