Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = vapor-selective membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1513 KiB  
Article
Effect of Humidity on the Energy and CO2 Separation Characteristics of Membranes in Direct Air Capture Technology
by Kamil Niesporek, Grzegorz Wiciak, Janusz Kotowicz and Oliwia Baszczeńska
Energies 2025, 18(13), 3422; https://doi.org/10.3390/en18133422 - 29 Jun 2025
Viewed by 473
Abstract
Membrane-based direct air capture of CO2 (m-DAC) is a promising solution for atmospheric decarbonization. Despite growing interest, the impact of relative air humidity on the performance of m-DAC systems is often neglected in the literature. This study presents detailed parametric analyses that [...] Read more.
Membrane-based direct air capture of CO2 (m-DAC) is a promising solution for atmospheric decarbonization. Despite growing interest, the impact of relative air humidity on the performance of m-DAC systems is often neglected in the literature. This study presents detailed parametric analyses that take into account humidity variability and several hypothetical scenarios regarding membrane selectivity toward water vapor. Specifically, cases were considered where the permeance of H2O relative to CO2 was assumed to be 0.5, 2, and 5 times higher, which allowed for a systematic assessment of the impact of relative humidity on process performance. The calculations were carried out both for membranes with assumed separation parameters and for the PolyActiveTM membrane, enabling a realistic evaluation of the influence of atmospheric conditions on the process. The results show that an increase in humidity in the analyzed range from 0 to 80% can lead to a rise in the energy intensity of the process by up to approximately 34%, and an increase in total power demand by around 29%. As humidity increases, key process parameters such as CO2 purity in the permeate and recovery rate decrease. The water vapor content in the permeate in a single-stage membrane separation process can reach up to 60%. It is recommended to use gas drying systems and to develop membranes with low H2O permeance in order to reduce the energy cost of the process. The potential location of m-DAC systems should preferably be in regions with low air humidity. The study highlights the necessity of considering local climate conditions and the need for further research on membrane selectivity. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Graphical abstract

13 pages, 2217 KiB  
Article
Gaseous Ammonia Sensing from Liquids via a Portable Chemosensor with Signal Correction for Humidity
by Andrea Rescalli, Ilaria Porello, Pietro Cerveri and Francesco Cellesi
Biosensors 2025, 15(7), 407; https://doi.org/10.3390/bios15070407 - 25 Jun 2025
Viewed by 377
Abstract
Ammonia (NH3) detection in liquids and biological fluids is essential for monitoring environmental contamination and industrial processes, ensuring food safety, and diagnosing health conditions. Existing detection techniques are often unsuitable for point-of-care (POC) use due to limitations including complex sample handling, [...] Read more.
Ammonia (NH3) detection in liquids and biological fluids is essential for monitoring environmental contamination and industrial processes, ensuring food safety, and diagnosing health conditions. Existing detection techniques are often unsuitable for point-of-care (POC) use due to limitations including complex sample handling, lack of portability, and poor compatibility with miniaturized systems. This study introduces a proof-of-concept for a compact, portable device tailored for POC detection of gaseous ammonia released from liquid samples. The device combines a polyaniline (PANI)-based chemoresistive sensor with interdigitated electrodes and a resistance readout circuit, enclosed in a gas-permeable hydrophobic membrane that permits ammonia in the vapor phase only to reach the sensing layer, ensuring selectivity and protection from liquid interference. The ink formulation was optimized. PANI nanoparticle suspension exhibited a monomodal, narrow particle size distribution with an average size of 120 nm and no evidence of larger aggregates. A key advancement of this device is its ability to limit the impact of water vapor, a known source of interference in PANI-based sensors, while maintaining a simple sensor design. A tailored signal processing strategy was implemented, extracting the slope of resistance variation over time as a robust metric for ammonia quantification. The sensor demonstrated reliable performance across a concentration range of 1.7 to 170 ppm with strong logarithmic correlation (R2 = 0.99), and very good linear correlations in low (R2 = 0.96) and high (R2 = 0.97) subranges. These findings validate the feasibility of this POC platform for sensitive, selective, and practical ammonia detection in clinical and environmental applications. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

