Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,178)

Search Parameters:
Keywords = vehicular network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3733 KiB  
Article
DNO-RL: A Reinforcement-Learning-Based Approach to Dynamic Noise Optimization for Differential Privacy
by Guixin Wang, Xiangfei Liu, Yukun Zheng, Zeyu Zhang and Zhiming Cai
Electronics 2025, 14(15), 3122; https://doi.org/10.3390/electronics14153122 - 5 Aug 2025
Abstract
With the globalized deployment of cross-border vehicle location services and the trajectory data, which contain user identity information and geographically sensitive features, the variability in privacy regulations in different jurisdictions can further exacerbate the technical and compliance challenges of data privacy protection. Traditional [...] Read more.
With the globalized deployment of cross-border vehicle location services and the trajectory data, which contain user identity information and geographically sensitive features, the variability in privacy regulations in different jurisdictions can further exacerbate the technical and compliance challenges of data privacy protection. Traditional static differential privacy mechanisms struggle to accommodate spatiotemporal heterogeneity in dynamic scenarios because of the use of a fixed privacy budget parameter, leading to wasted privacy budgets or insufficient protection of sensitive regions. This study proposes a reinforcement-learning-based dynamic noise optimization method (DNO-RL) that dynamically adjusts the Laplacian noise scale by real-time sensing of vehicle density, region sensitivity, and the remaining privacy budget via a deep Q-network (DQN), with the aim of providing context-adaptive differential privacy protection for cross-border vehicle location services. Simulation experiments of cross-border scenarios based on the T-Drive dataset showed that DNO-RL reduced the average localization error by 28.3% and saved 17.9% of the privacy budget compared with the local differential privacy under the same privacy budget. This study provides a new paradigm for the dynamic privacy–utility balancing of cross-border vehicular networking services. Full article
Show Figures

Figure 1

32 pages, 1986 KiB  
Article
Machine Learning-Based Blockchain Technology for Secure V2X Communication: Open Challenges and Solutions
by Yonas Teweldemedhin Gebrezgiher, Sekione Reward Jeremiah, Xianjun Deng and Jong Hyuk Park
Sensors 2025, 25(15), 4793; https://doi.org/10.3390/s25154793 - 4 Aug 2025
Abstract
Vehicle-to-everything (V2X) communication is a fundamental technology in the development of intelligent transportation systems, encompassing vehicle-to-vehicle (V2V), infrastructure (V2I), and pedestrian (V2P) communications. This technology enables connected and autonomous vehicles (CAVs) to interact with their surroundings, significantly enhancing road safety, traffic efficiency, and [...] Read more.
Vehicle-to-everything (V2X) communication is a fundamental technology in the development of intelligent transportation systems, encompassing vehicle-to-vehicle (V2V), infrastructure (V2I), and pedestrian (V2P) communications. This technology enables connected and autonomous vehicles (CAVs) to interact with their surroundings, significantly enhancing road safety, traffic efficiency, and driving comfort. However, as V2X communication becomes more widespread, it becomes a prime target for adversarial and persistent cyberattacks, posing significant threats to the security and privacy of CAVs. These challenges are compounded by the dynamic nature of vehicular networks and the stringent requirements for real-time data processing and decision-making. Much research is on using novel technologies such as machine learning, blockchain, and cryptography to secure V2X communications. Our survey highlights the security challenges faced by V2X communications and assesses current ML and blockchain-based solutions, revealing significant gaps and opportunities for improvement. Specifically, our survey focuses on studies integrating ML, blockchain, and multi-access edge computing (MEC) for low latency, robust, and dynamic security in V2X networks. Based on our findings, we outline a conceptual framework that synergizes ML, blockchain, and MEC to address some of the identified security challenges. This integrated framework demonstrates the potential for real-time anomaly detection, decentralized data sharing, and enhanced system scalability. The survey concludes by identifying future research directions and outlining the remaining challenges for securing V2X communications in the face of evolving threats. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

