Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = vapor growth carbon fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 22180 KiB  
Article
Preparation of a Nano-Laminated Sc2SnC MAX Phase Coating on SiC Fibers via the Molten Salt Method
by Chenyang Wang, Lexiang Yin, Peng Li and Qing Huang
Materials 2025, 18(11), 2633; https://doi.org/10.3390/ma18112633 - 4 Jun 2025
Viewed by 519
Abstract
The incorporation of MAX phase interface layers into silicon carbide (SiC) composites has been shown to significantly enhance mechanical properties, particularly under irradiation conditions. However, conventional Ti-based MAX phases suffer from thermal instability and tend to decompose at high temperatures. In this work, [...] Read more.
The incorporation of MAX phase interface layers into silicon carbide (SiC) composites has been shown to significantly enhance mechanical properties, particularly under irradiation conditions. However, conventional Ti-based MAX phases suffer from thermal instability and tend to decompose at high temperatures. In this work, an Sc2SnC coating was successfully synthesized onto the surface of SiC fibers (SiCf) via an in situ reaction between metals and pyrolytic carbon (PyC) in a molten salt environment. The PyC layer, pre-deposited by chemical vapor deposition (CVD), served as both a carbon source and a structural template. Characterization by SEM, XRD, and Raman spectroscopy confirmed the formation of Sc2SnC coatings with a distinctive hexagonal flake-like morphology, accompanied by an internal ScCx intermediate layer. By turning the Sc-to-Sn ratio in the molten salt, coatings with varied morphologies were achieved. ScCx was identified as a critical intermediate phase in the synthesis process. The formation of numerous defects during the reaction enhanced element diffusion, resulting in preferential growth orientations and diverse grain structures in the Sc2SnC coating. Full article
Show Figures

Graphical abstract

46 pages, 11894 KiB  
Review
Fabrication of Conjugated Conducting Polymers by Chemical Vapor Deposition (CVD) Method
by Meysam Heydari Gharahcheshmeh
Nanomaterials 2025, 15(6), 452; https://doi.org/10.3390/nano15060452 - 16 Mar 2025
Cited by 3 | Viewed by 1854
Abstract
Chemical vapor deposition (CVD) is a highly adaptable manufacturing technique used to fabricate high-quality thin films, making it essential across numerous industries. As materials fabrication processes progress, CVD has advanced to enable the precise deposition of both inorganic 2D materials, such as graphene [...] Read more.
Chemical vapor deposition (CVD) is a highly adaptable manufacturing technique used to fabricate high-quality thin films, making it essential across numerous industries. As materials fabrication processes progress, CVD has advanced to enable the precise deposition of both inorganic 2D materials, such as graphene and transition metal dichalcogenides, and high-quality polymeric thin films, offering excellent conformality and precise nanostructure control on a wide range of substrates. Conjugated conducting polymers have emerged as promising materials for next-generation electronic, optoelectronic, and energy storage devices due to their unique combination of electrical conductivity, optical transparency, ionic transport, and mechanical flexibility. Oxidative CVD (oCVD) involves the spontaneous reaction of oxidant and monomer vapors upon their adsorption onto the substrate surface, resulting in step-growth polymerization that commonly produces conducting or semiconducting polymer thin films. oCVD has gained significant attention for its ability to fabricate conjugated conducting polymers under vacuum conditions, allowing precise control over film thickness, doping levels, and nanostructure engineering. The low to moderate deposition temperature in the oCVD method enables the direct integration of conducting and semiconducting polymer thin films onto thermally sensitive substrates, including plants, paper, textiles, membranes, carbon fibers, and graphene. This review explores the fundamentals of the CVD process and vacuum-based manufacturing, while also highlighting recent advancements in the oCVD method for the fabrication of conjugated conducting and semiconducting polymer thin films. Full article
(This article belongs to the Special Issue Applications of Novel Nanomaterials in Flexible Organic Electronics)
Show Figures

