Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,684)

Search Parameters:
Keywords = vehicle to vehicle (V2V)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 12563 KiB  
Article
Optimization of Grouser–Track Structural Parameters for Enhanced Tractive Performance in Unmanned Amphibious Tracked Vehicles
by Yaoyao Chen, Xiaojun Xu, Wenhao Wang, Xue Gao and Congnan Yang
Actuators 2025, 14(8), 390; https://doi.org/10.3390/act14080390 - 6 Aug 2025
Abstract
This study focuses on optimizing track and grouser structural parameters to enhance UATV drawbar pull, particularly under soft soil conditions. A numerical soil thrust model for single-track shoes was developed based on track–soil interaction mechanics, revealing distinct mechanistic roles: track structural parameters (length/width) [...] Read more.
This study focuses on optimizing track and grouser structural parameters to enhance UATV drawbar pull, particularly under soft soil conditions. A numerical soil thrust model for single-track shoes was developed based on track–soil interaction mechanics, revealing distinct mechanistic roles: track structural parameters (length/width) govern pressure–sinkage relationships at the track base, while grouser structural parameters (height, spacing, V-shaped angle) dominate shear stress–displacement dynamics on grouser shear planes. A novel DEM-MBD coupling simulation framework was established through soil parameter calibration and multi-body dynamics modeling, demonstrating that soil thrust increases with grouser height and V-shaped angle, but decreases with spacing, with grouser height exhibiting the highest sensitivity. A soil bin test validated the numerical model’s accuracy and the coupling method’s efficacy. Parametric optimization via the Whale Optimization Algorithm (WOA) achieved a 55.86% increase in drawbar pull, 40.38% reduction in ground contact pressure and 57.33% improvement in maximum gradability. These advancements substantially improve the tractive performance of UATVs in soft beach terrains. The proposed methodology provides a systematic framework for amphibious vehicle design, integrating numerical modeling, high-fidelity simulation, and experimental validation. Full article
Show Figures

Figure 1

23 pages, 1714 KiB  
Article
Physicochemical and Biological Properties of Quercetin-Loaded Low-Molecular-Weight Chitosan Nanoparticles Derived from Hermetia illucens Larvae and Crustacean Sources: A Comparative Study
by Anna Guarnieri, Rosanna Mallamaci, Giuseppe Trapani, Dolores Ianniciello, Carmen Scieuzo, Francesco Iannielli, Luigi Capasso, Maria Chiara Sportelli, Alessandra Barbanente, Michela Marsico, Angela De Bonis, Stefano Castellani, Patrizia Falabella and Adriana Trapani
Pharmaceutics 2025, 17(8), 1016; https://doi.org/10.3390/pharmaceutics17081016 - 5 Aug 2025
Abstract
Introduction. Larvae of the insect Hermetia illucens can represent an alternative source for low-molecular-weight chitosan (CS) production compared with CS from crustaceans (CScrustac), making it appealing in terms of pharmaceutical applications. Hence, the performances of CSlarvae and CScrustac [...] Read more.
Introduction. Larvae of the insect Hermetia illucens can represent an alternative source for low-molecular-weight chitosan (CS) production compared with CS from crustaceans (CScrustac), making it appealing in terms of pharmaceutical applications. Hence, the performances of CSlarvae and CScrustac were compared herein by investigating the in vitro features of nanoparticles (NPs) made from each polysaccharide and administered with the antioxidant quercetin (QUE). Methods. X-ray diffraction and FT-IR spectroscopy enabled the identification of each type of CS. Following the ionic gelation technique and using sulfobutylether-β-cyclodextrin as a cross-linking agent, NPs were easily obtained. Results. Physicochemical data, release studies in PBS, and the evaluation of antioxidant effects via the 1,1-diphenyl-2-picrylhydrazyl (DPPH) test were studied for both CSlarvae and CScrustac. QUE-loaded NP sizes ranged from 180 to 547 nm, and zeta potential values were between +7.5 and +39.3 mV. In vitro QUE release in PBS was faster from QUE-CSlarvae NPs than from CScrustac, and high antioxidant activity—according to the DPPH test—was observed for all tested NP formulations. Discussion. The agar diffusion assay, referring to Escherichia coli and Micrococcus flavus, as well as the microdilution assay, showed the best performance as antimicrobial formulations in the case of QUE-CSlarvae NPs. QUE-CSlarvae NPs can represent a promising vehicle for QUE, releasing it in a sustained manner, and, relevantly, the synergism noticed between QUE and CSlarvae resulted in a final antimicrobial product. Conclusions. New perspectives for low-molecular-weight CS are disclosed by adopting renewable sources from insects instead of the commercial CScrustac. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