34 pages, 5777 KiB  
Article
ACNet: An Attention–Convolution Collaborative Semantic Segmentation Network on Sensor-Derived Datasets for Autonomous Driving
by Qiliang Zhang, Kaiwen Hua, Zi Zhang, Yiwei Zhao and Pengpeng Chen
Sensors 2025, 25(15), 4776; https://doi.org/10.3390/s25154776 - 3 Aug 2025
Viewed by 84
Abstract
In intelligent vehicular networks, the accuracy of semantic segmentation in road scenes is crucial for vehicle-mounted artificial intelligence to achieve environmental perception, decision support, and safety control. Although deep learning methods have made significant progress, two main challenges remain: first, the difficulty in [...] Read more.
In intelligent vehicular networks, the accuracy of semantic segmentation in road scenes is crucial for vehicle-mounted artificial intelligence to achieve environmental perception, decision support, and safety control. Although deep learning methods have made significant progress, two main challenges remain: first, the difficulty in balancing global and local features leads to blurred object boundaries and misclassification; second, conventional convolutions have limited ability to perceive irregular objects, causing information loss and affecting segmentation accuracy. To address these issues, this paper proposes a global–local collaborative attention module and a spider web convolution module. The former enhances feature representation through bidirectional feature interaction and dynamic weight allocation, reducing false positives and missed detections. The latter introduces an asymmetric sampling topology and six-directional receptive field paths to effectively improve the recognition of irregular objects. Experiments on the Cityscapes, CamVid, and BDD100K datasets, collected using vehicle-mounted cameras, demonstrate that the proposed method performs excellently across multiple evaluation metrics, including mIoU, mRecall, mPrecision, and mAccuracy. Comparative experiments with classical segmentation networks, attention mechanisms, and convolution modules validate the effectiveness of the proposed approach. The proposed method demonstrates outstanding performance in sensor-based semantic segmentation tasks and is well-suited for environmental perception systems in autonomous driving. Full article
(This article belongs to the Special Issue AI-Driving for Autonomous Vehicles)
Show Figures

Figure 1

42 pages, 1300 KiB  
Article
A Hybrid Human-AI Model for Enhanced Automated Vulnerability Scoring in Modern Vehicle Sensor Systems
by Mohamed Sayed Farghaly, Heba Kamal Aslan and Islam Tharwat Abdel Halim
Future Internet 2025, 17(8), 339; https://doi.org/10.3390/fi17080339 - 28 Jul 2025
Viewed by 260
Abstract
Modern vehicles are rapidly transforming into interconnected cyber–physical systems that rely on advanced sensor technologies and pervasive connectivity to support autonomous functionality. Yet, despite this evolution, standardized methods for quantifying cybersecurity vulnerabilities across critical automotive components remain scarce. This paper introduces a novel [...] Read more.
Modern vehicles are rapidly transforming into interconnected cyber–physical systems that rely on advanced sensor technologies and pervasive connectivity to support autonomous functionality. Yet, despite this evolution, standardized methods for quantifying cybersecurity vulnerabilities across critical automotive components remain scarce. This paper introduces a novel hybrid model that integrates expert-driven insights with generative AI tools to adapt and extend the Common Vulnerability Scoring System (CVSS) specifically for autonomous vehicle sensor systems. Following a three-phase methodology, the study conducted a systematic review of 16 peer-reviewed sources (2018–2024), applied CVSS version 4.0 scoring to 15 representative attack types, and evaluated four free source generative AI models—ChatGPT, DeepSeek, Gemini, and Copilot—on a dataset of 117 annotated automotive-related vulnerabilities. Expert validation from 10 domain professionals reveals that Light Detection and Ranging (LiDAR) sensors are the most vulnerable (9 distinct attack types), followed by Radio Detection And Ranging (radar) (8) and ultrasonic (6). Network-based attacks dominate (104 of 117 cases), with 92.3% of the dataset exhibiting low attack complexity and 82.9% requiring no user interaction. The most severe attack vectors, as scored by experts using CVSS, include eavesdropping (7.19), Sybil attacks (6.76), and replay attacks (6.35). Evaluation of large language models (LLMs) showed that DeepSeek achieved an F1 score of 99.07% on network-based attacks, while all models struggled with minority classes such as high complexity (e.g., ChatGPT F1 = 0%, Gemini F1 = 15.38%). The findings highlight the potential of integrating expert insight with AI efficiency to deliver more scalable and accurate vulnerability assessments for modern vehicular systems.This study offers actionable insights for vehicle manufacturers and cybersecurity practitioners, aiming to inform strategic efforts to fortify sensor integrity, optimize network resilience, and ultimately enhance the cybersecurity posture of next-generation autonomous vehicles. Full article
Show Figures

