Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (435)

Search Parameters:
Keywords = vegan studies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1699 KiB  
Systematic Review
Effect of Plant-Based Proteins on Recovery from Resistance Exercise-Induced Muscle Damage in Healthy Young Adults—A Systematic Review
by Karuppasamy Govindasamy, Koulla Parpa, Borko Katanic, Cain C. T. Clark, Masilamani Elayaraja, Ibnu Noufal Kambitta Valappil, Corina Dulceanu, Vlad Adrian Geantă, Gloria Alexandra Tolan and Hassane Zouhal
Nutrients 2025, 17(15), 2571; https://doi.org/10.3390/nu17152571 (registering DOI) - 7 Aug 2025
Abstract
Background: Plant-based protein supplementation in supporting muscle recovery following resistance exercise remains an area of growing interest, particularly among vegan athletes, as a potential alternative to animal-based proteins. This systematic review aimed to evaluate the effectiveness of plant-based proteins on recovery from resistance [...] Read more.
Background: Plant-based protein supplementation in supporting muscle recovery following resistance exercise remains an area of growing interest, particularly among vegan athletes, as a potential alternative to animal-based proteins. This systematic review aimed to evaluate the effectiveness of plant-based proteins on recovery from resistance exercise-induced muscle damage in healthy young adults. Methods: A systematic and comprehensive search was administered in eight databases up to 1 May 2025, identifying 1407 articles. Following deduplication and screening, 24 studies met the eligibility criteria, including 22 randomized controlled trials and 2 non-randomized studies, with the majority from high income western countries. Results: Interventions primarily involved soy, pea, rice, hemp, potato, and blended plant protein sources, with doses ranging from 15 to 50 g, typically administered post resistance exercise. Outcomes assessed included muscle protein synthesis (MPS), delayed-onset muscle soreness (DOMS), inflammatory biomarkers, muscle function, and fatigue. The review findings reaffirm that single-source plant proteins generally offer limited benefits compared to animal proteins such as whey, particularly in acute recovery settings, a limitation well-documented consistently in the literature. However, our synthesis highlights that well-formulated plant protein blends (e.g., combinations of pea, rice, and canola) can stimulate MPS at levels comparable to whey when consumed at adequate doses (≥30 g with ~2.5 g leucine). Some studies also reported improvements in subjective recovery outcomes and reductions in muscle damage biomarkers with soy or pea protein. However, overall evidence remains limited by small sample sizes, moderate to high risk of bias, and heterogeneity in intervention protocols, protein formulations, and outcome measures. Risk of bias assessments revealed concerns related to detection and reporting bias in nearly half the studies. Due to clinical and methodological variability, a meta-analysis was not conducted. Conclusion: plant-based proteins particularly in the form of protein blends and when dosed appropriately, may support muscle recovery in resistance-trained individuals and offer a viable alternative to animal-based proteins. However, further high-quality, long-term trials in vegan populations are needed to establish definitive recommendations for plant protein use in sports nutrition. Full article
(This article belongs to the Special Issue Nutrition Strategy and Resistance Training)
20 pages, 753 KiB  
Article
Production of Vegan Ice Cream: Enrichment with Fermented Hazelnut Cake
by Levent Yurdaer Aydemir, Hande Demir, Zafer Erbay, Elif Kılıçarslan, Pelin Salum and Melike Beyza Ozdemir
Fermentation 2025, 11(8), 454; https://doi.org/10.3390/fermentation11080454 - 4 Aug 2025
Viewed by 305
Abstract
The growing demand for sustainable plant-based dairy alternatives has spurred interest in valorizing agro-industrial byproducts like hazelnut cake, a protein-rich byproduct of oil extraction. This study developed formulations for vegan ice cream using unfermented (HIC) and Aspergillus oryzae-fermented hazelnut cake (FHIC), comparing [...] Read more.
The growing demand for sustainable plant-based dairy alternatives has spurred interest in valorizing agro-industrial byproducts like hazelnut cake, a protein-rich byproduct of oil extraction. This study developed formulations for vegan ice cream using unfermented (HIC) and Aspergillus oryzae-fermented hazelnut cake (FHIC), comparing their physicochemical, functional, and sensory properties to conventional dairy ice cream (DIC). Solid-state fermentation (72 h, 30 °C) enhanced the cake’s bioactive properties, and ice creams were characterized for composition, texture, rheology, melting behavior, antioxidant activity, and enzyme inhibition pre- and post-in vitro digestion. The results indicate that FHIC had higher protein content (64.64% vs. 58.02% in HIC) and unique volatiles (e.g., benzaldehyde and 3-methyl-1-butanol). While DIC exhibited superior overrun (15.39% vs. 4.01–7.00% in vegan samples) and slower melting, FHIC demonstrated significantly higher post-digestion antioxidant activity (4.73 μmol TE/g DPPH vs. 1.44 in DIC) and angiotensin-converting enzyme (ACE) inhibition (4.85–7.42%). Sensory evaluation ranked DIC highest for overall acceptability, with FHIC perceived as polarizing due to pronounced flavors. Despite textural challenges, HIC and FHIC offered nutritional advantages, including 18–30% lower calories and enhanced bioactive compounds. This study highlights fermentation as a viable strategy to upcycle hazelnut byproducts into functional vegan ice creams, although the optimization of texture and flavor is needed for broader consumer acceptance. Full article
(This article belongs to the Topic Fermented Food: Health and Benefit)
Show Figures

