Preparation of a Nano-Laminated Sc2SnC MAX Phase Coating on SiC Fibers via the Molten Salt Method
Abstract
:1. Introduction
2. Experimental Details
2.1. Materials
2.2. Preparation of the PyC Layer
2.3. In Situ Synthesis of Sc2SnC Coating
2.4. Characterization
3. Results
3.1. PyC Pre-Film Synthesis and Characterization
3.2. MAX Phase Coating
3.2.1. Carbon Fiber Coating (Cf/ScCx/Sc2SnC)
- Direct Molten Salt Route: Sc, Sn, and Cf were directly mixed to form Sc2SnC.
- Two-Step Molten Salt Route: Sc and Cf were first mixed to form an intermediate phase, ScC, followed by the introduction of Sn to synthesize Sc2SnC.
3.2.2. Silicon Carbide Fiber Coating (SiCf/ScCx/Sc2SnC)
4. Conclusions
- (1)
- A dense and uniformly coated PyC layer was successfully deposited on SiCf via CVD by precisely controlling the reaction temperature at 1000 °C and setting the CH4:C2H2 gas ratio to 90:60.
- (2)
- ScCx/Sc2SnC composite coatings were synthesized on the surfaces of Cf and SiCf using a molten salt method. In the early stages of the reaction, isolated hexagonal Sc2SnC flakes nucleated and grew on the Cf surface. With the extended reaction time, these nearly vertically oriented flakes gradually accumulated to form a continuous coating, with the thickness progressively increasing from 50 nm to 500 nm and ultimately to 2.9 μm.
- (3)
- During the reaction process, the formation of ScCx exhibited sluggish kinetics, making it a key intermediate that governed the overall reaction pathway. The high defect density and preferential orientation observed in ScCx contributed to the distinctive microstructure and growth direction of the resulting Sc2SnC phase. Raman spectroscopy confirmed the presence of both ScCx and Sc2SnC. However, due to its metastable nature, ScCx is prone to phase transformation into Sc2OC and Sc3C4, which may lead to cracking, pulverization, interfacial debonding, and the eventual delamination of the coating—a challenge that remains difficult to mitigate.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katoh, Y.; Ozawa, K.; Shih, C.; Nozawa, T.; Shinavski, R.J.; Hasegawa, A.; Snead, L.L. Continuous SiC fiber, CVI SiC matrix composites for nuclear applications: Properties and irradiation effects. J. Nucl. Mater. 2014, 448, 448–476. [Google Scholar] [CrossRef]
- Naslain, R.; Pailler, R.; Lamon, J. Single- and Multi-Layered Interphases in SiC/SiC Composites Exposed to Severe Conditions: An Overview. In Ceramics in Nuclear Applications; Wiley-American Ceramic Society: Hoboken, NJ, USA, 2009; pp. 1–18. [Google Scholar]
- Ouyang, Q.; Wang, Y.F.; Xu, J.; Li, Y.S.; Pei, X.L.; Mo, G.M.; Li, M.A.; Li, P.; Zhou, X.B.; Ge, F.F.; et al. Research Progress of SiC Fiber Reinforced SiC Composites for Nuclear Application. J. Inorg. Mater. 2022, 37, 821–840. [Google Scholar] [CrossRef]
- Dahlqvist, M.; Barsoum, M.W.; Rosen, J. MAX phases—Past, present, and future. Mater. Today 2024, 72, 1–24. [Google Scholar] [CrossRef]
- DANG, X.; FAN, X.; YIN, X.; MA, Y.; MA, X. Research Progress on Multi-functional Integration MAX Phases Modified Continuous Fiber-reinforced Ceramic Matrix Composites. J. Inorg. Mater. 2020, 35, 29–34. [Google Scholar] [CrossRef]
- Gonzalez-Julian, J. Processing of MAX phases: From synthesis to applications. J. Am. Ceram. Soc. 2021, 104, 659–690. [Google Scholar] [CrossRef]
- Tallman, D.J.; Hoffman, E.N.; Caspi, E.a.N.; Garcia-Diaz, B.L.; Kohse, G.; Sindelar, R.L.; Barsoum, M.W. Effect of neutron irradiation on select MAX phases. Acta Mater. 2015, 85, 132–143. [Google Scholar] [CrossRef]
- Magnus, C.; Cooper, D.; Jantzen, C.; Lambert, H.; Abram, T.; Rainforth, M. Synthesis and high temperature corrosion behaviour of nearly monolithic Ti3AlC2 MAX phase in molten chloride salt. Corros. Sci. 2021, 182, 109193. [Google Scholar] [CrossRef]