Figure 1

12 pages, 759 KiB  
Article
Privacy-Preserving Byzantine-Tolerant Federated Learning Scheme in Vehicular Networks
by Shaohua Liu, Jiahui Hou and Gang Shen
Electronics 2025, 14(15), 3005; https://doi.org/10.3390/electronics14153005 - 28 Jul 2025
Viewed by 209
Abstract
With the rapid development of vehicular network technology, data sharing and collaborative training among vehicles have become key to enhancing the efficiency of intelligent transportation systems. However, the heterogeneity of data and potential Byzantine attacks cause the model to update in different directions [...] Read more.
With the rapid development of vehicular network technology, data sharing and collaborative training among vehicles have become key to enhancing the efficiency of intelligent transportation systems. However, the heterogeneity of data and potential Byzantine attacks cause the model to update in different directions during the iterative process, causing the boundary between benign and malicious gradients to shift continuously. To address these issues, this paper proposes a privacy-preserving Byzantine-tolerant federated learning scheme. Specifically, we design a gradient detection method based on median absolute deviation (MAD), which calculates MAD in each round to set a gradient anomaly detection threshold, thereby achieving precise identification and dynamic filtering of malicious gradients. Additionally, to protect vehicle privacy, we obfuscate uploaded parameters to prevent leakage during transmission. Finally, during the aggregation phase, malicious gradients are eliminated, and only benign gradients are selected to participate in the global model update, which improves the model accuracy. Experimental results on three datasets demonstrate that the proposed scheme effectively mitigates the impact of non-independent and identically distributed (non-IID) heterogeneity and Byzantine behaviors while maintaining low computational cost. Full article
(This article belongs to the Special Issue Cryptography in Internet of Things)
Show Figures

Figure 1

22 pages, 3082 KiB  
Article
A Lightweight Intrusion Detection System with Dynamic Feature Fusion Federated Learning for Vehicular Network Security
by Junjun Li, Yanyan Ma, Jiahui Bai, Congming Chen, Tingting Xu and Chi Ding
Sensors 2025, 25(15), 4622; https://doi.org/10.3390/s25154622 - 25 Jul 2025
Viewed by 318
Abstract
The rapid integration of complex sensors and electronic control units (ECUs) in autonomous vehicles significantly increases cybersecurity risks in vehicular networks. Although the Controller Area Network (CAN) is efficient, it lacks inherent security mechanisms and is vulnerable to various network attacks. The traditional [...] Read more.
The rapid integration of complex sensors and electronic control units (ECUs) in autonomous vehicles significantly increases cybersecurity risks in vehicular networks. Although the Controller Area Network (CAN) is efficient, it lacks inherent security mechanisms and is vulnerable to various network attacks. The traditional Intrusion Detection System (IDS) makes it difficult to effectively deal with the dynamics and complexity of emerging threats. To solve these problems, a lightweight vehicular network intrusion detection framework based on Dynamic Feature Fusion Federated Learning (DFF-FL) is proposed. The proposed framework employs a two-stream architecture, including a transformer-augmented autoencoder for abstract feature extraction and a lightweight CNN-LSTM–Attention model for preserving temporal and local patterns. Compared with the traditional theoretical framework of the federated learning, DFF-FL first dynamically fuses the deep feature representation of each node through the transformer attention module to realize the fine-grained cross-node feature interaction in a heterogeneous data environment, thereby eliminating the performance degradation caused by the difference in feature distribution. Secondly, based on the final loss LAEX,X^ index of each node, an adaptive weight adjustment mechanism is used to make the nodes with excellent performance dominate the global model update, which significantly improves robustness against complex attacks. Experimental evaluation on the CAN-Hacking dataset shows that the proposed intrusion detection system achieves more than 99% F1 score with only 1.11 MB of memory and 81,863 trainable parameters, while maintaining low computational overheads and ensuring data privacy, which is very suitable for edge device deployment. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