Figure 1

17 pages, 6112 KiB  
Article
Adsorption and Decomposition Mechanisms of Vapor Growth Carbon Fiber on SiO2 in Non-Catalytic Conditions: A First-Principles Study
by Chen Ma, Fanguang Zeng and Shenbo Yang
Crystals 2025, 15(2), 195; https://doi.org/10.3390/cryst15020195 - 18 Feb 2025
Viewed by 599
Abstract
In this study, the authors employed first-principles calculations to investigate the adsorption and decomposition processes involved in non-catalytic growth of vapor-growth carbon fiber (VGCF) using a non-catalytic growth method. The adsorption and decomposition mechanisms of methane and its decomposition products on the substrate [...] Read more.
In this study, the authors employed first-principles calculations to investigate the adsorption and decomposition processes involved in non-catalytic growth of vapor-growth carbon fiber (VGCF) using a non-catalytic growth method. The adsorption and decomposition mechanisms of methane and its decomposition products on the substrate were investigated with the adsorption energy, transition state analysis, and projected density of states (PDOS). The results indicated that the surface adsorption difficulty for CH4 and its decomposition products followed the following order: H > CH4 ≈ CH3 > CH2 > CH > C. The adsorption energy analysis indicates that the adsorption of CH4, CH3, and H is classified as physical adsorption, whereas the adsorption of CH2, CH, and C is classified as chemical adsorption. Adsorption of all particles is exothermic and adsorption can occur. The transition state calculations indicate that the decomposition of CH4 is the rate-determining step in the decomposition reaction. PDOS analysis not only verified the results of adsorption energy analysis but also investigated the effect of adsorption particles. This work is helpful for advancing the application of non-catalytic growth processes to the synthesis of VGCF and enhancing the understanding of the mechanisms governing non-catalytic VGCF formation. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

14 pages, 3011 KiB  
Article
Influence of Precursor Mixtures on the Laser Chemical Vapor Deposition of TiC Fibers
by Kendall J. Mitchell and Gregory B. Thompson
Fibers 2024, 12(5), 43; https://doi.org/10.3390/fib12050043 - 13 May 2024
Viewed by 1629
Abstract
In this study, the hyperbaric (2 bar) laser chemical vapor deposition of TiC fibers grown under various percent pressures of hydrogen and ratios of ethylene and titanium tetrachloride (2:1 or 1:1) are reported. In the hydrogen-rich (85%) condition, sequential fiber depositions became stunted [...] Read more.
In this study, the hyperbaric (2 bar) laser chemical vapor deposition of TiC fibers grown under various percent pressures of hydrogen and ratios of ethylene and titanium tetrachloride (2:1 or 1:1) are reported. In the hydrogen-rich (85%) condition, sequential fiber depositions became stunted as a result of a loss of hydrogen, which served as a reducing agent for the metal halide as hydrogen evolved with the hydrocarbon gas in the reaction zone because of the Le Chatelier principle. For the hydrogen-lean (25%) condition, the intrinsic fiber growth rate was invariant, but gas phase nucleation resulted in the hydrocarbon forming carbon soot in the chamber which subsequently deposited and coated on the fibers. In the hydrogen-balanced composition (50%), the 2:1 precursor ratio resulted in inconsistent intrinsic growth rates which ranged from approximately 30 μm/s to 44 μm/s. However, for the hydrogen-balanced (50%) 1:1 condition, the intrinsic growth rate variation was reduced to approximately 12 μm/s. The differences in fiber uniformity, composition, and structure under these process conditions are discussed in terms of hydrogen’s ability to serve as a reducing agent, a fluid to transport heat from the deposition zone, and alter the structure of the fiber through thermophoresis. Full article
(This article belongs to the Collection Feature Papers in Fibers)
Show Figures