- Ang, C.; Silva, C.; Shih, C.; Koyanagi, T.; Katoh, Y.; Zinkle, S.J. Anisotropic swelling and microcracking of neutron irradiated Ti3AlC2–Ti5Al2C3 materials. Scr. Mater. 2016, 114, 74–78. [Google Scholar] [CrossRef]
- Wang, C.; Yang, T.; Tracy, C.L.; Lu, C.; Zhang, H.; Hu, Y.-J.; Wang, L.; Qi, L.; Gu, L.; Huang, Q.; et al. Disorder in Mn+1AXn phases at the atomic scale. Nat. Commun. 2019, 10, 622. [Google Scholar] [CrossRef]
- Wang, J.; Shu, R.; Dong, Y.; Shao, T.; Deng, Q.H.; Zhou, X.B.; Huang, F.; Du, S.Y.; Wang, Z.G.; Xue, J.M.; et al. Microstructure evolution of V2AlC coating on Zr substrate under He irradiation and their mechanical behavior. Scr. Mater. 2017, 137, 13–17. [Google Scholar] [CrossRef]
- Tallman, D.J.; He, L.; Garcia-Diaz, B.L.; Hoffman, E.N.; Kohse, G.; Sindelar, R.L.; Barsoum, M.W. Effect of neutron irradiation on defect evolution in Ti3SiC2 and Ti2AlC. J. Nucl. Mater. 2016, 468, 194–206. [Google Scholar] [CrossRef]
- Li, M.; Zhou, X.; Yang, H.; Du, S.; Huang, Q. The critical issues of SiC materials for future nuclear systems. Scr. Mater. 2018, 143, 149–153. [Google Scholar] [CrossRef]
- Filbert-Demut, I.; Bei, G.; Höschen, T.; Riesch, J.; Travitzky, N.; Greil, P. Influence of Ti3SiC2 Fiber Coating on Interface and Matrix Cracking in an SiC Fiber-Reinforced Polymer-Derived Ceramic. Adv. Eng. Mater. 2015, 17, 1142–1148. [Google Scholar] [CrossRef]
- Li, M.; Wang, K.; Wang, J.; Long, D.; Liang, Y.; He, L.; Huang, F.; Du, S.; Huang, Q. Preparation of TiC/Ti2AlC coating on carbon fiber and investigation of the oxidation resistance properties. J. Am. Ceram. Soc. 2018, 101, 5269–5280. [Google Scholar] [CrossRef]
- Wang, K.; Li, M.; Liang, Y.; Wang, J.; He, L.; Du, S.; Huang, Z.; Huang, Q. Interface modification of carbon fibers with TiC/Ti2AlC coating and its effect on the tensile strength. Ceram. Int. 2019, 45, 4661–4666. [Google Scholar] [CrossRef]
- Wang, J.; Wang, K.; Pei, X.; Li, M.; Yuan, Q.; Zhu, Y.; Yang, Y.; Zhang, C.; He, L.; Du, S.; et al. Irradiation behavior of Cf/SiC composite with titanium carbide (TiC)-based interphase. J. Nucl. Mater. 2019, 523, 10–15. [Google Scholar] [CrossRef]
- Barsoum, M.W. The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates. Prog. Solid State Chem. 2000, 28, 201–281. [Google Scholar] [CrossRef]
- Li, Y.B.; Qin, Y.Q.; Chen, K.; Chen, L.; Zhang, X.; Ding, H.M.; Li, M.A.; Zhang, Y.M.; Du, S.Y.; Chai, Z.F.; et al. Molten Salt Synthesis of Nanolaminated Sc2SnC MAX Phase. J. Inorg. Mater. 2021, 36, 773–778. [Google Scholar] [CrossRef]
- Eklund, P.; Beckers, M.; Jansson, U.; Högberg, H.; Hultman, L. The Mn+1AXn phases: Materials science and thin-film processing. Thin Solid Film. 2010, 518, 1851–1878. [Google Scholar] [CrossRef]
- Chowdhury, A.; Ali, M.A.; Hossain, M.M.; Uddin, M.M.; Naqib, S.H.; Islam, A.K.M.A. Predicted MAX Phase Sc2InC: Dynamical Stability, Vibrational and Optical Properties. Phys. Status Solidi 2018, 255, 1700235. [Google Scholar] [CrossRef]
- Ivanov, L.I.; Ivanov, V.V.; Lazorenko, V.M.; Platov, Y.M.; Tovtin, V.I.; Toropova, L.S. Radiation resistance and parameters of activation of aluminium-magnesium-scandium and aluminium-magnesium-vanadium alloys under neutron irradiation. J. Nucl. Mater. 1992, 191–194, 1075–1079. [Google Scholar] [CrossRef]
- Wang, C.; Tracy, C.L.; Ewing, R.C. Radiation effects in Mn+1AXn phases. Appl. Phys. Rev. 2020, 7, 041311. [Google Scholar] [CrossRef]
- Xiao, Y.; Ma, C.; Xu, H.; Li, G.; Liu, C.; Zheng, R.; Li, L. Mechanical properties and microstructural evolution of Cansas-III SiC fibers after thermal exposure in different atmospheres. Ceram. Int. 2022, 48, 32804–32816. [Google Scholar] [CrossRef]