Figure 1

20 pages, 545 KiB  
Study Protocol
Can Dietary Supplements Be Linked to a Vegan Diet and Health Risk Modulation During Vegan Pregnancy, Infancy, and Early Childhood? The VedieS Study Protocol for an Explorative, Quantitative, Cross-Sectional Study
by Wolfgang Huber-Schneider, Karl-Heinz Wagner and Ingrid Kiefer
Int. J. Environ. Res. Public Health 2025, 22(8), 1210; https://doi.org/10.3390/ijerph22081210 - 31 Jul 2025
Viewed by 194
Abstract
As veganism becomes more popular, the number of vegan pregnant women and children is steadily increasing. During vegan pregnancy and early childhood, there is a high risk for nutrient deficiencies that may impair child development. External factors, such as healthcare advice, social networks, [...] Read more.
As veganism becomes more popular, the number of vegan pregnant women and children is steadily increasing. During vegan pregnancy and early childhood, there is a high risk for nutrient deficiencies that may impair child development. External factors, such as healthcare advice, social networks, and social environments, that affect the diet of vegan pregnant women, parents, and their children, as well as their approach towards dietary supplementation, have not yet been investigated. Various sources of information, combined with a lack of expertise, sparse food and nutritional health literacy, and qualitatively heterogeneous information provision by medical experts, unsettle vegan pregnant women and parents and affect their dietary choices and potentially the health of their children. The VedieS study aims to investigate potential connections between external influences and associated impacts on a vegan diet and the intake of dietary supplements (DS) of pregnant women and children. Two surveys are being conducted within the study: one targeting 1000 vegan pregnant women and parents, and another targeting 60 experts in each of five healthcare groups: gynecologists, pediatricians, general practitioners, pharmacists, and dietitians. This study is the first to examine how socio-economic, social, and further informational factors influence dietary practices during vegan pregnancy and childhood. It highlights the need for reliable, expert-led guidance, as current information sources are often inconsistent and may put these vulnerable groups at risk. Full article
(This article belongs to the Special Issue Holistic Approach to Pregnancy, Childbirth and Postpartum Period)
Show Figures