31 pages, 1986 KiB  
Article
Machine Learning-Based Blockchain Technology for Secure V2X Communication: Open Challenges and Solutions
by Yonas Teweldemedhin Gebrezgiher, Sekione Reward Jeremiah, Xianjun Deng and Jong Hyuk Park
Sensors 2025, 25(15), 4793; https://doi.org/10.3390/s25154793 - 4 Aug 2025
Abstract
Vehicle-to-everything (V2X) communication is a fundamental technology in the development of intelligent transportation systems, encompassing vehicle-to-vehicle (V2V), infrastructure (V2I), and pedestrian (V2P) communications. This technology enables connected and autonomous vehicles (CAVs) to interact with their surroundings, significantly enhancing road safety, traffic efficiency, and [...] Read more.
Vehicle-to-everything (V2X) communication is a fundamental technology in the development of intelligent transportation systems, encompassing vehicle-to-vehicle (V2V), infrastructure (V2I), and pedestrian (V2P) communications. This technology enables connected and autonomous vehicles (CAVs) to interact with their surroundings, significantly enhancing road safety, traffic efficiency, and driving comfort. However, as V2X communication becomes more widespread, it becomes a prime target for adversarial and persistent cyberattacks, posing significant threats to the security and privacy of CAVs. These challenges are compounded by the dynamic nature of vehicular networks and the stringent requirements for real-time data processing and decision-making. Much research is on using novel technologies such as machine learning, blockchain, and cryptography to secure V2X communications. Our survey highlights the security challenges faced by V2X communications and assesses current ML and blockchain-based solutions, revealing significant gaps and opportunities for improvement. Specifically, our survey focuses on studies integrating ML, blockchain, and multi-access edge computing (MEC) for low latency, robust, and dynamic security in V2X networks. Based on our findings, we outline a conceptual framework that synergizes ML, blockchain, and MEC to address some of the identified security challenges. This integrated framework demonstrates the potential for real-time anomaly detection, decentralized data sharing, and enhanced system scalability. The survey concludes by identifying future research directions and outlining the remaining challenges for securing V2X communications in the face of evolving threats. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