20 pages, 4646 KiB  
Article
The Production of High-Permeable and Macrovoid-Free Polysulfone Hollow Fiber Membranes and Their Utilization in CO2 Capture Applications via the Membrane-Assisted Gas Absorption Technique
by Pavel Țiuleanu, Artem A. Atlaskin, Kirill A. Smorodin, Sergey S. Kryuchkov, Maria E. Atlaskina, Anton N. Petukhov, Andrey V. Vorotyntsev, Nikita S. Tsivkovskiy, Alexander A. Sysoev and Ilya V. Vorotyntsev
Polymers 2025, 17(10), 1407; https://doi.org/10.3390/polym17101407 - 20 May 2025
Viewed by 549
Abstract
This present study covers a complex approach to study a hybrid separation technique: membrane-assisted gas absorption for CO2 capture from flue gases. It includes not only the engineering aspects of the process, particularly the cell design, flow organization, and process conditions, but [...] Read more.
This present study covers a complex approach to study a hybrid separation technique: membrane-assisted gas absorption for CO2 capture from flue gases. It includes not only the engineering aspects of the process, particularly the cell design, flow organization, and process conditions, but also a complex study of the materials. It covers the spinning of hollow fibers with specific properties that provide sufficient mass transfer for their implementation in the hybrid membrane-assisted gas absorption technique and the design of an absorbent with a new ionic liquid—bis(2-hydroxyethyl) dimethylammonium glycinate, which allows the selective capture of carbon dioxide. In addition, the obtained hollow fibers are characterized not only by single gas permeation but with regard to mixed gases, including the transfer of water vapors. A quasi-real flue gas, which consists of nitrogen, oxygen, carbon dioxide, and water vapors, is used to evaluate the separation efficiency of the proposed membrane-assisted gas absorption technique and to determine its ultimate performance in terms of the CO2 content in the product flow and recovery rate. As a result of this study, it is found that highly permeable fibers in combination with the obtained absorbent provide sufficient separation and their implementation is preferable compared to a selective but much less permeable membrane. Full article
(This article belongs to the Special Issue Innovative Polymers and Technology for Membrane Fabrication)
Show Figures

Figure 1

21 pages, 6575 KiB  
Article
The Importance of Crosslinking in Electrospun Membranes for Water Contaminant Removal
by Peio Martinez-Goikoetxea, José Manuel Laza, Julia Sanchez-Bodon, José Luis Vilas-Vilela and Antonio Veloso-Fernández
Polymers 2025, 17(7), 988; https://doi.org/10.3390/polym17070988 - 5 Apr 2025
Cited by 1 | Viewed by 558
Abstract
Traditional water purification systems often rely on synthetic materials that pose environmental risks due to their non-biodegradability and the potential release of harmful substances. To address these concerns, natural polymer-based membranes are being developed as a sustainable and environmentally friendly alternative for water [...] Read more.
Traditional water purification systems often rely on synthetic materials that pose environmental risks due to their non-biodegradability and the potential release of harmful substances. To address these concerns, natural polymer-based membranes are being developed as a sustainable and environmentally friendly alternative for water treatment due to their biodegradability, low toxicity, and chemical versatility. These materials are particularly suitable for removing a wide range of contaminants due to their high selectivity and water permeability. Despite their benefits, challenges such as improving mechanical strength, durability, and resistance to fouling persist. Ongoing research continues to optimize the performance of electrospun membranes to meet modern water treatment demands. For this purpose, crosslinking via thermal initiators azobisisobutyronitrile (AIBN) and 2,2’-azobis(2-amidinopropane)dihydrochloride (V50) and chemical crosslinking by glutaraldehyde (GA) vapor have been studied for methacrylated chitosan and alginate. In addition, biocharcoal has been introduced into the membranes to enhance their functional properties. The development of natural polymer-based membranes combined with biocharcoal presents a promising and scalable solution for sustainable water purification, playing a crucial role in reducing pollution and preserving vital water resources for future generations. In this study, we demonstrate that the crosslinking effect plays a key role in maintaining the stability of alginate-based membranes in an aqueous environment while enhancing their adsorption capacity for methylene blue dye, making them promising for water purification applications. Full article
(This article belongs to the Special Issue Functional Materials Based on Biodegradable Polymers)
Show Figures