Figure 1

27 pages, 8826 KiB  
Article
Comparative Analysis of Composition, Texture, and Sensory Attributes of Commercial Forms of Plant-Based Cheese Analogue Products Available on the Irish Market
by Farhan Ali, James A. O’Mahony, Maurice G. O’Sullivan and Joseph P. Kerry
Foods 2025, 14(15), 2701; https://doi.org/10.3390/foods14152701 - 31 Jul 2025
Viewed by 191
Abstract
The increasing demand for plant-based foods has led to significant growth in the availability, at a retail level, of plant-based cheese analogue products. This study presents the first comprehensive benchmarking of commercially available plant-based cheese analogue (PBCA) products in the Irish market, comparing [...] Read more.
The increasing demand for plant-based foods has led to significant growth in the availability, at a retail level, of plant-based cheese analogue products. This study presents the first comprehensive benchmarking of commercially available plant-based cheese analogue (PBCA) products in the Irish market, comparing them against conventional cheddar and processed dairy cheeses. A total of 16 cheese products were selected from Irish retail outlets, comprising five block-style plant-based analogues, seven slice-style analogues, two cheddar samples, and two processed cheese samples. Results showed that plant-based cheese analogues had significantly lower protein content (0.1–1.7 g/100 g) than cheddar (25 g/100 g) and processed cheese (12.9–18.2 g/100 g) and lacked a continuous protein matrix, being instead stabilized largely by solid fats, starch, and hydrocolloids. While cheddar showed the highest hardness, some plant-based cheeses achieved comparable hardness using texturizing agents but still demonstrated lower tan δmax values, indicating inferior melting behaviour. Thermograms of differential scanning calorimetry presented a consistent single peak at ~20 °C across most vegan-based variants, unlike the dual-phase melting transitions observed in dairy cheeses. Sensory analysis further highlighted strong negative associations between PBCAs and consumer-relevant attributes such as flavour, texture, and overall acceptability. By integrating structural, functional, and sensory findings, this study identifies key formulation and performance deficits across cheese formats and provides direction for targeted improvements in next-generation PBCA product development. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Graphical abstract

17 pages, 3907 KiB  
Article
Safety Validation of Plant-Derived Materials for Skin Application
by Euihyun Kim, Hyo Hyun Seo, Dong Sun Shin, Jihyeok Song, Seon Kyu Yun, Jeong Hun Lee and Sang Hyun Moh
Cosmetics 2025, 12(4), 153; https://doi.org/10.3390/cosmetics12040153 - 21 Jul 2025
Viewed by 601
Abstract
The cosmetic industry faces a critical need to balance commercial innovation with scientific validation, especially regarding the safety and efficacy of raw materials. Plant-derived materials (PDMs) offer a promising alternative to animal-derived ingredients in cosmetics, particularly due to their safety and compliance with [...] Read more.
The cosmetic industry faces a critical need to balance commercial innovation with scientific validation, especially regarding the safety and efficacy of raw materials. Plant-derived materials (PDMs) offer a promising alternative to animal-derived ingredients in cosmetics, particularly due to their safety and compliance with vegan and ethical standards. Unlike compounds such as polydeoxyribonucleotide (PDRN), which is derived from the testis or seminal fluid of Salmonidae species and raises concerns regarding its origin, sustainability, and consumer acceptability, PDMs provide a cleaner, ethically preferable profile. In this study, we evaluated 50 PDM candidates using in vitro cell viability, wound healing, and immunocytochemistry assays, along with primary skin irritation tests in human participants. None of the samples showed harmful effects. Notably, sample Nos. 38 and 42 demonstrated significant wound-healing capacity and upregulated filaggrin expression without causing notable irritation in clinical testing. These findings support the biological activity and safety of specific PDMs as functional cosmetic ingredients. This study presents scientifically validated evidence for plant-based alternatives to animal-derived materials and offers a new milestone in the shift toward sustainable and ethical cosmetic development. By bridging the gap between consumer demand and scientific rigor, this study provides a robust platform for future innovations in vegan cosmetics. Full article
Show Figures