23 pages, 4382 KiB  
Article
MTL-PlotCounter: Multitask Driven Soybean Seedling Counting at the Plot Scale Based on UAV Imagery
by Xiaoqin Xue, Chenfei Li, Zonglin Liu, Yile Sun, Xuru Li and Haiyan Song
Remote Sens. 2025, 17(15), 2688; https://doi.org/10.3390/rs17152688 - 3 Aug 2025
Viewed by 118
Abstract
Accurate and timely estimation of soybean emergence at the plot scale using unmanned aerial vehicle (UAV) remote sensing imagery is essential for germplasm evaluation in breeding programs, where breeders prioritize overall plot-scale emergence rates over subimage-based counts. This study proposes PlotCounter, a deep [...] Read more.
Accurate and timely estimation of soybean emergence at the plot scale using unmanned aerial vehicle (UAV) remote sensing imagery is essential for germplasm evaluation in breeding programs, where breeders prioritize overall plot-scale emergence rates over subimage-based counts. This study proposes PlotCounter, a deep learning regression model based on the TasselNetV2++ architecture, designed for plot-scale soybean seedling counting. It employs a patch-based training strategy combined with full-plot validation to achieve reliable performance with limited breeding plot data. To incorporate additional agronomic information, PlotCounter is extended into a multitask learning framework (MTL-PlotCounter) that integrates sowing metadata such as variety, number of seeds per hole, and sowing density as auxiliary classification tasks. RGB images of 54 breeding plots were captured in 2023 using a DJI Mavic 2 Pro UAV and processed into an orthomosaic for model development and evaluation, showing effective performance. PlotCounter achieves a root mean square error (RMSE) of 6.98 and a relative RMSE (rRMSE) of 6.93%. The variety-integrated MTL-PlotCounter, V-MTL-PlotCounter, performs the best, with relative reductions of 8.74% in RMSE and 3.03% in rRMSE compared to PlotCounter, and outperforms representative YOLO-based models. Additionally, both PlotCounter and V-MTL-PlotCounter are deployed on a web-based platform, enabling users to upload images via an interactive interface, automatically count seedlings, and analyze plot-scale emergence, powered by a multimodal large language model. This study highlights the potential of integrating UAV remote sensing, agronomic metadata, specialized deep learning models, and multimodal large language models for advanced crop monitoring. Full article
(This article belongs to the Special Issue Recent Advances in Multimodal Hyperspectral Remote Sensing)
Show Figures

Figure 1

17 pages, 2222 KiB  
Article
A Comprehensive User Acceptance Evaluation Framework of Intelligent Driving Based on Subjective and Objective Integration—From the Perspective of Value Engineering
by Wang Zhang, Fuquan Zhao, Zongwei Liu, Haokun Song and Guangyu Zhu
Systems 2025, 13(8), 653; https://doi.org/10.3390/systems13080653 - 2 Aug 2025
Viewed by 113
Abstract
Intelligent driving technology is expected to reshape urban transportation, but its promotion is hindered by user acceptance challenges and diverse technical routes. This study proposes a comprehensive user acceptance evaluation framework for intelligent driving from the perspective of value engineering (VE). The novelty [...] Read more.
Intelligent driving technology is expected to reshape urban transportation, but its promotion is hindered by user acceptance challenges and diverse technical routes. This study proposes a comprehensive user acceptance evaluation framework for intelligent driving from the perspective of value engineering (VE). The novelty of this framework lies in three aspects: (1) It unifies behavioral theory and utility theory under the value engineering framework, and it extracts key indicators such as safety, travel efficiency, trust, comfort, and cost, thus addressing the issue of the lack of integration between subjective and objective factors in previous studies. (2) It establishes a systematic mapping mechanism from technical solutions to evaluation indicators, filling the gap of insufficient targeting at different technical routes in the existing literature. (3) It quantifies acceptance differences via VE’s core formula of V = F/C, overcoming the ambiguity of non-technical evaluation in prior research. A case study comparing single-vehicle intelligence vs. collaborative intelligence and different sensor combinations (vision-only, map fusion, and lidar fusion) shows that collaborative intelligence and vision-based solutions offer higher comprehensive acceptance due to balanced functionality and cost. This framework guides enterprises in technical strategy planning and assists governments in formulating industrial policies by quantifying acceptance differences across technical routes. Full article
(This article belongs to the Special Issue Modeling, Planning and Management of Sustainable Transport Systems)
Show Figures