Graphical abstract

12 pages, 21558 KiB  
Article
Ceramic Nanofiltration Membranes: Creating Nanopores by Calcination of Atmospheric-Pressure Molecular Layer Deposition Grown Titanicone Layers
by Harpreet Sondhi, Mingliang Chen, Michiel Pieter Nijboer, Arian Nijmeijer, Fred Roozeboom, Mikhael Bechelany, Alexey Kovalgin and Mieke Luiten-Olieman
Membranes 2025, 15(3), 86; https://doi.org/10.3390/membranes15030086 - 8 Mar 2025
Viewed by 1742
Abstract
Ceramic membrane technology, whether applied as a stand-alone separation technology or in combination with energy-intensive approaches like distillation, is a promising solution for lower energy alternatives with minimal carbon footprints. To improve the separation of solutes in the nanofiltration range from industrial wastewater [...] Read more.
Ceramic membrane technology, whether applied as a stand-alone separation technology or in combination with energy-intensive approaches like distillation, is a promising solution for lower energy alternatives with minimal carbon footprints. To improve the separation of solutes in the nanofiltration range from industrial wastewater streams, ceramic nanofiltration (NF) membranes with reproducible sub-nanometre pore sizes are required. To achieve this, the emerging technique of molecular layer deposition (MLD) is employed to develop ceramic NF membranes, and its efficiency and versatility make it a powerful tool for preparing uniform nanoscale high-porosity membranes. Our work, which involved vapor-phase titanium tetrachloride as a precursor and ethylene glycol as a co-reactant, followed by calcination in air at 350 °C, resulted in NF membranes with pore sizes (radii) around ~0.8 ± 0.1 nm and a demineralized water permeability of 13 ± 1 L·m−2·h−1·bar−1.The high-water flux with >90% rejection of polyethylene glycol molecules with a molecular size larger than 380 ± 6 Dalton indicates the efficiency of the MLD technique in membrane functionalization and size-selective separation processes, and its potential for industrial applications. Full article
Show Figures

Figure 1

21 pages, 5719 KiB  
Article
Exergy Analysis of a Convective Heat Pump Dryer Integrated with a Membrane Energy Recovery Ventilator
by Anand Balaraman, Md Ashiqur Rahman, Davide Ziviani and David M. Warsinger
Entropy 2025, 27(2), 197; https://doi.org/10.3390/e27020197 - 13 Feb 2025
Viewed by 1203
Abstract
To increase energy efficiency, heat pump dryers and membrane dryers have been proposed to replace conventional fossil fuel dryers. Both conventional and heat pump dryers require substantial energy for condensing and reheating, while “active” membrane systems require vacuum pumps that are insufficiently developed. [...] Read more.
To increase energy efficiency, heat pump dryers and membrane dryers have been proposed to replace conventional fossil fuel dryers. Both conventional and heat pump dryers require substantial energy for condensing and reheating, while “active” membrane systems require vacuum pumps that are insufficiently developed. Lower temperature dehumidification systems make efficient use of membrane energy recovery ventilators (MERVs) that do not need vacuum pumps, but their high heat losses and lack of vapor selectivity have prevented their use in industrial drying. In this work, we propose an insulating membrane energy recovery ventilator for moisture removal from drying exhaust air, thereby reducing sensible heat loss from the dehumidification process and reheating energy. The second law analysis of the proposed system is carried out and compared with a baseline convective heat pump dryer. Irreversibilities in each component under different ambient temperatures (5–35 °C) and relative humidity (5–95%) are identified. At an ambient temperature of 35 °C, the proposed system substantially reduces sensible heat loss (47–60%) in the dehumidification process, resulting in a large reduction in condenser load (45–50%) compared to the baseline system. The evaporator in the proposed system accounts for up to 59% less irreversibility than the baseline system. A maximum of 24.5% reduction in overall exergy input is also observed. The highest exergy efficiency of 10.2% is obtained at an ambient condition of 35 °C and 5% relative humidity, which is more than twice the efficiency of the baseline system under the same operating condition. Full article
(This article belongs to the Special Issue Thermodynamic Optimization of Energy Systems)
Show Figures