Graphical abstract

22 pages, 914 KiB  
Article
The Effect of an 8-Week Vegan Diet on the Nutritional Status and Performance of Semi-Professional Soccer Players—Results of the VegInSoc Study
by Josefine Nebl, Pauline Bruns, Meike Meier, Frank Mayer, Martin Smollich and Markus Keller
Nutrients 2025, 17(14), 2351; https://doi.org/10.3390/nu17142351 - 17 Jul 2025
Viewed by 1098
Abstract
Background/Objectives: Although there is an increasing interest among athletes in adopting plant-based diets, there is insufficient research available to determine how a vegan diet affects soccer performance. Methods: This interventional pilot study examined the effect of an 8-week vegan diet (VEG, n = [...] Read more.
Background/Objectives: Although there is an increasing interest among athletes in adopting plant-based diets, there is insufficient research available to determine how a vegan diet affects soccer performance. Methods: This interventional pilot study examined the effect of an 8-week vegan diet (VEG, n = 10) on nutritional status and athletic performance in semi-professional soccer players compared to controls (CON, n = 8). The study employed a controlled, non-randomized, longitudinal pilot study design during the season to compare the two groups. Results: Both groups displayed overall differences in nutrient intake, including insufficient energy and carbohydrates (t2: 46.2 [40.3–52.2] En% (VEG) vs. 37.6 [34.1–41.1] En% (CON); p = 0.036, Cohen’s d = 1.321). Notably, biochemical parameters 25(OH)D and ferritin levels fell within the normal ranges for both groups. The VEG group exhibited favorable changes in total and LDL cholesterol levels. Both groups had increased performances on the treadmill over the entire course of the study (VEG: +0.87 km/h (6.6%); CON: +0.96 km/h (7%); p > 0.05). The initial relative VO2max at t0 was comparable between the groups. Primarily due to the significant weight loss in the VEG group (−1.94 kg, p = 0.007) rather than a change in absolute VO2max values, we found an increased relative VO2max in the VEG group, which was significantly different from that of the CON group (57.0 [53.7–60.3] mL/kg/min (VEG) vs. 51.6 [48.1–55.0] mL/kg/min (CON); p = 0.041, Cohen’s d = 1.675). Conclusions: These findings suggest that a short-term vegan diet does not adversely affect training-induced performance improvements and may be suitable for semi-professional soccer players. Full article
(This article belongs to the Collection Plant-Based Diets in Sports Nutrition and Performance)
Show Figures

Figure 1

15 pages, 1325 KiB  
Article
The OMNIVEG Study: Effects of Transitioning from a Traditional to a Vegan Mediterranean Diet on Fat Oxidation During Exercise
by Miguel López-Moreno, Ujué Fresán, Juan Del Coso, Alejandro Muñoz, Millán Aguilar-Navarro, María Teresa Iglesias-López, Francisco J. Amaro-Gahete and Jorge Gutiérrez-Hellín
Nutrients 2025, 17(14), 2274; https://doi.org/10.3390/nu17142274 - 9 Jul 2025
Viewed by 622
Abstract
Background: This study aimed to evaluate the changes in fat utilization associated with transitioning from a traditional to a vegan Mediterranean diet in healthy, physically active men during a ramp exercise test. Methods: In a controlled crossover design, fourteen healthy, physically active men [...] Read more.
Background: This study aimed to evaluate the changes in fat utilization associated with transitioning from a traditional to a vegan Mediterranean diet in healthy, physically active men during a ramp exercise test. Methods: In a controlled crossover design, fourteen healthy, physically active men followed a traditional Mediterranean diet for three weeks (baseline). Then, participants transitioned to a four-week isocaloric vegan version of the Mediterranean diet, matched for macronutrient distribution but excluding all animal foods. Immediately after each dietary intervention, participants completed an incremental exercise test (from 30% to 70% of VO2peak) on a cycle ergometer in a fasted state to determine peak fat oxidation (PFO) and its associated exercise intensity (Fatmax). Exercise heart rate and the rating of perceived exertion were also recorded at each exercise intensity. Results: The traditional and vegan Mediterranean diets provided comparable amounts of energy (2599.6 ± 180.8 and 2634.9 ± 148.3 kcal/day, p = 0.140) and total fat (97.0 ± 17.8 and 99.0 ± 13.2 g/day; p = 0.620). However, the vegan Mediterranean diet contained a lower proportion of saturated fat (25.2 ± 6.8 vs. 13.6 ± 4.4% of total fat, p < 0.010). Still, the dietary transition was not associated with modifications in PFO (0.323 ± 0.153 and 0.347 ± 0.147 g/min; p = 0.678) or Fatmax (40.51 ± 7.30 and 40.51 ± 10.71%VO2peak; p = 1.000) during exercise. Moreover, the dietary transition did not significantly change the response curves across exercise intensities for fat oxidation (p = 0.553), heart rate (p = 0.280), or the rating of perceived exertion (p = 0.433). Conclusions: Switching from a traditional to a vegan Mediterranean diet did not affect fat oxidation, exercise intensity at peak fat oxidation, or perceptual responses during exercise in healthy, active men. These findings suggest that physically active individuals can adopt a vegan version of the Mediterranean diet without compromising fat utilization during submaximal aerobic exercise. Clinical Trial Registry: NCT06008886. Date of registration: 28 July 2023. Full article
(This article belongs to the Special Issue Reducing the Burden of Chronic Diseases Through Plant-Based Diets)
Show Figures