Figure 1

22 pages, 6482 KiB  
Article
Surface Damage Detection in Hydraulic Structures from UAV Images Using Lightweight Neural Networks
by Feng Han and Chongshi Gu
Remote Sens. 2025, 17(15), 2668; https://doi.org/10.3390/rs17152668 - 1 Aug 2025
Viewed by 140
Abstract
Timely and accurate identification of surface damage in hydraulic structures is essential for maintaining structural integrity and ensuring operational safety. Traditional manual inspections are time-consuming, labor-intensive, and prone to subjectivity, especially for large-scale or inaccessible infrastructure. Leveraging advancements in aerial imaging, unmanned aerial [...] Read more.
Timely and accurate identification of surface damage in hydraulic structures is essential for maintaining structural integrity and ensuring operational safety. Traditional manual inspections are time-consuming, labor-intensive, and prone to subjectivity, especially for large-scale or inaccessible infrastructure. Leveraging advancements in aerial imaging, unmanned aerial vehicles (UAVs) enable efficient acquisition of high-resolution visual data across expansive hydraulic environments. However, existing deep learning (DL) models often lack architectural adaptations for the visual complexities of UAV imagery, including low-texture contrast, noise interference, and irregular crack patterns. To address these challenges, this study proposes a lightweight, robust, and high-precision segmentation framework, called LFPA-EAM-Fast-SCNN, specifically designed for pixel-level damage detection in UAV-captured images of hydraulic concrete surfaces. The developed DL-based model integrates an enhanced Fast-SCNN backbone for efficient feature extraction, a Lightweight Feature Pyramid Attention (LFPA) module for multi-scale context enhancement, and an Edge Attention Module (EAM) for refined boundary localization. The experimental results on a custom UAV-based dataset show that the proposed damage detection method achieves superior performance, with a precision of 0.949, a recall of 0.892, an F1 score of 0.906, and an IoU of 87.92%, outperforming U-Net, Attention U-Net, SegNet, DeepLab v3+, I-ST-UNet, and SegFormer. Additionally, it reaches a real-time inference speed of 56.31 FPS, significantly surpassing other models. The experimental results demonstrate the proposed framework’s strong generalization capability and robustness under varying noise levels and damage scenarios, underscoring its suitability for scalable, automated surface damage assessment in UAV-based remote sensing of civil infrastructure. Full article
Show Figures

Figure 1

18 pages, 10032 KiB  
Article
Design and Efficiency Analysis of High Maneuvering Underwater Gliders for Kuroshio Observation
by Zhihao Tian, Bing He, Heng Zhang, Cunzhe Zhang, Tongrui Zhang and Runfeng Zhang
Oceans 2025, 6(3), 48; https://doi.org/10.3390/oceans6030048 - 1 Aug 2025
Viewed by 148
Abstract
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier [...] Read more.
The Kuroshio Current’s flow velocity imposes exacting requirements on underwater vehicle propulsive systems. Ecological preservation necessitates low-noise propeller designs to mitigate operational disturbances. As technological evolution advances toward greater intelligence and system integration, intelligent unmanned systems are positioning themselves as a critical frontier in marine innovation. In recent years, the global research community has increased its efforts towards the development of high-maneuverability underwater vehicles. However, propeller design optimization ignores the key balance between acoustic performance and hydrodynamic efficiency, as well as the appropriate speed threshold for blade rotation. In order to solve this problem, the propeller design of the NACA 65A010 airfoil is optimized by using OpenProp v3.3.4 and XFlow 2022 software, aiming at innovating the propulsion system of shallow water agile submersibles. The study presents an integrated design framework combining lattice Boltzmann method (LBM) simulations synergized with fully Lagrangian-LES modeling, implementing rotational speed thresholds to detect cavitation inception, followed by advanced acoustic propagation analysis. Through rigorous comparative assessment of hydrodynamic metrics, we establish an optimization protocol for propeller selection tailored to littoral zone operational demands. Studies have shown that increasing the number of propeller blades can reduce the single-blade load and delay cavitation, but too many blades will aggravate the complexity of the flow field, resulting in reduced efficiency and noise rebound. It is concluded that the propeller with five blades, a diameter of 234 mm, and a speed of 500 RPM exhibits the best performance. Under these conditions, the water efficiency is 69.01%, and the noise is the lowest, which basically realizes the balance between hydrodynamic efficiency and acoustic performance. This paradigm-shifting research carries substantial implications for next-generation marine vehicles, particularly in optimizing operational stealth and energy efficiency through intelligent propulsion architecture. Full article
Show Figures