18 pages, 1138 KiB  
Article
Intelligent Priority-Aware Spectrum Access in 5G Vehicular IoT: A Reinforcement Learning Approach
by Adeel Iqbal, Tahir Khurshaid and Yazdan Ahmad Qadri
Sensors 2025, 25(15), 4554; https://doi.org/10.3390/s25154554 - 23 Jul 2025
Viewed by 266
Abstract
Efficient and intelligent spectrum access is crucial for meeting the diverse Quality of Service (QoS) demands of Vehicular Internet of Things (V-IoT) systems in next-generation cellular networks. This work proposes a novel reinforcement learning (RL)-based priority-aware spectrum management (RL-PASM) framework, a centralized self-learning [...] Read more.
Efficient and intelligent spectrum access is crucial for meeting the diverse Quality of Service (QoS) demands of Vehicular Internet of Things (V-IoT) systems in next-generation cellular networks. This work proposes a novel reinforcement learning (RL)-based priority-aware spectrum management (RL-PASM) framework, a centralized self-learning priority-aware spectrum management framework operating through Roadside Units (RSUs). RL-PASM dynamically allocates spectrum resources across three traffic classes: high-priority (HP), low-priority (LP), and best-effort (BE), utilizing reinforcement learning (RL). This work compares four RL algorithms: Q-Learning, Double Q-Learning, Deep Q-Network (DQN), and Actor-Critic (AC) methods. The environment is modeled as a discrete-time Markov Decision Process (MDP), and a context-sensitive reward function guides fairness-preserving decisions for access, preemption, coexistence, and hand-off. Extensive simulations conducted under realistic vehicular load conditions evaluate the performance across key metrics, including throughput, delay, energy efficiency, fairness, blocking, and interruption probability. Unlike prior approaches, RL-PASM introduces a unified multi-objective reward formulation and centralized RSU-based control to support adaptive priority-aware access for dynamic vehicular environments. Simulation results confirm that RL-PASM balances throughput, latency, fairness, and energy efficiency, demonstrating its suitability for scalable and resource-constrained deployments. The results also demonstrate that DQN achieves the highest average throughput, followed by vanilla QL. DQL and AC maintain fairness at high levels and low average interruption probability. QL demonstrates the lowest average delay and the highest energy efficiency, making it a suitable candidate for edge-constrained vehicular deployments. Selecting the appropriate RL method, RL-PASM offers a robust and adaptable solution for scalable, intelligent, and priority-aware spectrum access in vehicular communication infrastructures. Full article
(This article belongs to the Special Issue Emerging Trends in Next-Generation mmWave Cognitive Radio Networks)
Show Figures