Figure 1

9 pages, 429 KiB  
Article
The Problem of the Presence of DNA in Cosmetic and Medicinal Products Obtained from Animals on the CITES List
by Aleksandra Figura, Magdalena Gryzinska and Andrzej Jakubczak
Genes 2025, 16(7), 805; https://doi.org/10.3390/genes16070805 - 8 Jul 2025
Viewed by 298
Abstract
Background: The illegal trade in wildlife remains a critical threat to biodiversity, prompting the development of international regulatory frameworks such as the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). One of the key challenges in enforcement is [...] Read more.
Background: The illegal trade in wildlife remains a critical threat to biodiversity, prompting the development of international regulatory frameworks such as the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). One of the key challenges in enforcement is the detection of CITES-listed species in highly processed consumer goods. Methods: This study investigates the use of molecular techniques to detect animal DNA in two selected commercially available medicinal products—a balm and a gel—marketed with ingredients suggestive of protected species such as the brown bear (Ursus arctos) and the medicinal leech (Hirudo medicinalis). Results: Although DNA from these target species was not detected, the analysis revealed the presence of genetic material from the American mink (Neovison vison) and domestic pig (Sus scrofa), indicating the undeclared use of animal-derived substances. While limited in scope, these findings suggest potential ethical and transparency concerns, particularly for consumers adhering to vegetarian, vegan, or religious dietary practices. Conclusions: The study illustrates the feasibility of applying DNA-based screening methods in complex, degraded matrices and their potential as supportive tools in consumer product assessment. However, broader studies are necessary before drawing general regulatory or conservation conclusions. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

27 pages, 1374 KiB  
Review
Increasing Life Expectancy with Plant Polyphenols: Lessons from the Mediterranean and Japanese Diets
by Marco Fiore, Anton B. Tonchev, Ruzha Z. Pancheva, Tetsumori Yamashima, Sabrina Venditti, Giampiero Ferraguti and Sergio Terracina
Molecules 2025, 30(13), 2888; https://doi.org/10.3390/molecules30132888 - 7 Jul 2025
Viewed by 947
Abstract
Plant polyphenols have emerged as potent bioactive molecules that can modulate key cellular pathways associated with aging and chronic disorders. The Mediterranean diet and the traditional Japanese style of life are rich in polyphenol-containing foods and beverages, and epidemiological evidence links these dietary [...] Read more.
Plant polyphenols have emerged as potent bioactive molecules that can modulate key cellular pathways associated with aging and chronic disorders. The Mediterranean diet and the traditional Japanese style of life are rich in polyphenol-containing foods and beverages, and epidemiological evidence links these dietary patterns to increased longevity and reduced morbidity. This narrative review examines the chemical description of plant polyphenols, their mechanisms of action, including anti-inflammatory, antioxidant, and hormetic effects, and how supplementation or a diet rich in these compounds may provide further life extension. We discuss the major classes of polyphenols present in the Mediterranean dietary pattern (e.g., resveratrol and hydroxytyrosol) and in the Japanese diet (e.g., epigallocatechin gallate and soy isoflavones), comparing their biological behaviors and cooperative effects on metabolic, cardiovascular, and neurodegenerative conditions. We also examine a few preclinical and clinical studies that explain the beneficial impact of these chemicals on aging-associated biomarkers. Furthermore, both dietary habits are characterized by low consumption of processed foods and sugary carbonated drinks and reduced utilization of deep-frying with linoleic acid-rich oils, a practice that reduces the formation of harmful lipid peroxidation products, notably 4-hydroxynonenal, known to be implicated in accelerating the aging process. The Mediterranean dietary pattern is also characterized by a low/moderate daily consumption of wine, mainly red wine. This work debates emerging evidence addressing issues of bioavailability, dosage optimization, and formulation technologies for polyphenol supplementation, also comparing differences and similarities with the vegan and vegetarian diets. We also explore how these chemicals could modulate epigenetic modifications that affect gene expression patterns pertinent to health and aging. In conclusion, we aim to show a consolidated framework for the comprehension of how plant polyphenols could be utilized in nutritional strategies for potentiating life expectancy while stimulating further research on nutraceutical development. Full article
(This article belongs to the Special Issue Bioactive Phenolic and Polyphenolic Compounds, 3rd Edition)
Show Figures