Figure 1

24 pages, 8881 KiB  
Article
Vapor-Phase-Deposited Ag/Ir and Ag/Au Film Heterostructures for Implant Materials: Cytotoxic, Antibacterial and Histological Studies
by David S. Sergeevichev, Svetlana I. Dorovskikh, Evgeniia S. Vikulova, Elena V. Chepeleva, Maria B. Vasiliyeva, Tatiana P. Koretskaya, Anastasiya D. Fedorenko, Dmitriy A. Nasimov, Tatiana Y. Guselnikova, Pavel S. Popovetsky, Natalya B. Morozova and Tamara V. Basova
Int. J. Mol. Sci. 2024, 25(2), 1100; https://doi.org/10.3390/ijms25021100 - 16 Jan 2024
Cited by 9 | Viewed by 1844
Abstract
Using gas-phase deposition (Physical Vapor Deposition (PVD) and Metal Organic Chemical Vapor Deposition (MOCVD)) methods, modern implant samples (Ti alloy and CFR-PEEK polymer, 30% carbon fiber) were functionalized with film heterostructures consisting of an iridium or gold sublayer, on the surface of which [...] Read more.
Using gas-phase deposition (Physical Vapor Deposition (PVD) and Metal Organic Chemical Vapor Deposition (MOCVD)) methods, modern implant samples (Ti alloy and CFR-PEEK polymer, 30% carbon fiber) were functionalized with film heterostructures consisting of an iridium or gold sublayer, on the surface of which an antibacterial component (silver) was deposited: Ag/Ir(Au)/Ti(CFR-PEEK). The biocidal effect of the heterostructures was investigated, the effect of the surface relief of the carrier and the metal sublayer on antibacterial activity was established, and the dynamics of silver dissolution was evaluated. It has been shown that the activity of Ag/Ir heterostructures was due to high Ag+ release rates, which led to rapid (2–4 h) inhibition of P. aeruginosa growth. In the case of Ag/Au type heterostructures, the inhibition of the growth of P. aeruginosa and S. aureus occurred more slowly (from 6 h), and the antibacterial activity appeared to be due to the contribution of two agents (Ag+ and Au+ ions). It was found, according to the in vitro cytotoxicity study, that heterostructures did not exhibit toxic effects (cell viability > 95–98%). An in vivo biocompatibility assessment based on the results of a morphohistological study showed that after implantation for a period of 30 days, the samples were characterized by the presence of a thin fibrous capsule without volume thickening and signs of inflammation. Full article
Show Figures

Graphical abstract

12 pages, 6152 KiB  
Article
Growth and Characterization of Carbon Nanofibers Grown on Vertically Aligned InAs Nanowires via Chemical Vapour Deposition
by Muhammad Arshad, Lucia Sorba, Petra Rudolf and Cinzia Cepek
Nanomaterials 2023, 13(24), 3083; https://doi.org/10.3390/nano13243083 - 5 Dec 2023
Cited by 1 | Viewed by 1943
Abstract
The integration of carbon nanostructures with semiconductor nanowires holds significant potential for energy-efficient integrated circuits. However, achieving precise control over the positioning and stability of these interconnections poses a major challenge. This study presents a method for the controlled growth of carbon nanofibers [...] Read more.
The integration of carbon nanostructures with semiconductor nanowires holds significant potential for energy-efficient integrated circuits. However, achieving precise control over the positioning and stability of these interconnections poses a major challenge. This study presents a method for the controlled growth of carbon nanofibers (CNFs) on vertically aligned indium arsenide (InAs) nanowires. The CNF/InAs hybrid structures, synthesized using chemical vapor deposition (CVD), were successfully produced without compromising the morphology of the pristine nanowires. Under optimized conditions, preferential growth of the carbon nanofibers in the direction perpendicular to the InAs nanowires was observed. Moreover, when the CVD process employed iron as a catalyst, an increased growth rate was achieved. With and without the presence of iron, carbon nanofibers nucleate preferentially on the top of the InAs nanowires, indicating a tip growth mechanism presumably catalysed by a gold-indium alloy that selectively forms in that region. These results represent a compelling example of controlled interconnections between adjacent InAs nanowires formed by carbon fibers. Full article
(This article belongs to the Special Issue Carbon Nanotubes and Nanosheets for Sustainable Solutions)
Show Figures

Figure 1

11 pages, 3102 KiB  
Article
Enhanced Thermal Shock Resistance of High-Temperature Organic Adhesive by CF-SiCNWs Binary Phase Structure
by Tingyu Zhao, Zhengxiang Zhong, Xuanfeng Zhang, Jiangfeng Liu, Wenfang Wang, Bing Wang and Li Liu
Materials 2023, 16(17), 5983; https://doi.org/10.3390/ma16175983 - 31 Aug 2023
Viewed by 1244
Abstract
The development of high-temperature organic adhesive for bonding ultra-high-temperature ceramics with excellent thermal shock resistance has important significance to thermal protection systems for high-temperature environment application. In this study, high-temperature organic adhesive (HTOA) with carbon-fiber-SiC nanowires (CF-SiCNWs) binary phase enhancement structure was prepared. [...] Read more.
The development of high-temperature organic adhesive for bonding ultra-high-temperature ceramics with excellent thermal shock resistance has important significance to thermal protection systems for high-temperature environment application. In this study, high-temperature organic adhesive (HTOA) with carbon-fiber-SiC nanowires (CF-SiCNWs) binary phase enhancement structure was prepared. The method is that the SiCNWs grow on the chopped carbon-fiber surface and in the matrix of modified HTOA during high-temperature heat treatment with the help of a catalyst by a tip-growth way and with a vapor–liquid–solid (V-L-S) growth pattern. The results showed that the CF-SiCNWs binary phase enhancement structure plays a significant role in improving thermal shock resistance of high-temperature organic adhesive. The retention rate of the joint bond strength for the bonding samples after 20 cycles of thermal shock testing reaches 39.19%, which is higher than for the ones without CF, whose retain rate is only 6.78%. The shear strength of the samples with the CF-SiCNWs binary phase enhancement structure was about 10% higher than for those without the enhancement structure after 20 cycles of thermal shock. Full article
Show Figures