Figure 1

14 pages, 1748 KiB  
Article
Harnessing Halogenated Zeolitic Imidazolate Frameworks for Alcohol Vapor Adsorption
by Kevin Dedecker, Martin Drobek and Anne Julbe
Molecules 2024, 29(24), 5825; https://doi.org/10.3390/molecules29245825 - 10 Dec 2024
Cited by 1 | Viewed by 1054
Abstract
This study explores Zeolitic Imidazolate Frameworks (ZIFs) as promising materials for adsorbing alcohol vapors, one of the main contributors to air quality deterioration and adverse health effects. Indeed, this sub-class of Metal–Organic Frameworks (MOFs) offers a promising alternative to conventional adsorbents like zeolites [...] Read more.
This study explores Zeolitic Imidazolate Frameworks (ZIFs) as promising materials for adsorbing alcohol vapors, one of the main contributors to air quality deterioration and adverse health effects. Indeed, this sub-class of Metal–Organic Frameworks (MOFs) offers a promising alternative to conventional adsorbents like zeolites and activated carbons for air purification. Specifically, this investigation focuses on ZIF-8_Br, a brominated version of ZIF-8_CH3, to evaluate its ability to capture aliphatic alcohols at lower partial pressures. The adsorption properties have been investigated using both experimental and computational methods combining Density Functional Theory and Grand Canonical Monte Carlo simulations. The Ideal Adsorbed Solution Theory (IAST) has been used to assess the material selectivity in the presence of binary equimolar alcohol mixtures. Compared to ZIF-8_CH3, the brominated analog has been shown to feature a higher affinity for alcohols, a property that could be advantageously exploited in environmental remediation or in the development of membranes for alcohol vapor sensors. Full article
(This article belongs to the Special Issue Porous Organic Materials: Design and Applications: Volume II)
Show Figures

Graphical abstract

26 pages, 4841 KiB  
Article
Enhancing Energy Access in Rural Indonesia: A Holistic Assessment of a 1 kW Portable Power Generator Based on Proton-Exchange Membrane Fuel Cells (PEMFCs)
by Handrea Bernando Tambunan, Reynolds Widhiyanurrochmansyach, Sabastian Pranindityo and Jayan Sentanuhady
Designs 2024, 8(6), 117; https://doi.org/10.3390/designs8060117 - 7 Nov 2024
Viewed by 1256
Abstract
Hydrogen energy is a promising alternative to traditional fossil fuels, offering a clean and sustainable solution to address the challenges of climate change and environmental degradation. Fuel cells provide direct and environmentally friendly conversion of chemical energy from a fuel source into electrical [...] Read more.
Hydrogen energy is a promising alternative to traditional fossil fuels, offering a clean and sustainable solution to address the challenges of climate change and environmental degradation. Fuel cells provide direct and environmentally friendly conversion of chemical energy from a fuel source into electrical energy, emitting only water vapor when utilizing hydrogen from renewable sources. This study delves into the design of a portable proton-exchange membrane fuel cell (PEMFC) device tailored for household use in rural areas. The research focuses on achieving a minimum peak power of 1000 W and a voltage of 220 VAC at 50 Hz for the fuel cell. Employing theoretical calculations derived from existing formulas and literature reviews, various fuel cell components are meticulously assessed, including real power, voltage drop, performance under current load, and pressure drop on the bipolar plate. Additionally, the study encompasses the selection of auxiliary components like converters, inverters, fans, and others. The resultant fuel cell design showcases a device capable of generating a peak power of 1132.32 W with an efficiency rating of 48.66%. Identifying suitable auxiliary components further contributes to developing a practical and efficient portable power solution for rural households. Full article
Show Figures