Figure 1

25 pages, 4273 KiB  
Review
How Can Autonomous Truck Systems Transform North Dakota’s Agricultural Supply Chain Industry?
by Emmanuel Anu Thompson, Jeremy Mattson, Pan Lu, Evans Tetteh Akoto, Solomon Boadu, Herman Benjamin Atuobi, Kwabena Dadson and Denver Tolliver
Future Transp. 2025, 5(3), 100; https://doi.org/10.3390/futuretransp5030100 - 1 Aug 2025
Viewed by 137
Abstract
The swift advancements in autonomous vehicle systems have facilitated their implementation across various industries, including agriculture. However, studies primarily focus on passenger vehicles, with fewer examining autonomous trucks. Therefore, this study reviews autonomous truck systems implementation in North Dakota’s agricultural industry to develop [...] Read more.
The swift advancements in autonomous vehicle systems have facilitated their implementation across various industries, including agriculture. However, studies primarily focus on passenger vehicles, with fewer examining autonomous trucks. Therefore, this study reviews autonomous truck systems implementation in North Dakota’s agricultural industry to develop comprehensive technology readiness frameworks and strategic deployment approaches. The review integrates systematic literature review and event history analysis of 52 studies, categorized using Social–Ecological–Technological Systems framework across six dimensions: technological, economic, social change, legal, environmental, and implementation challenges. The Technology Readiness Level (TRL) analysis reveals 39.5% of technologies achieving commercial readiness (TRL 8–9), including GPS/RTK positioning and V2V communication demonstrated through Minn-Dak Farmers Cooperative deployments, while gaps exist in TRL 4–6 technologies, particularly cold-weather operations. Nonetheless, challenges remain, including legislative fragmentation, inadequate rural infrastructure, and barriers to public acceptance. The study provides evidence-based recommendations that support a strategic three-phase deployment approach for the adoption of autonomous trucks in agriculture. Full article
Show Figures

Figure 1

20 pages, 15301 KiB  
Article
Application of CH241 Stainless Steel with High Concentration of Mn and Mo: Microstructure, Mechanical Properties, and Tensile Fatigue Life
by Ping-Yu Hsieh, Bo-Ding Wu and Fei-Yi Hung
Metals 2025, 15(8), 863; https://doi.org/10.3390/met15080863 (registering DOI) - 1 Aug 2025
Viewed by 185
Abstract
A novel stainless steel with high Mn and Mo content (much higher than traditional stainless steel), designated CH241SS, was developed as a potential replacement for Cr-Mo-V alloy steel in the cold forging applications of precision industry. Through carbon reduction in an environmentally friendly [...] Read more.
A novel stainless steel with high Mn and Mo content (much higher than traditional stainless steel), designated CH241SS, was developed as a potential replacement for Cr-Mo-V alloy steel in the cold forging applications of precision industry. Through carbon reduction in an environmentally friendly manner and a two-stage heat treatment process, the hardness of as-cast CH241 was tailored from HRC 37 to HRC 29, thereby meeting the industrial specifications of cold-forged steel (≤HRC 30). X-ray diffraction analysis of the as-cast microstructure revealed the presence of a small amount of ferrite, martensite, austenite, and alloy carbides. After heat treatment, CH241 exhibited a dual-phase microstructure consisting of ferrite and martensite with dispersed Cr(Ni-Mo) alloy carbides. The CH241 alloy demonstrated excellent high-temperature stability. No noticeable softening occurred after 72 h for the second-stage heat treatment. Based on the mechanical and room-temperature tensile fatigue properties of CH241-F (forging material) and CH241-ST (soft-tough heat treatment), it was demonstrated that the CH241 stainless steel was superior to the traditional stainless steel 4xx in terms of strength and fatigue life. Therefore, CH241 stainless steel can be introduced into cold forging and can be used in precision fatigue application. The relevant data include composition design and heat treatment properties. This study is an important milestone in assisting the upgrading of the vehicle and aerospace industries. Full article
(This article belongs to the Special Issue Advanced High Strength Steels: Properties and Applications)
Show Figures