Figure 1

13 pages, 4019 KiB  
Article
Electromagnetic Interference Shielding Effectiveness of Direct-Grown-Carbon Nanotubes/Carbon and Glass Fiber-Reinforced Epoxy Matrix Composites
by Dong-Kyu Kim, Woong Han, Kwan-Woo Kim and Byung-Joo Kim
Materials 2023, 16(7), 2604; https://doi.org/10.3390/ma16072604 - 24 Mar 2023
Cited by 6 | Viewed by 4007
Abstract
In this study, carbon nanotubes (CNTs) were grown under the same conditions as those of carbon fibers and glass fibers, and a comparative analysis was performed to confirm the potential of glass fibers with grown CNTs as electromagnetic interference (EMI) shielding materials. The [...] Read more.
In this study, carbon nanotubes (CNTs) were grown under the same conditions as those of carbon fibers and glass fibers, and a comparative analysis was performed to confirm the potential of glass fibers with grown CNTs as electromagnetic interference (EMI) shielding materials. The CNTs were grown directly on the two fiber surfaces by a chemical vapor deposition process, with the aid of Ni particles loaded on them via a Ni-P plating process followed by heat treatment. The morphology and structural characteristics of the carbon and glass fibers with grown CNTs were analyzed using scanning electron microscopy–energy dispersive X-ray spectroscopy (SEM–EDS), X-ray diffraction (XRD), and X-ray photoelectron spectrometry (XPS), and the EMI shielding efficiency (EMI SE) of the directly grown CNT/carbon and glass fiber-reinforced epoxy matrix composites was determined using a vector-network analyzer. As the plating time increased, a plating layer serving as a catalyst formed on the fiber surface, confirming the growth of numerous nanowire-shaped CNTs. The average EMI SET values of the carbon fiber-reinforced plastic (CFRP) and glass fiber-reinforced plastic (GFRP) with grown CNTs maximized at approximately 81 and 40 dB, respectively. Carbon fibers with grown CNTs exhibited a significantly higher EMI SET value than the glass fiber-based sample, but the latter showed a higher EMI SET increase rate. This indicates that low-cost, high-quality EMI-shielding materials can be developed through the growth of CNTs on the surface of glass fibers. Full article
(This article belongs to the Special Issue Advances in Glass and Glass-Ceramic Materials)
Show Figures

Figure 1

14 pages, 3730 KiB  
Article
Selected Area Deposition of High Purity Gold for Functional 3D Architectures
by John Lasseter, Philip D. Rack and Steven J. Randolph
Nanomaterials 2023, 13(4), 757; https://doi.org/10.3390/nano13040757 - 17 Feb 2023
Cited by 7 | Viewed by 3045
Abstract
Selected area deposition of high purity gold films onto nanoscale 3D architectures is highly desirable as gold is conductive, inert, plasmonically active, and can be functionalized with thiol chemistries, which are useful in many biological applications. Here, we show that high-purity gold coatings [...] Read more.
Selected area deposition of high purity gold films onto nanoscale 3D architectures is highly desirable as gold is conductive, inert, plasmonically active, and can be functionalized with thiol chemistries, which are useful in many biological applications. Here, we show that high-purity gold coatings can be selectively grown with the Me2Au (acac) precursor onto nanoscale 3D architectures via a pulsed laser pyrolytic chemical vapor deposition process. The selected area of deposition is achieved due to the high thermal resistance of the nanoscale geometries. Focused electron beam induced deposits (FEBID) and carbon nanofibers are functionalized with gold coatings, and we demonstrate the effects that laser irradiance, pulse width, and precursor pressure have on the growth rate. Furthermore, we demonstrate selected area deposition with a feature-targeting resolutions of ~100 and 5 µm, using diode lasers coupled to a multimode (915 nm) and single mode (785 nm) fiber optic, respectively. The experimental results are rationalized via finite element thermal modeling. Full article
Show Figures