Figure 1

36 pages, 8047 KiB  
Article
Fed-DTB: A Dynamic Trust-Based Framework for Secure and Efficient Federated Learning in IoV Networks: Securing V2V/V2I Communication
by Ahmed Alruwaili, Sardar Islam and Iqbal Gondal
J. Cybersecur. Priv. 2025, 5(3), 48; https://doi.org/10.3390/jcp5030048 - 19 Jul 2025
Viewed by 468
Abstract
The Internet of Vehicles (IoV) presents a vast opportunity for optimised traffic flow, road safety, and enhanced usage experience with the influence of Federated Learning (FL). However, the distributed nature of IoV networks creates certain inherent problems regarding data privacy, security from adversarial [...] Read more.
The Internet of Vehicles (IoV) presents a vast opportunity for optimised traffic flow, road safety, and enhanced usage experience with the influence of Federated Learning (FL). However, the distributed nature of IoV networks creates certain inherent problems regarding data privacy, security from adversarial attacks, and the handling of available resources. This paper introduces Fed-DTB, a new dynamic trust-based framework for FL that aims to overcome these challenges in the context of IoV. Fed-DTB integrates the adaptive trust evaluation that is capable of quickly identifying and excluding malicious clients to maintain the authenticity of the learning process. A performance comparison with previous approaches is shown, where the Fed-DTB method improves accuracy in the first two training rounds and decreases the per-round training time. The Fed-DTB is robust to non-IID data distributions and outperforms all other state-of-the-art approaches regarding the final accuracy (87–88%), convergence rate, and adversary detection (99.86% accuracy). The key contributions include (1) a multi-factor trust evaluation mechanism with seven contextual factors, (2) correlation-based adaptive weighting that dynamically prioritises trust factors based on vehicular conditions, and (3) an optimisation-based client selection strategy that maximises collaborative reliability. This work opens up opportunities for more accurate, secure, and private collaborative learning in future intelligent transportation systems with the help of federated learning while overcoming the conventional trade-off of security vs. efficiency. Full article
Show Figures

Figure 1

42 pages, 2129 KiB  
Review
Ensemble Learning Approaches for Multi-Class Intrusion Detection Systems for the Internet of Vehicles (IoV): A Comprehensive Survey
by Manal Alharthi, Faiza Medjek and Djamel Djenouri
Future Internet 2025, 17(7), 317; https://doi.org/10.3390/fi17070317 - 19 Jul 2025
Viewed by 436
Abstract
The emergence of the Internet of Vehicles (IoV) has revolutionized intelligent transportation and communication systems. However, IoV presents many complex and ever-changing security challenges and thus requires robust cybersecurity protocols. This paper comprehensively describes and evaluates ensemble learning approaches for multi-class intrusion detection [...] Read more.
The emergence of the Internet of Vehicles (IoV) has revolutionized intelligent transportation and communication systems. However, IoV presents many complex and ever-changing security challenges and thus requires robust cybersecurity protocols. This paper comprehensively describes and evaluates ensemble learning approaches for multi-class intrusion detection systems in the IoV environment. The study evaluates several approaches, such as stacking, voting, boosting, and bagging. A comprehensive review of the literature spanning 2020 to 2025 reveals important trends and topics that require further investigation and the relative merits of different ensemble approaches. The NSL-KDD, CICIDS2017, and UNSW-NB15 datasets are widely used to evaluate the performance of Ensemble Learning-Based Intrusion Detection Systems (ELIDS). ELIDS evaluation is usually carried out using some popular performance metrics, including Precision, Accuracy, Recall, F1-score, and Area Under Receiver Operating Characteristic Curve (AUC-ROC), which were used to evaluate and measure the effectiveness of different ensemble learning methods. Given the increasing complexity and frequency of cyber threats in IoV environments, ensemble learning methods such as bagging, boosting, and stacking enhance adaptability and robustness. These methods aggregate multiple learners to improve detection rates, reduce false positives, and ensure more resilient intrusion detection models that can evolve alongside emerging attack patterns. Full article
Show Figures