Figure 1

39 pages, 5021 KiB  
Article
Novel Landfill-Gas-to-Biomethane Route Using a Gas–Liquid Membrane Contactor for Decarbonation/Desulfurization and Selexol Absorption for Siloxane Removal
by Guilherme Pereira da Cunha, José Luiz de Medeiros and Ofélia de Queiroz F. Araújo
Processes 2024, 12(8), 1667; https://doi.org/10.3390/pr12081667 - 8 Aug 2024
Cited by 1 | Viewed by 1366
Abstract
A new landfill-gas-to-biomethane process prescribing decarbonation/desulfurization via gas–liquid membrane contactors and siloxane absorption using Selexol are presented in this study. Firstly, an extension for an HYSYS simulator was developed as a steady-state gas–liquid contactor model featuring: (a) a hollow-fiber membrane contactor for countercurrent/parallel [...] Read more.
A new landfill-gas-to-biomethane process prescribing decarbonation/desulfurization via gas–liquid membrane contactors and siloxane absorption using Selexol are presented in this study. Firstly, an extension for an HYSYS simulator was developed as a steady-state gas–liquid contactor model featuring: (a) a hollow-fiber membrane contactor for countercurrent/parallel contacts; (b) liquid/vapor mass/energy/momentum balances; (c) CO2/H2S/CH4/water fugacity-driven bidirectional transmembrane transfers; (d) temperature changes from transmembrane heat/mass transfers, phase change, and compressibility effects; and (e) external heat transfer. Secondly, contactor batteries using a countercurrent contact and parallel contact were simulated for selective landfill-gas decarbonation/desulfurization with water. Several separation methods were applied in the new process: (a) a water solvent gas–liquid contactor battery for adiabatic landfill-gas decarbonation/desulfurization; (b) water regeneration via high-pressure strippers, reducing the compression power for CO2 exportation; and (c) siloxane absorption with Selexol. The results show that the usual isothermal/isobaric contactor simplification is unrealistic at industrial scales. The process converts water-saturated landfill-gas (CH4 = 55.7%mol, CO2 = 40%mol, H2S = 150 ppm-mol, and Siloxanes = 2.14 ppm-mol) to biomethane with specifications of CH4MIN = 85%mol, CO2MAX = 3%mol, H2SMAX = 10 mg/Nm3, and SiloxanesMAX = 0.03 mg/Nm3. This work demonstrates that the new model can be validated with bench-scale literature data and used in industrial-scale batteries with the same hydrodynamics. Once calibrated, the model becomes economically valuable since it can: (i) predict industrial contactor battery performance under scale-up/scale-down conditions; (ii) detect process faults, membrane leakages, and wetting; and (iii) be used for process troubleshooting. Full article
(This article belongs to the Special Issue Sustainability Use of Wood/Wood Residues and Other Bioenergy Sources)
Show Figures

Figure 1

15 pages, 2433 KiB  
Article
Insights into Cis-Amide-Modified Carbon Nanotubes for Selective Purification of CH4 and H2 from Gas Mixtures: A Comparative DFT Study
by Atyeh Rahmanzadeh, Nasser AL-Hamdani, Evangelos P. Favvas and Giorgio De Luca
Materials 2024, 17(14), 3588; https://doi.org/10.3390/ma17143588 - 20 Jul 2024
Viewed by 1900
Abstract
Among a plethora of mixtures, the methane (CH4) and hydrogen (H2) mixture has garnered considerable attention for multiple reasons, especially in the framework of energy production and industrial processes as well as ecological considerations. Despite the fact that the [...] Read more.
Among a plethora of mixtures, the methane (CH4) and hydrogen (H2) mixture has garnered considerable attention for multiple reasons, especially in the framework of energy production and industrial processes as well as ecological considerations. Despite the fact that the CH4/H2 mixture performs many critical tasks, the presence of other gases, such as carbon dioxide, sulfur compounds like H2S, and water vapor, leads to many undesirable consequences. Thus purification of this mixture from these gases assumes considerable relevance. In the current research, first-principle calculations in the frame of density functional theory are carried out to propose a new functional group for vertically aligned carbon nanotubes (VA-CNTs) interacting preferentially with polar molecules rather than CH4 and H2 in order to obtain a more efficient methane and hydrogen separations The binding energies associated with the interactions between several chemical groups and target gases were calculated first, and then a functional group formed by a modified ethylene glycol and acetyl amide was selected. This functional group was attached to the CNT edge with an appropriate diameter, and hence the binding energies with the target gases and steric hindrance were evaluated. The binding energy of the most polar molecule (H2O) was found to be more than six times higher than that of H2, indicating a significant enhancement of the nanotube tip’s affinity toward polar gases. Thus, this functionalization is beneficial for enhancing the capability of highly packed functionalized VA-CNT membranes to purify CH4/H2 gas mixtures. Full article
Show Figures