Figure 1

15 pages, 233 KiB  
Article
Envisioning the Future of Fine Dining: Insights from a Multi-Methods Study in Germany
by Yana Subbotina-Dubinski and Claus-Christian Carbon
Foods 2025, 14(13), 2294; https://doi.org/10.3390/foods14132294 - 28 Jun 2025
Viewed by 400
Abstract
This article investigates predicted future developments in fine dining using a mixed-methods approach rooted in German gastronomic culture. By conducting an inductive media content analysis and ten semi-structured expert interviews with leading figures in Germany’s high-end food sector, we applied a qualitative mixed-methods [...] Read more.
This article investigates predicted future developments in fine dining using a mixed-methods approach rooted in German gastronomic culture. By conducting an inductive media content analysis and ten semi-structured expert interviews with leading figures in Germany’s high-end food sector, we applied a qualitative mixed-methods approach. The study was based exclusively on data collected in 2018 and 2019, deliberately excluding pandemic-related developments in order to focus on long-term structural and cultural trends in fine dining. We identified two core thematic clusters: one related to sustainable food practices (ecology/sustainability, regionality, seasonality, from-farm-to-table, and vegetarianism/veganism) and the other to experiential dimensions of dining (experience, topic-based concept, and storytelling). Our findings contribute to the academic discussion on culinary futures and provide grounded insights into how fine dining is likely to evolve in response to broader societal, environmental, and cultural shifts. This study fills a significant research gap by systematically mapping emerging restaurant concepts based on non-COVID data, making it a valuable reference for scholars and practitioners alike. Full article
17 pages, 5500 KiB  
Article
Biocontrol Ability Against Harmful Microbial Contamination of Vegan Mortadella with an Ingredient of Oat Fermented by Lactiplantibacillus plantarum
by Ana Moreno, Alberto Gonçalves, Mario Riolo, Victor Dopazo, Jorge Calpe and Giuseppe Meca
Foods 2025, 14(13), 2195; https://doi.org/10.3390/foods14132195 - 23 Jun 2025
Viewed by 433
Abstract
The rising demand for vegan products calls for new plant-based antimicrobial preservation methods. This study evaluates an antifungal ingredient obtained by fermenting oat drink with lactic acid bacteria to extend vegan mortadella’s shelf life. In vitro tests showed antimicrobial effects against Aspergillus flavus [...] Read more.
The rising demand for vegan products calls for new plant-based antimicrobial preservation methods. This study evaluates an antifungal ingredient obtained by fermenting oat drink with lactic acid bacteria to extend vegan mortadella’s shelf life. In vitro tests showed antimicrobial effects against Aspergillus flavus, Penicillium commune, and Listeria monocytogenes (inhibition zones: 2–5 mm). The enrichment of the oat drink culture medium with additional nutrients enhanced fermentation performance and increased antifungal activity. The fermented culture medium with the highest antimicrobial activity was used to develop a bioactive ingredient for the preservation of vegan mortadella conservation. Adding 3% of this ingredient to vegan mortadella improved microbial stability, reducing mesophilic bacteria by 2.5 Log10 CFU/g and increasing lactic acid bacteria. Lower pH and water activity changes were observed but remained within quality standards. Contamination assays showed a consistent reduction of A. flavus over 7 days, while P. commune and L. monocytogenes dropped below detection within 2 days. In contrast, control samples maintained contamination levels near 3.0 Log10 CFU/g. These findings support the potential of fermented oat-based ingredients as effective, natural preservatives for vegan foods. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