Figure 1

25 pages, 2870 KiB  
Article
Performance Evaluation and QoS Optimization of Routing Protocols in Vehicular Communication Networks Under Delay-Sensitive Conditions
by Alaa Kamal Yousif Dafhalla, Hiba Mohanad Isam, Amira Elsir Tayfour Ahmed, Ikhlas Saad Ahmed, Lutfieh S. Alhomed, Amel Mohamed essaket Zahou, Fawzia Awad Elhassan Ali, Duria Mohammed Ibrahim Zayan, Mohamed Elshaikh Elobaid and Tijjani Adam
Computers 2025, 14(7), 285; https://doi.org/10.3390/computers14070285 - 17 Jul 2025
Viewed by 301
Abstract
Vehicular Communication Networks (VCNs) are essential to intelligent transportation systems, where real-time data exchange between vehicles and infrastructure supports safety, efficiency, and automation. However, achieving high Quality of Service (QoS)—especially under delay-sensitive conditions—remains a major challenge due to the high mobility and dynamic [...] Read more.
Vehicular Communication Networks (VCNs) are essential to intelligent transportation systems, where real-time data exchange between vehicles and infrastructure supports safety, efficiency, and automation. However, achieving high Quality of Service (QoS)—especially under delay-sensitive conditions—remains a major challenge due to the high mobility and dynamic topology of vehicular environments. While some efforts have explored routing protocol optimization, few have systematically compared multiple optimization approaches tailored to distinct traffic and delay conditions. This study addresses this gap by evaluating and enhancing two widely used routing protocols, QOS-AODV and GPSR, through their improved versions, CM-QOS-AODV and CM-GPSR. Two distinct optimization models are proposed: the Traffic-Oriented Model (TOM), designed to handle variable and high-traffic conditions, and the Delay-Efficient Model (DEM), focused on reducing latency for time-critical scenarios. Performance was evaluated using key QoS metrics: throughput (rate of successful data delivery), packet delivery ratio (PDR) (percentage of successfully delivered packets), and end-to-end delay (latency between sender and receiver). Simulation results reveal that TOM-optimized protocols achieve up to 10% higher PDR, maintain throughput above 0.40 Mbps, and reduce delay to as low as 0.01 s, making them suitable for applications such as collision avoidance and emergency alerts. DEM-based variants offer balanced, moderate improvements, making them better suited for general-purpose VCN applications. These findings underscore the importance of traffic- and delay-aware protocol design in developing robust, QoS-compliant vehicular communication systems. Full article
(This article belongs to the Special Issue Application of Deep Learning to Internet of Things Systems)
Show Figures

Figure 1

23 pages, 1631 KiB  
Article
Detecting Malicious Anomalies in Heavy-Duty Vehicular Networks Using Long Short-Term Memory Models
by Mark J. Potvin and Sylvain P. Leblanc
Sensors 2025, 25(14), 4430; https://doi.org/10.3390/s25144430 - 16 Jul 2025
Cited by 1 | Viewed by 341
Abstract
Utilizing deep learning models to detect malicious anomalies within the traffic of application layer J1939 protocol networks, found on heavy-duty commercial vehicles, is becoming a critical area of research in platform protection. At the physical layer, the controller area network (CAN) bus is [...] Read more.
Utilizing deep learning models to detect malicious anomalies within the traffic of application layer J1939 protocol networks, found on heavy-duty commercial vehicles, is becoming a critical area of research in platform protection. At the physical layer, the controller area network (CAN) bus is the backbone network for most vehicles. The CAN bus is highly efficient and dependable, which makes it a suitable networking solution for automobiles where reaction time and speed are of the essence due to safety considerations. Much recent research has been conducted on securing the CAN bus explicitly; however, the importance of protecting the J1939 protocol is becoming apparent. Our research utilizes long short-term memory models to predict the next binary data sequence of a J1939 packet. Our primary objective is to compare the performance of our J1939 detection system trained on data sub-fields against a published CAN system trained on the full data payload. We conducted a series of experiments to evaluate both detection systems by utilizing a simulated attack representation to generate anomalies. We show that both detection systems outperform one another on a case-by-case basis and determine that there is a clear requirement for a multifaceted security approach for vehicular networks. Full article
Show Figures