Figure 1

34 pages, 8871 KiB  
Review
Cellulose Membranes: Synthesis and Applications for Water and Gas Separation and Purification
by Jinwu Wang, Syed Comail Abbas, Ling Li, Colleen C. Walker, Yonghao Ni and Zhiyong Cai
Membranes 2024, 14(7), 148; https://doi.org/10.3390/membranes14070148 - 30 Jun 2024
Cited by 10 | Viewed by 11705
Abstract
Membranes are a selective barrier that allows certain species (molecules and ions) to pass through while blocking others. Some rely on size exclusion, where larger molecules get stuck while smaller ones permeate through. Others use differences in charge or polarity to attract and [...] Read more.
Membranes are a selective barrier that allows certain species (molecules and ions) to pass through while blocking others. Some rely on size exclusion, where larger molecules get stuck while smaller ones permeate through. Others use differences in charge or polarity to attract and repel specific species. Membranes can purify air and water by allowing only air and water molecules to pass through, while preventing contaminants such as microorganisms and particles, or to separate a target gas or vapor, such as H2 and CO2, from other gases. The higher the flux and selectivity, the better a material is for membranes. The desirable performance can be tuned through material type (polymers, ceramics, and biobased materials), microstructure (porosity and tortuosity), and surface chemistry. Most membranes are made from plastic from petroleum-based resources, contributing to global climate change and plastic pollution. Cellulose can be an alternative sustainable resource for making renewable membranes. Cellulose exists in plant cell walls as natural fibers, which can be broken down into smaller components such as cellulose fibrils, nanofibrils, nanocrystals, and cellulose macromolecules through mechanical and chemical processing. Membranes made from reassembling these particles and molecules have variable pore architecture, porosity, and separation properties and, therefore, have a wide range of applications in nano-, micro-, and ultrafiltration and forward osmosis. Despite their advantages, cellulose membranes face some challenges. Improving the selectivity of membranes for specific molecules often comes at the expense of permeability. The stability of cellulose membranes in harsh environments or under continuous operation needs further improvement. Research is ongoing to address these challenges and develop advanced cellulose membranes with enhanced performance. This article reviews the microstructures, fabrication methods, and potential applications of cellulose membranes, providing some critical insights into processing–structure–property relationships for current state-of-the-art cellulosic membranes that could be used to improve their performance. Full article
(This article belongs to the Special Issue Cellulose Membranes: From Synthesis to Applications)
Show Figures