18 pages, 6033 KiB  
Article
Analysis of the Development and Thermal Properties of Chitosan Nanoparticle-Treated Palm Oil: An Experimental Investigation
by Varadharaja Kirthika, Chanaka Galpaya, Ashan Induranga, Amanda Sajiwanie, Vimukthi Vithanage and Kaveenga Rasika Koswattage
Nanomaterials 2025, 15(13), 972; https://doi.org/10.3390/nano15130972 - 22 Jun 2025
Viewed by 491
Abstract
This study is an effort to optimize the thermal properties of refined, bleached, and deodorized (RBD) oil by incorporating bionanoparticles. This study investigates the impact on thermal conductivity and thermal diffusivity by incorporating chitosan nanoparticles (CS-NPs) at different temperatures with varying weight fractions [...] Read more.
This study is an effort to optimize the thermal properties of refined, bleached, and deodorized (RBD) oil by incorporating bionanoparticles. This study investigates the impact on thermal conductivity and thermal diffusivity by incorporating chitosan nanoparticles (CS-NPs) at different temperatures with varying weight fractions of NPs. To the best of our knowledge, these synthesized CS-NPs from oyster mushrooms (Pleurotus ostreatus) and commercial marine-sourced CS-NPs are used for the first time to prepare nanofluids. These nanofluids offer high potential for industrial applications due to their biodegradability, biocompatibility, and nontoxicity. Fungal-sourced chitosan is a vegan-friendly alternative and does not contain allergic compounds, such as marine-sourced chitosan. The CS-NPs were synthesized using a chemical and mechanical treatment process at three different amplitudes, and CS-NPs at amplitude 80 were selected to prepare the nanofluid. Chitin, chitosan, and CS-NPs were characterized by the FTIR-ATR method, while the size and morphology of the CNs were analyzed by SEM. Thermal conductivity and thermal diffusivity of nanofluids and base fluid were measured using a multifunctional thermal conductivity meter (Flucon LAMBDA thermal conductivity meter) by ASTM D7896-19 within the temperature range 40–160 °C with step size 20. The thermal conductivity values were compared between commercial CS-NPs and synthesized CS-NPs treated with RBD palm olein with different weight percentages (0.01, 0.05, and 0.1 wt.%). It was confirmed that the thermal properties were enhanced in both kinds of nanoparticles added to RBD palm olein, and higher enhancement was observed in fungal-sourced CS-NPs treated with RBD palm olein. Maximum enhancement of thermal conductivity of commercial and synthesized CS-NPs treated with RBD palm olein were 4.28% and 7.33%, respectively, at 0.05 wt.%. Enhanced thermal conductivity of RBD palm olein by the addition of CS-NPs facilitates more effective heat transfer, resulting in quicker and more consistent cooking and other potential heat transfer applications. Full article
Show Figures

Figure 1

21 pages, 3123 KiB  
Article
The Impact of Starches from Various Botanical Origins on the Functional and Mechanical Properties of Anhydrous Lotion Body Bars
by Agnieszka Kulawik-Pióro, Beata Fryźlewicz-Kozak, Iwona Tworzydło, Joanna Kruk and Anna Ptaszek
Polymers 2025, 17(13), 1731; https://doi.org/10.3390/polym17131731 - 21 Jun 2025
Viewed by 515
Abstract
Starch, as a natural, low-cost, and vegan-friendly raw material, aligns well with the growing demand for sustainable, zero-waste, and waterless cosmetic products. Its biodegradability and natural origin allow for minimal environmental impact during production and disposal. Anhydrous lotion body bars, solid and water-free [...] Read more.
Starch, as a natural, low-cost, and vegan-friendly raw material, aligns well with the growing demand for sustainable, zero-waste, and waterless cosmetic products. Its biodegradability and natural origin allow for minimal environmental impact during production and disposal. Anhydrous lotion body bars, solid and water-free alternatives to traditional moisturizers, offer high concentrations of active ingredients that are more effective and have a longer shelf life. Their solid form enables packaging in paper-based containers, reducing plastic waste. To address formulation challenges such as excessive greasiness, poor absorption, or lack of structural stability, which are often associated with the high oil content of anhydrous body lotion bars, starch may serve as a promising natural additive. The aim of this study was to optimize the formulation of an innovative starch-based anhydrous lotion bar. For this purpose, physicochemical analyses of starches from various botanical sources (corn, rice, tapioca, waxy corn and potato) were performed, along with evaluations of the functional (including commercially acceptable form, hardness sufficient for application, product stability, reduced greasiness and stickiness) and mechanical properties of the resulting bars. Additionally, the rheological behavior was described using the De Kee model. The results indicate that a 2.5% starch addition, regardless of its botanical origin, provides the best balance between viscosity and ease of application. Moreover, starches with a low moisture content and high oil absorption capacity effectively reduce the greasy skin sensation. These findings demonstrate the potential of starch as a natural multifunctional additive in the development of stable, user-friendly anhydrous lotion body bars. Full article
Show Figures