Figure 1

35 pages, 2297 KiB  
Article
Secure Cooperative Dual-RIS-Aided V2V Communication: An Evolutionary Transformer–GRU Framework for Secrecy Rate Maximization in Vehicular Networks
by Elnaz Bashir, Francisco Hernando-Gallego, Diego Martín and Farzaneh Shoushtari
World Electr. Veh. J. 2025, 16(7), 396; https://doi.org/10.3390/wevj16070396 - 14 Jul 2025
Viewed by 239
Abstract
The growing demand for reliable and secure vehicle-to-vehicle (V2V) communication in next-generation intelligent transportation systems has accelerated the adoption of reconfigurable intelligent surfaces (RIS) as a means of enhancing link quality, spectral efficiency, and physical layer security. In this paper, we investigate the [...] Read more.
The growing demand for reliable and secure vehicle-to-vehicle (V2V) communication in next-generation intelligent transportation systems has accelerated the adoption of reconfigurable intelligent surfaces (RIS) as a means of enhancing link quality, spectral efficiency, and physical layer security. In this paper, we investigate the problem of secrecy rate maximization in a cooperative dual-RIS-aided V2V communication network, where two cascaded RISs are deployed to collaboratively assist with secure data transmission between mobile vehicular nodes in the presence of eavesdroppers. To address the inherent complexity of time-varying wireless channels, we propose a novel evolutionary transformer-gated recurrent unit (Evo-Transformer-GRU) framework that jointly learns temporal channel patterns and optimizes the RIS reflection coefficients, beam-forming vectors, and cooperative communication strategies. Our model integrates the sequence modeling strength of GRUs with the global attention mechanism of transformer encoders, enabling the efficient representation of time-series channel behavior and long-range dependencies. To further enhance convergence and secrecy performance, we incorporate an improved gray wolf optimizer (IGWO) to adaptively regulate the model’s hyper-parameters and fine-tune the RIS phase shifts, resulting in a more stable and optimized learning process. Extensive simulations demonstrate the superiority of the proposed framework compared to existing baselines, such as transformer, bidirectional encoder representations from transformers (BERT), deep reinforcement learning (DRL), long short-term memory (LSTM), and GRU models. Specifically, our method achieves an up to 32.6% improvement in average secrecy rate and a 28.4% lower convergence time under varying channel conditions and eavesdropper locations. In addition to secrecy rate improvements, the proposed model achieved a root mean square error (RMSE) of 0.05, coefficient of determination (R2) score of 0.96, and mean absolute percentage error (MAPE) of just 0.73%, outperforming all baseline methods in prediction accuracy and robustness. Furthermore, Evo-Transformer-GRU demonstrated rapid convergence within 100 epochs, the lowest variance across multiple runs. Full article
Show Figures

Figure 1

15 pages, 1301 KiB  
Article
Applying a Deep Neural Network and Feature Engineering to Assess the Impact of Attacks on Autonomous Vehicles
by Sara Ftaimi and Tomader Mazri
World Electr. Veh. J. 2025, 16(7), 388; https://doi.org/10.3390/wevj16070388 - 9 Jul 2025
Viewed by 320
Abstract
Autonomous vehicles are expected to reduce traffic accident casualties, as driver distraction accounts for 90% of accidents. These vehicles rely on sensors and controllers to operate independently, requiring robust security mechanisms to prevent malicious takeovers. This research proposes a novel approach to assessing [...] Read more.
Autonomous vehicles are expected to reduce traffic accident casualties, as driver distraction accounts for 90% of accidents. These vehicles rely on sensors and controllers to operate independently, requiring robust security mechanisms to prevent malicious takeovers. This research proposes a novel approach to assessing the impact of cyber-attacks on autonomous vehicles and their surroundings, with a strong focus on prioritizing human safety. The system evaluates the severity of incidents caused by attacks, distinguishing between different events—for example, a pedestrian injury is classified as more critical than a collision with an inanimate object. By integrating deep neural network technology with feature engineering, the proposed system provides a comprehensive impact assessment. It is validated using metrics such as MAE, loss function, and Spearman’s correlation through experiments on a dataset of 5410 samples. Beyond enhancing autonomous vehicle security, this research contributes to real-world attack impact assessment, ensuring human safety remains a priority in the evolving autonomous landscape. Full article
Show Figures