Figure 1

24 pages, 6585 KiB  
Article
Electrospun Gelatin Scaffolds with Incorporated Antibiotics for Skin Wound Healing
by Katarina Virijević, Marko Živanović, Jelena Pavić, Luka Dragačević, Biljana Ljujić, Marina Miletić Kovačević, Miloš Papić, Suzana Živanović, Strahinja Milenković, Ivana Radojević and Nenad Filipović
Pharmaceuticals 2024, 17(7), 851; https://doi.org/10.3390/ph17070851 - 28 Jun 2024
Cited by 10 | Viewed by 2422
Abstract
Recent advances in regenerative medicine provide encouraging strategies to produce artificial skin substitutes. Gelatin scaffolds are successfully used as wound-dressing materials due to their superior properties, such as biocompatibility and the ability to mimic the extracellular matrix of the surrounding environment. In this [...] Read more.
Recent advances in regenerative medicine provide encouraging strategies to produce artificial skin substitutes. Gelatin scaffolds are successfully used as wound-dressing materials due to their superior properties, such as biocompatibility and the ability to mimic the extracellular matrix of the surrounding environment. In this study, five gelatin combination solutions were prepared and successfully electrospun using an electrospinning technique. After careful screening, the optimal concentration of the most promising combination was selected for further investigation. The obtained scaffolds were crosslinked with 25% glutaraldehyde vapor and characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. The incorporation of antibiotic agents such as ciprofloxacin hydrochloride and gentamicin sulfate into gelatin membranes improved the already existing antibacterial properties of antibiotic-free gelatin scaffolds against Pseudomonas aeruginosa and Staphylococcus aureus. Also, the outcomes from the in vivo model study revealed that skin regeneration was significantly accelerated with gelatin/ciprofloxacin scaffold treatment. Moreover, the gelatin nanofibers were found to strongly promote the neoangiogenic process in the in vivo chick embryo chorioallantoic membrane assay. Finally, the combination of gelatin’s extracellular matrix and antibacterial agents in the scaffold suggests its potential for effective wound-healing treatments, emphasizing the importance of gelatin scaffolds in tissue engineering. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

26 pages, 5087 KiB  
Article
Electrospun Membranes Based on Quaternized Polysulfones: Rheological Properties–Electrospinning Mechanisms Relationship
by Anca Filimon, Diana Serbezeanu, Adina Maria Dobos, Mihaela Dorina Onofrei, Alexandra Bargan, Daniela Rusu and Cristina Mihaela Rimbu
Polymers 2024, 16(11), 1503; https://doi.org/10.3390/polym16111503 - 25 May 2024
Cited by 3 | Viewed by 1772
Abstract
Composite membranes based on a polymer mixture solution of quaternized polysulfone (PSFQ), cellulose acetate phthalate (CAP), and polyvinylidene fluoride (PVDF) for biomedical applications were successfully obtained through the electrospinning technique. To ensure the polysulfone membranes’ functionality in targeted applications, the selection of electrospinning [...] Read more.
Composite membranes based on a polymer mixture solution of quaternized polysulfone (PSFQ), cellulose acetate phthalate (CAP), and polyvinylidene fluoride (PVDF) for biomedical applications were successfully obtained through the electrospinning technique. To ensure the polysulfone membranes’ functionality in targeted applications, the selection of electrospinning conditions was essential. Moreover, understanding the geometric characteristics and morphology of fibrous membranes is crucial in designing them to meet the performance standards necessary for future biomedical applications. Thus, the viscosity of the solutions used in the electrospinning process was determined, and the morphology of the electrospun membranes was examined using scanning electron microscopy (SEM). Investigations on the surfaces of electrospun membranes based on water vapor sorption data have demonstrated that their surface properties dictate their biological ability more than their specific surfaces. Furthermore, in order to understand the different macromolecular rearrangements of membrane structures caused by physical interactions between the polymeric chains as well as by the orientation of functional groups during the electrospinning process, Fourier transform infrared (FTIR) spectroscopy was used. The applicability of composite membranes in the biomedical field was established by bacterial adhesion testing on the surface of electrospun membranes using Escherichia coli and Staphylococcus aureus microorganisms. The biological experiments conducted establish a foundation for future applications of these membranes and validate their effectiveness in specific fields. Full article
(This article belongs to the Special Issue Polymer-Based Materials for Drug Delivery and Biomedical Applications)
Show Figures