Graphical abstract

20 pages, 3979 KiB  
Article
Theoretical Study of CO Oxidation on Pt Single-Atom Catalyst Decorated C3N Monolayers with Nitrogen Vacancies
by Suparada Kamchompoo, Yuwanda Injongkol, Nuttapon Yodsin, Rui-Qin Zhang, Manaschai Kunaseth and Siriporn Jungsuttiwong
Sci 2025, 7(3), 101; https://doi.org/10.3390/sci7030101 - 1 Aug 2025
Viewed by 226
Abstract
Carbon monoxide (CO) is a major toxic gas emitted from vehicle exhaust, industrial processes, and incomplete fuel combustion, posing serious environmental and health risks. Catalytic oxidation of CO into less harmful CO2 is an effective strategy to reduce these emissions. In this [...] Read more.
Carbon monoxide (CO) is a major toxic gas emitted from vehicle exhaust, industrial processes, and incomplete fuel combustion, posing serious environmental and health risks. Catalytic oxidation of CO into less harmful CO2 is an effective strategy to reduce these emissions. In this study, we investigated the catalytic performance of platinum (Pt) single atoms doped on C3N monolayers with various vacancy defects, including single carbon (CV) and nitrogen (NV) vacancies, using density functional theory (DFT) calculations. Our results demonstrate that Pt@NV-C3N exhibited the most favorable catalytic properties, with the highest O2 adsorption energy (−3.07 eV). This performance significantly outperforms Pt atoms doped at other vacancies. It can be attributed to the strong binding between Pt and nitrogen vacancies, which contributes to its excellent resistance to Pt aggregation. CO oxidation on Pt@NV-C3N proceeds via the Eley–Rideal (ER2) mechanism with a low activation barrier of 0.41 eV for the rate-determining step, indicating high catalytic efficiency at low temperatures. These findings suggest that Pt@NV-C3N is a promising candidate for CO oxidation, contributing to developing cost-effective and environmentally sustainable catalysts. The strong binding of Pt atoms to the nitrogen vacancies prevents aggregation, ensuring the stability and durability of the catalyst. The kinetic modeling further revealed that the ER2 mechanism offers the highest reaction rate constants over a wide temperature range (273–700 K). The low activation energy barrier also facilitates CO oxidation at lower temperatures, addressing critical challenges in automotive and industrial pollution control. This study provides valuable theoretical insights for designing advanced single-atom catalysts for environmental remediation applications. Full article
Show Figures

Graphical abstract

16 pages, 2174 KiB  
Article
TwinFedPot: Honeypot Intelligence Distillation into Digital Twin for Persistent Smart Traffic Security
by Yesin Sahraoui, Abdessalam Mohammed Hadjkouider, Chaker Abdelaziz Kerrache and Carlos T. Calafate
Sensors 2025, 25(15), 4725; https://doi.org/10.3390/s25154725 - 31 Jul 2025
Viewed by 255
Abstract
The integration of digital twins (DTs) with intelligent traffic systems (ITSs) holds strong potential for improving real-time management in smart cities. However, securing digital twins remains a significant challenge due to the dynamic and adversarial nature of cyber–physical environments. In this work, we [...] Read more.
The integration of digital twins (DTs) with intelligent traffic systems (ITSs) holds strong potential for improving real-time management in smart cities. However, securing digital twins remains a significant challenge due to the dynamic and adversarial nature of cyber–physical environments. In this work, we propose TwinFedPot, an innovative digital twin-based security architecture that combines honeypot-driven data collection with Zero-Shot Learning (ZSL) for robust and adaptive cyber threat detection without requiring prior sampling. The framework leverages Inverse Federated Distillation (IFD) to train the DT server, where edge-deployed honeypots generate semantic predictions of anomalous behavior and upload soft logits instead of raw data. Unlike conventional federated approaches, TwinFedPot reverses the typical knowledge flow by distilling collective intelligence from the honeypots into a central teacher model hosted on the DT. This inversion allows the system to learn generalized attack patterns using only limited data, while preserving privacy and enhancing robustness. Experimental results demonstrate significant improvements in accuracy and F1-score, establishing TwinFedPot as a scalable and effective defense solution for smart traffic infrastructures. Full article
Show Figures