Figure 1

27 pages, 1665 KiB  
Article
A Heuristic Optical Flow Scheduling Algorithm for Low-Delay Vehicular Visible Light Communication
by Zhengying Cai, Shumeng Lei, Jingyi Li, Chen Yu, Junyu Liu and Guoqiang Gong
Photonics 2025, 12(7), 693; https://doi.org/10.3390/photonics12070693 - 9 Jul 2025
Viewed by 206
Abstract
Vehicular visible light communication (VVLC) with ultralow electromagnetic interference has great potential to propel the growth of the Internet of Vehicles (IoV). However, ensuring quick response times and minimal delays in VVLC is a significant challenge brought on by fast-moving vehicles. In response [...] Read more.
Vehicular visible light communication (VVLC) with ultralow electromagnetic interference has great potential to propel the growth of the Internet of Vehicles (IoV). However, ensuring quick response times and minimal delays in VVLC is a significant challenge brought on by fast-moving vehicles. In response to this problem, we propose a heuristic optical flow scheduling algorithm. First, the optical flow scheduling problem of VVLC is built as a multi-objective optimization model considering the makespan, delay, schedulable ratio, and bandwidth utilization with non-conflict constraints. Second, an improved artificial plant community (APC) algorithm with enhanced global and local search capabilities is proposed to achieve low-delay communication for time-sensitive optical flows. Finally, a series of benchmark experiments are conducted to show that the proposed algorithm can efficiently schedule optical flows with minimal delay. The cost of this algorithm is very low, and it is suitable for deployment on edge computing platforms such as vehicles. Full article
(This article belongs to the Special Issue New Advances in Optical Wireless Communication)
Show Figures

Figure 1

24 pages, 1314 KiB  
Article
Balancing Accuracy and Efficiency in Vehicular Network Firmware Vulnerability Detection: A Fuzzy Matching Framework with Standardized Data Serialization
by Xiyu Fang, Kexun He, Yue Wu, Rui Chen and Jing Zhao
Informatics 2025, 12(3), 67; https://doi.org/10.3390/informatics12030067 - 9 Jul 2025
Viewed by 347
Abstract
Firmware vulnerabilities in embedded devices have caused serious security incidents, necessitating similarity analysis of binary program instruction embeddings to identify vulnerabilities. However, existing instruction embedding methods neglect program execution semantics, resulting in accuracy limitations. Furthermore, current embedding approaches utilize independent computation across models, [...] Read more.
Firmware vulnerabilities in embedded devices have caused serious security incidents, necessitating similarity analysis of binary program instruction embeddings to identify vulnerabilities. However, existing instruction embedding methods neglect program execution semantics, resulting in accuracy limitations. Furthermore, current embedding approaches utilize independent computation across models, where the lack of standardized interaction information between models makes it difficult for embedding models to efficiently detect firmware vulnerabilities. To address these challenges, this paper proposes a firmware vulnerability detection scheme based on statistical inference and code similarity fuzzy matching analysis for resource-constrained vehicular network environments, helping to balance both accuracy and efficiency. First, through dynamic programming and neighborhood search techniques, binary code is systematically partitioned into normalized segment collections according to specific rules. The binary code is then analyzed in segments to construct semantic equivalence mappings, thereby extracting similarity metrics for function execution semantics. Subsequently, Google Protocol Buffers (ProtoBuf) is introduced as a serialization format for inter-model data transmission, serving as a “translation layer” and “bridging technology” within the firmware vulnerability detection framework. Additionally, a ProtoBuf-based certificate authentication scheme is proposed to enhance vehicular network communication reliability, improve data serialization efficiency, and increase the efficiency and accuracy of the detection model. Finally, a vehicular network simulation environment is established through secondary development on the NS-3 network simulator, and the functionality and performance of this architecture were thoroughly tested. Results demonstrate that the algorithm possesses resistance capabilities against common security threats while minimizing performance impact. Experimental results show that FirmPB delivers superior accuracy with 0.044 s inference time and 0.932 AUC, outperforming current SOTA in detection performance. Full article
Show Figures

Figure 1

Back to TopTop