Figure 1

26 pages, 1891 KiB  
Article
Developing Novel Plant-Based Probiotic Beverages: A Study on Viability and Physicochemical and Sensory Stability
by Concetta Condurso, Maria Merlino, Anthea Miller, Ambra Rita Di Rosa, Francesca Accetta, Michelangelo Leonardi, Nicola Cicero and Teresa Gervasi
Foods 2025, 14(12), 2148; https://doi.org/10.3390/foods14122148 - 19 Jun 2025
Viewed by 861
Abstract
Consumer demand for plant-based functional foods, especially probiotic beverages, has increased due to their health benefits and suitability as dairy-free alternatives. This study assessed, through a factorial combination, the stability of plant-based extracts (avocado, ginger, and tropical) individually inoculated with three commercial Lactobacillus [...] Read more.
Consumer demand for plant-based functional foods, especially probiotic beverages, has increased due to their health benefits and suitability as dairy-free alternatives. This study assessed, through a factorial combination, the stability of plant-based extracts (avocado, ginger, and tropical) individually inoculated with three commercial Lactobacillus strains (L. casei, L. plantarum, L. reuteri) and stored under refrigerated conditions during both primary (PSL) and secondary shelf life (SSL). Product shelf life was defined by probiotic viability, considering the functional threshold (≥6 log CFU/mL), which was maintained across all formulations throughout the storage period. Physicochemical parameters, including pH, titratable acidity, and colour, as well as volatile profile, remained stable, with only minor variations depending on the matrix and bacterial strain. Sensory evaluations (triangle and acceptability tests) confirmed that the probiotic juices were acceptable to consumers. Overall, the results demonstrate the feasibility of producing non-fermented, plant-based probiotic beverages that retain their functional properties and meet consumer sensory expectations, offering a promising alternative for vegan and lactose-intolerant individuals. Full article
Show Figures

Figure 1

19 pages, 2028 KiB  
Article
Characterization of a Vaginal Limosilactobacillus Strain Producing Anti-Virulence Postbiotics: A Potential Probiotic Candidate
by Tsvetelina Paunova-Krasteva, Petya D. Dimitrova, Dayana Borisova, Lili Dobreva, Nikoleta Atanasova and Svetla Danova
Fermentation 2025, 11(6), 350; https://doi.org/10.3390/fermentation11060350 - 16 Jun 2025
Viewed by 666
Abstract
The search for probiotics to help limit antibiotic resistance is a major scientific challenge. The exploration of Lactobacillus postbiotics represents a promising approach to prevent pathogen invasion. With this aim, Limosilactobacillus fermentum Lf53, with a broad-spectrum of antagonistic activity, was characterized as a [...] Read more.
The search for probiotics to help limit antibiotic resistance is a major scientific challenge. The exploration of Lactobacillus postbiotics represents a promising approach to prevent pathogen invasion. With this aim, Limosilactobacillus fermentum Lf53, with a broad-spectrum of antagonistic activity, was characterized as a candidate probiotic strain with promising transit tolerance and broad spectrum of activity. A study on growth and postbiotic production in modified MRS broth with different carbohydrates and its vegan variant was carried out. This study presents a comprehensive approach to characterizing the anti-virulence properties of postbiotics derived from Lf53. The promising antibacterial, antibiofilm, and anti-quorum sensing activities of the cell-free supernatants (CFS) were assessed as part of the probiotic’s barrier mechanisms. Biofilm inhibition of P. aeruginosa revealed remarkable suppressive effects exerted by the three tested postbiotics, two of which (nCFS and aCFS) exhibited over 50% inhibition and more than 60% for lysates. The postbiotics’ influence on the production of violacein and pyocyanin pigments of Chromobacterium violaceum and Pseudomonas aeruginosa, which are markers for quorum sensing, highlighted their potential in regulating pathogenic mechanisms. The Lf53 lysates showed the most significant inhibition of violacein production across multiple assays, showing 29.8% reduction. Regarding pyocyanin suppression, the postbiotics also demonstrated strong activity. These are the first reported data on complex postbiotics (metabiotics and parabiotics) demonstrating their potential as anti-virulence agents to help combat pathogens associated with antibiotic-resistant infections. Full article
Show Figures

Figure 1

Back to TopTop