Figure 1

17 pages, 460 KiB  
Article
Efficient Multi-Layer Credential Revocation Scheme for 6G Using Dynamic RSA Accumulators and Blockchain
by Guangchao Wang, Yanlong Zou, Jizhe Zhou, Houxiao Cui and Ying Ju
Electronics 2025, 14(15), 3066; https://doi.org/10.3390/electronics14153066 - 31 Jul 2025
Viewed by 195
Abstract
As a new generation of mobile communication networks, 6G security faces many new security challenges. Vehicle to Everything (V2X) will be an important part of 6G. In V2X, connected and automated vehicles (CAVs) need to frequently share data with other vehicles and infrastructures. [...] Read more.
As a new generation of mobile communication networks, 6G security faces many new security challenges. Vehicle to Everything (V2X) will be an important part of 6G. In V2X, connected and automated vehicles (CAVs) need to frequently share data with other vehicles and infrastructures. Therefore, identity revocation technology in the authentication is an important way to secure CAVs and other 6G scenario applications. This paper proposes an efficient credential revocation scheme with a four-layer architecture. First, a rapid pre-filtration layer is constructed based on the cuckoo filter, responsible for the initial screening of credentials. Secondly, a directed routing layer and the precision judgement layer are designed based on the consistency hash and the dynamic RSA accumulator. By proposing the dynamic expansion of the RSA accumulator and load-balancing algorithm, a smaller and more stable revocation delay can be achieved when many users and terminal devices access 6G. Finally, a trusted storage layer is built based on the blockchain, and the key revocation parameters are uploaded to the blockchain to achieve a tamper-proof revocation mechanism and trusted data traceability. Based on this architecture, this paper also proposes a detailed identity credential revocation and verification process. Compared to existing solutions, this paper’s solution has a combined average improvement of 59.14% in the performance of the latency of the cancellation of the inspection, and the system has excellent load balancing, with a standard deviation of only 11.62, and the maximum deviation is controlled within the range of ±4%. Full article
(This article belongs to the Special Issue Connected and Autonomous Vehicles in Mixed Traffic Systems)
Show Figures

Figure 1

27 pages, 6715 KiB  
Article
Structural Component Identification and Damage Localization of Civil Infrastructure Using Semantic Segmentation
by Piotr Tauzowski, Mariusz Ostrowski, Dominik Bogucki, Piotr Jarosik and Bartłomiej Błachowski
Sensors 2025, 25(15), 4698; https://doi.org/10.3390/s25154698 - 30 Jul 2025
Viewed by 317
Abstract
Visual inspection of civil infrastructure for structural health assessment, as performed by structural engineers, is expensive and time-consuming. Therefore, automating this process is highly attractive, which has received significant attention in recent years. With the increasing capabilities of computers, deep neural networks have [...] Read more.
Visual inspection of civil infrastructure for structural health assessment, as performed by structural engineers, is expensive and time-consuming. Therefore, automating this process is highly attractive, which has received significant attention in recent years. With the increasing capabilities of computers, deep neural networks have become a standard tool and can be used for structural health inspections. A key challenge, however, is the availability of reliable datasets. In this work, the U-net and DeepLab v3+ convolutional neural networks are trained on a synthetic Tokaido dataset. This dataset comprises images representative of data acquired by unmanned aerial vehicle (UAV) imagery and corresponding ground truth data. The data includes semantic segmentation masks for both categorizing structural elements (slabs, beams, and columns) and assessing structural damage (concrete spalling or exposed rebars). Data augmentation, including both image quality degradation (e.g., brightness modification, added noise) and image transformations (e.g., image flipping), is applied to the synthetic dataset. The selected neural network architectures achieve excellent performance, reaching values of 97% for accuracy and 87% for Mean Intersection over Union (mIoU) on the validation data. It also demonstrates promising results in the semantic segmentation of real-world structures captured in photographs, despite being trained solely on synthetic data. Additionally, based on the obtained results of semantic segmentation, it can be concluded that DeepLabV3+ outperforms U-net in structural component identification. However, this is not the case in the damage identification task. Full article
(This article belongs to the Special Issue AI-Assisted Condition Monitoring and Fault Diagnosis)
Show Figures