Figure 1

25 pages, 10833 KiB  
Article
Biological Studies of New Implant Materials Based on Carbon and Polymer Carriers with Film Heterostructures Containing Noble Metals
by Svetlana I. Dorovskikh, Evgeniia S. Vikulova, David S. Sergeevichev, Tatiana Ya. Guselnikova, Alexander A. Zheravin, Dmitriy A. Nasimov, Maria B. Vasilieva, Elena V. Chepeleva, Anatoly I. Saprykin, Tamara V. Basova and Natalya B. Morozova
Biomedicines 2022, 10(9), 2230; https://doi.org/10.3390/biomedicines10092230 - 8 Sep 2022
Cited by 10 | Viewed by 2872
Abstract
This paper presents pioneering results on the evaluation of noble metal film hetero-structures to improve some functional characteristics of carbon-based implant materials: carbon-composite material (CCM) and carbon-fiber-reinforced polyetheretherketone (CFR-PEEK). Metal-organic chemical vapor deposition (MOCVD) was successfully applied to the deposition of Ir, Pt, [...] Read more.
This paper presents pioneering results on the evaluation of noble metal film hetero-structures to improve some functional characteristics of carbon-based implant materials: carbon-composite material (CCM) and carbon-fiber-reinforced polyetheretherketone (CFR-PEEK). Metal-organic chemical vapor deposition (MOCVD) was successfully applied to the deposition of Ir, Pt, and PtIr films on these carriers. A noble metal layer as thin as 1 µm provided clear X-ray imaging of 1–2.5 mm thick CFR-PEEK samples. The coated and pristine CCM and CFR-PEEK samples were further surface-modified with Au and Ag nanoparticles (NPs) through MOCVD and physical vapor deposition (PVD) processes, respectively. The composition and microstructural features, the NPs sizes, and surface concentrations were determined. In vitro biological studies included tests for cytotoxicity and antibacterial properties. A series of samples were selected for subcutaneous implantation in rats (up to 3 months) and histological studies. The bimetallic PtIr-based heterostructures showed no cytotoxicity in vitro, but were less biocompatible due to a dense two-layered fibrous capsule. AuNP heterostructures on CFR-PEEK promoted cell proliferation in vitro and exhibited a strong inhibition of bacterial growth (p < 0.05) and high in vitro biocompatibility, especially Au/Ir structures. AgNP heterostructures showed a more pronounced antibacterial effect, while their in vivo biocompatibility was better than that of the pristine CFR-PEEK, but worse than that of AuNP heterostructures. Full article
(This article belongs to the Special Issue New Techniques and Materials for Biomedical Applications)
Show Figures

Graphical abstract

12 pages, 7764 KiB  
Article
Molybdenum Oxide Nanoparticle Aggregates Grown by Chemical Vapor Transport
by Yun-Hyuk Choi
Materials 2022, 15(6), 2182; https://doi.org/10.3390/ma15062182 - 16 Mar 2022
Cited by 7 | Viewed by 3075
Abstract
In this study, the advanced chemical vapor transport (CVT) method in combination with the quenching effect is introduced for creating molybdenum oxide nanoparticle arrays, composed of the hierarchical structure of fine nanoparticles (NPs), which are vertically grown with a homogeneous coverage on the [...] Read more.
In this study, the advanced chemical vapor transport (CVT) method in combination with the quenching effect is introduced for creating molybdenum oxide nanoparticle arrays, composed of the hierarchical structure of fine nanoparticles (NPs), which are vertically grown with a homogeneous coverage on the individual carbon fibers of carbon fiber paper (CFP) substrates. The obtained molybdenum oxide NPs hold a metastable high-temperature γ-Mo4O11 phase along with a stable α-MoO3 phase by the quenching effect. Furthermore, such a quenching effect forms thinner and smaller nanoparticle aggregates by suppressing the growth and coalescence of primary particles. The molybdenum oxide nanoparticle aggregates are prepared using two different types of precursors: MoO3 and a 1:1 (mol/mol) mixture of MoO3 and activated carbon. The results characterized using X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy show that the relative amount of α-MoO3 to γ-Mo4O11 within the prepared NPs is dependent on the precursor type; a lower amount of α-MoO3 to γ-Mo4O11 is obtained in the NPs prepared using the mixed precursor of MoO3 and carbon. This processing–structure landscape study can serve as the groundwork for the development of high-performance nanomaterials in various electronic and catalytic applications. Full article
Show Figures