Figure 1

26 pages, 10763 KiB  
Review
New Trend of Amperometric Gas Sensors Using Atomic Gold-Decorated Platinum/Polyaniline Composites
by Anifatul Faricha, Parthojit Chakraborty, Tso-Fu Mark Chang, Masato Sone and Takamichi Nakamoto
Chemosensors 2024, 12(2), 27; https://doi.org/10.3390/chemosensors12020027 - 12 Feb 2024
Cited by 2 | Viewed by 2521
Abstract
The Amperometric Gas Sensor (AGS) uses an electrode as the transducer element which converts its signal into a current from the electrochemical reaction of analytes taking place at the electrode surface. Many attempts to improve AGS performance, such as modifying the working electrode, [...] Read more.
The Amperometric Gas Sensor (AGS) uses an electrode as the transducer element which converts its signal into a current from the electrochemical reaction of analytes taking place at the electrode surface. Many attempts to improve AGS performance, such as modifying the working electrode, applying a particular gas-permeable membrane, and selecting the proper electrolyte, etc., have been reported in the scientific literature. On the other hand, in the materials community, atomic gold has gained much attention because its physicochemical properties dramatically differ from those of gold nanoparticles. This paper provides an overview of the use of atomic gold in AGSs, both in a bulky AGS and a miniaturized AGS. In the miniaturized AGS, the system must be redesigned; for example, the aqueous electrolyte commonly used in a bulky AGS cannot be used due to volatility and fluidity issues. A Room Temperature Ionic Liquid (RTIL) can be used to replace the aqueous electrolyte since it has negligible vapor pressure; thus, a thin film of RTIL can be realized in a miniaturized AGS. In this paper, we also explain the possibility of using RTIL for a miniaturized AGS by incorporating a quartz crystal microbalance sensor. Several RTILs coated onto modified electrodes used for isomeric gas measurement are presented. Based on the results, the bulky and miniaturized AGS with atomic gold exhibited a higher sensor response than the AGS without atomic gold. Full article
Show Figures

Figure 1

13 pages, 6584 KiB  
Article
Effect of Long-Term Sodium Hypochlorite Cleaning on Silicon Carbide Ultrafiltration Membranes Prepared via Low-Pressure Chemical Vapor Deposition
by Asif Jan, Mingliang Chen, Michiel Nijboer, Mieke W. J. Luiten-Olieman, Luuk C. Rietveld and Sebastiaan G. J. Heijman
Membranes 2024, 14(1), 22; https://doi.org/10.3390/membranes14010022 - 15 Jan 2024
Cited by 5 | Viewed by 3908
Abstract
Sodium hypochlorite (NaClO) is widely used for the chemical cleaning of fouled ultrafiltration (UF) membranes. Various studies performed on polymeric membranes demonstrate that long-term (>100 h) exposure to NaClO deteriorates the physicochemical properties of the membranes, leading to reduced performance and service life. [...] Read more.
Sodium hypochlorite (NaClO) is widely used for the chemical cleaning of fouled ultrafiltration (UF) membranes. Various studies performed on polymeric membranes demonstrate that long-term (>100 h) exposure to NaClO deteriorates the physicochemical properties of the membranes, leading to reduced performance and service life. However, the effect of NaClO cleaning on ceramic membranes, particularly the number of cleaning cycles they can undergo to alleviate irreversible fouling, remains poorly understood. Silicon carbide (SiC) membranes have garnered widespread attention for water and wastewater treatment, but their chemical stability in NaClO has not been studied. Low-pressure chemical vapor deposition (LP-CVD) provides a simple and economical route to prepare/modify ceramic membranes. As such, LP-CVD facilitates the preparation of SiC membranes: (a) in a single step; and (b) at much lower temperatures (700–900 °C) in comparison with sol-gel methods (ca. 2000 °C). In this work, SiC ultrafiltration (UF) membranes were prepared via LP-CVD at two different deposition temperatures and pressures. Subsequently, their chemical stability in NaClO was investigated over 200 h of aging. Afterward, the properties and performance of as-prepared SiC UF membranes were evaluated before and after aging to determine the optimal deposition conditions. Our results indicate that the SiC UF membrane prepared via LP-CVD at 860 °C and 100 mTorr exhibited excellent resistance to NaClO aging, while the membrane prepared at 750 °C and 600 mTorr significantly deteriorated. These findings not only highlight a novel preparation route for SiC membranes in a single step via LP-CVD, but also provide new insights about the careful selection of LP-CVD conditions for SiC membranes to ensure their long-term performance and robustness under harsh chemical cleaning conditions. Full article
(This article belongs to the Special Issue Inorganic Membranes for Energy and Environmental Applications)
Show Figures

Graphical abstract

Back to TopTop