Figure 1

17 pages, 1597 KiB  
Article
Harmonized Autonomous–Human Vehicles via Simulation for Emissions Reduction in Riyadh City
by Ali Louati, Hassen Louati and Elham Kariri
Future Internet 2025, 17(8), 342; https://doi.org/10.3390/fi17080342 - 30 Jul 2025
Viewed by 250
Abstract
The integration of autonomous vehicles (AVs) into urban transportation systems has significant potential to enhance traffic efficiency and reduce environmental impacts. This study evaluates the impact of different AV penetration scenarios (0%, 10%, 30%, 50%) on traffic performance and carbon emissions along Prince [...] Read more.
The integration of autonomous vehicles (AVs) into urban transportation systems has significant potential to enhance traffic efficiency and reduce environmental impacts. This study evaluates the impact of different AV penetration scenarios (0%, 10%, 30%, 50%) on traffic performance and carbon emissions along Prince Mohammed bin Salman bin Abdulaziz Road in Riyadh, Saudi Arabia. Using microscopic simulation (SUMO) based on real-world datasets, we assess key performance indicators such as travel time, stop frequency, speed, and CO2 emissions. Results indicate notable improvements with increasing AV deployment, including up to 25.5% reduced travel time and 14.6% lower emissions at 50% AV penetration. Coordinated AV behavior was approximated using adjusted simulation parameters and Python-based APIs, effectively modeling vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), and vehicle-to-network (V2N) communications. These findings highlight the benefits of harmonized AV–human vehicle interactions, providing a scalable and data-driven framework applicable to smart urban mobility planning. Full article
(This article belongs to the Section Smart System Infrastructure and Applications)
Show Figures

Figure 1

18 pages, 1040 KiB  
Article
A TDDPG-Based Joint Optimization Method for Hybrid RIS-Assisted Vehicular Integrated Sensing and Communication
by Xinren Wang, Zhuoran Xu, Qin Wang, Yiyang Ni and Haitao Zhao
Electronics 2025, 14(15), 2992; https://doi.org/10.3390/electronics14152992 - 27 Jul 2025
Viewed by 285
Abstract
This paper proposes a novel Twin Delayed Deep Deterministic Policy Gradient (TDDPG)-based joint optimization algorithm for hybrid reconfigurable intelligent surface (RIS)-assisted integrated sensing and communication (ISAC) systems in Internet of Vehicles (IoV) scenarios. The proposed system model achieves deep integration of sensing and [...] Read more.
This paper proposes a novel Twin Delayed Deep Deterministic Policy Gradient (TDDPG)-based joint optimization algorithm for hybrid reconfigurable intelligent surface (RIS)-assisted integrated sensing and communication (ISAC) systems in Internet of Vehicles (IoV) scenarios. The proposed system model achieves deep integration of sensing and communication by superimposing the communication and sensing signals within the same waveform. To decouple the complex joint design problem, a dual-DDPG architecture is introduced, in which one agent optimizes the transmit beamforming vector and the other adjusts the RIS phase shift matrix. Both agents share a unified reward function that comprehensively considers multi-user interference (MUI), total transmit power, RIS noise power, and sensing accuracy via the CRLB constraint. Simulation results demonstrate that the proposed TDDPG algorithm significantly outperforms conventional DDPG in terms of sum rate and interference suppression. Moreover, the adoption of a hybrid RIS enables an effective trade-off between communication performance and system energy efficiency, highlighting its practical deployment potential in dynamic IoV environments. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

Back to TopTop