Figure 1

12 pages, 3547 KiB  
Article
Optimization of Process Conditions for Continuous Growth of CNTs on the Surface of Carbon Fibers
by Chengjuan Wang, Yanxiang Wang and Shunsheng Su
J. Compos. Sci. 2021, 5(4), 111; https://doi.org/10.3390/jcs5040111 - 17 Apr 2021
Cited by 11 | Viewed by 2795
Abstract
Grafting carbon nanotubes (CNTs) is one of the most commonly used methods for modifying carbon fiber surface, during which complex device is usually needed and the growth of CNTs is difficult to control. Herein, we provide an implementable and continuous chemical vapor deposition [...] Read more.
Grafting carbon nanotubes (CNTs) is one of the most commonly used methods for modifying carbon fiber surface, during which complex device is usually needed and the growth of CNTs is difficult to control. Herein, we provide an implementable and continuous chemical vapor deposition (CVD) process, by which the novel multiscale reinforcement of carbon nanotube (CNT)-grafted carbon fiber is prepared. After exploring the effects of the moving speed and growth atmosphere on the morphology and mechanical properties of carbon nanotubes/carbon fiber (CNTs/CF) reinforcement, the optimal CVD process conditions are determined. The results show that low moving speeds of carbon fibers passing through the reactor can prolong the growth time of CNTs, increasing the thickness and density of the CNTs layer. When the moving speed is 3 cm/min or 4 cm/min, the surface graphitization degree and tensile strength of CNTs/CF almost simultaneously reach the highest value. It is also found that H2 in the growth atmosphere can inhibit the cracking of C2H2 and has a certain effect on prolonging the life of the catalyst. Meanwhile, the graphitization degree is promoted gradually with the increase in H2 flow rate from 0 to 0.9 L/min, which is beneficial to CNTs/CF tensile properties. Full article
(This article belongs to the Special Issue Advanced Carbon Fiber Reinforced Composite Materials)
Show Figures

Figure 1

19 pages, 7238 KiB  
Article
Effects of In Situ Graphitic Nanocarbon Coatings on Cycling Performance of Silicon-Flake-Based Anode of Lithium Ion Battery
by Yonhua Tzeng, Wei-Chih Huang, Cheng-Ying Jhan and Yi-Hsuan Wu
Coatings 2021, 11(2), 138; https://doi.org/10.3390/coatings11020138 - 27 Jan 2021
Cited by 6 | Viewed by 3007
Abstract
We coated graphitic nanocarbons by thermal chemical vapor deposition (CVD) on silicon flakes recycled from the waste of silicon wafer manufacturing processes as an active material for the anode of lithium ion battery (LIB). Ferrocene contains both iron catalyst and carbon, while camphor [...] Read more.
We coated graphitic nanocarbons by thermal chemical vapor deposition (CVD) on silicon flakes recycled from the waste of silicon wafer manufacturing processes as an active material for the anode of lithium ion battery (LIB). Ferrocene contains both iron catalyst and carbon, while camphor serves as an additional carbon source. Water vapor promotes catalytic growth of nanocarbons, including carbon nanotubes (CNTs), carbon fibers (CFs), and carbon films made of graphitic carbon nanoparticles, at temperatures ranging from 650 to 850 °C. The container of silicon flakes rotates for uniform coatings on silicon flakes of about 100 nm thick and 800–1000 nm in lateral dimensions. Due to short CVD time, besides CNTs and CFs, surfaces of silicon flakes deposit with high-density graphitic nanoparticles, especially at a low temperature of 650 °C. Nanocarbon coatings were characterized by SEM, EDX, ESCA, and Raman spectroscopy. Half-cells were characterized by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and retention of capacity in discharge/charge cycling. Silicon-flake-based anode with nanocarbon coatings at both 650 and 850 °C exhibited capacity retention of 2000 mAh/g after 100 cycles at 0.1 C, without needing any conductivity enhancement material such as Super P. Full article
Show Figures

Figure 1

10 pages, 4258 KiB  
Article
Synthesis of Multiwalled Carbon Nanotubes on Stainless Steel by Atmospheric Pressure Microwave Plasma Chemical Vapor Deposition
by Dashuai Li, Ling Tong and Bo Gao
Appl. Sci. 2020, 10(13), 4468; https://doi.org/10.3390/app10134468 - 28 Jun 2020
Cited by 9 | Viewed by 3910
Abstract
In this paper, we synthesize carbon nanotubes (CNTs) by using atmospheric pressure microwave plasma chemical vapor deposition (AMPCVD). In AMPCVD, a coaxial plasma generator provides 200 W 2.45 GHz microwave plasma at atmospheric pressure to decompose the precursor. A high-temperature tube furnace provides [...] Read more.
In this paper, we synthesize carbon nanotubes (CNTs) by using atmospheric pressure microwave plasma chemical vapor deposition (AMPCVD). In AMPCVD, a coaxial plasma generator provides 200 W 2.45 GHz microwave plasma at atmospheric pressure to decompose the precursor. A high-temperature tube furnace provides a suitable growth temperature for the deposition of CNTs. Optical fiber spectroscopy was used to measure the compositions of the argon–ethanol–hydrogen plasma. A comparative experiment of ethanol precursor decomposition, with and without plasma, was carried out to measure the role of the microwave plasma, showing that the 200 W microwave plasma can decompose 99% of ethanol precursor at any furnace temperature. CNTs were prepared on a stainless steel substrate by using the technology to decompose ethanol with the plasma power of 200 W at the temperatures of 500, 600, 700, and 800 °C; CNT growth increases with the increase in temperature. Prepared CNTs, analyzed by SEM and HRTEM, were shown to be multiwalled and tangled with each other. The measurement of XPS and Raman spectroscopy indicates that many oxygenated functional groups have attached to the surface of the CNTs. Full article
(This article belongs to the Special Issue Plasma: From Materials to Emerging Technologies)
Show Figures

Figure 1

15 pages, 4866 KiB  
Article
Enhanced Surface Energetics of CNT-Grafted Carbon Fibers for Superior Electrical and Mechanical Properties in CFRPs
by Arash Badakhsh, Kay-Hyeok An and Byung-Joo Kim
Polymers 2020, 12(6), 1432; https://doi.org/10.3390/polym12061432 - 26 Jun 2020
Cited by 27 | Viewed by 5892
Abstract
Surface enhancement of components is vital for achieving superior properties in a composite system. In this study, carbon nanotubes (CNTs) were grown on carbon fiber (CF) substrates to improve the surface area and, in turn, increase the adhesion between epoxy-resin and CFs. Nickel [...] Read more.
Surface enhancement of components is vital for achieving superior properties in a composite system. In this study, carbon nanotubes (CNTs) were grown on carbon fiber (CF) substrates to improve the surface area and, in turn, increase the adhesion between epoxy-resin and CFs. Nickel (Ni) was used as the catalyst in CNT growth, and was coated on CF sheets via the electroplating method. Surface energetics of CNT-grown CFs and their work of adhesion with epoxy resin were measured. SEM and TEM were used to analyze the morphology of the samples. After the optimization of surface energetics by catalyst weight ratio (15 wt.% Ni), CF-reinforced plastic (CFRP) samples were prepared using the hand lay-up method. To validate the effect of chemical vapor deposition (CVD)-grown CNTs on CFRP properties, samples were also prepared where CNT powder was added to epoxy prior to reinforcement with Ni-coated CFs. CFRP specimens were tested to determine their electrical resistivity, flexural strength, and ductility index. The electrical resistivity of CNT-grown CFRP was found to be about 9 and 2.3 times lower than those of as-received CFRP and CNT-added Ni-CFRP, respectively. Flexural strength of CNT-grown Ni-CFRP was enhanced by 52.9% of that of as-received CFRP. Interestingly, the ductility index in CNT-grown Ni-CFRP was 40% lower than that of CNT-added Ni-CFRP. This was attributed to the tip-growth formation of CNTs and the breakage of Ni coating. Full article
Show Figures

Graphical abstract

Back to TopTop