- Ma, Y.; Meng, X.; Cui, Y.; Kou, S.; Yang, S.; Guo, C.; Deng, J.; Fan, S. Effect of heat treatment on interface failure behavior in SiCf/PyC/SiC composites reinforced with Cansas-3 fibers. Ceram. Int. 2024, 50, 28102–28112. [Google Scholar] [CrossRef]
- Wang, P.; Liu, F.; Wang, H.; Li, H.; Gou, Y. A review of third generation SiC fibers and SiCf/SiC composites. J. Mater. Sci. Technol. 2019, 35, 2743–2750. [Google Scholar] [CrossRef]
- Narottam, P.B. Handbook of Ceramic Composites; Springer: New York, NY, USA, 2005. [Google Scholar]
- Bernard, S.; Cornu, D.; Miele, P.; Weinmann, M.; Aldinger, F. Polyborosilazane-Derived Ceramic Fibers in the Si-B-C-N Quaternary System for High-Temperature Applications. In Mechanical Properties and Performance of Engineering Ceramics and Composites: Ceramic Engineering and Science Proceedings; Wiley-American Ceramic Society: Hoboken, NJ, USA, 2005; pp. 35–42. [Google Scholar]
- Kaniyoor, A.; Ramaprabhu, S. A Raman spectroscopic investigation of graphite oxide derived graphene. AIP Adv. 2012, 2, 032183. [Google Scholar] [CrossRef]
- Ding, J.; Shao, H.; Hu, B.; Liu, D.; Shen, L.; Shen, Q. Effect of Heat Treatment on the Shear Strength of SiC/PyC/SiC Composites. J. Mater. Eng. Perform. 2024, 33, 13803–13814. [Google Scholar] [CrossRef]
- Yifan, X.; Weijie, L.; Zhongwei, Z.; Xu, P.; Yu, L. Process Control of PyC Interphases Microstructure and Uniformity in Carbon Fiber Cloth. J. Inorg. Mater. 2024, 39, 399–408. [Google Scholar] [CrossRef]
- Alexander, R.; Kaushal, A.; Rao, P.T.; Prakash, J.; Dasgupta, K. Identification and classification of disordered carbon materials in a composite matrix through machine learning approach integrated with Raman mapping. Diam. Relat. Mater. 2024, 142, 110741. [Google Scholar] [CrossRef]
- Sadezky, A.; Muckenhuber, H.; Grothe, H.; Niessner, R.; Pöschl, U. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon 2005, 43, 1731–1742. [Google Scholar] [CrossRef]
- Dash, A.; Vaßen, R.; Guillon, O.; Gonzalez-Julian, J. Molten salt shielded synthesis of oxidation prone materials in air. Nat. Mater. 2019, 18, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Zhu, S.; Shen, Z.; Liu, Y.; Wu, C.; Kang, L.; Yang, Y. Molten-salt assisted synthesis of two-dimensional materials and energy storage application. Mater. Today Chem. 2023, 29, 101419. [Google Scholar] [CrossRef]
- Liu, X.; Fechler, N.; Antonietti, M. Salt melt synthesis of ceramics, semiconductors and carbon nanostructures. Chem. Soc. Rev. 2013, 42, 8237–8265. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Song, J.; Che, Y.; Jiao, S.; He, J.; Yang, B. Advances in Molten Salt Synthesis of Non-oxide Materials. Energy Environ. Mater. 2023, 6, e12339. [Google Scholar] [CrossRef]
- Presser, V.; Naguib, M.; Chaput, L.; Togo, A.; Hug, G.; Barsoum, M.W. First-order Raman scattering of the MAX phases: Ti2AlN, Ti2AlC0.5N0.5, Ti2AlC, (Ti0.5V0.5)2AlC, V2AlC, Ti3AlC2, and Ti3GeC2. J. Raman Spectrosc. 2012, 43, 168–172. [Google Scholar] [CrossRef]
- Spanier, J.E.; Gupta, S.; Amer, M.; Barsoum, M.W. Vibrational behavior of the Mn+1AXn phases from first-order Raman scattering (M=Ti, V, Cr, A=Si, X=C, N). Phys. Rev. B 2005, 71, 012103. [Google Scholar] [CrossRef]
- Bentzel, G.W.; Naguib, M.; Lane, N.J.; Vogel, S.C.; Presser, V.; Dubois, S.; Lu, J.; Hultman, L.; Barsoum, M.W.; Caspi, E.a.N. High-Temperature Neutron Diffraction, Raman Spectroscopy, and First-Principles Calculations of Ti3SnC2 and Ti2SnC. J. Am. Ceram. Soc. 2016, 99, 2233–2242. [Google Scholar] [CrossRef]
- Yu, J.; Cui, L.; He, H.; Yan, S.; Hu, Y.; Wu, H. Raman spectra of RE2O3 (RE=Eu, Gd, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y): Laser-excited luminescence and trace impurity analysis. J. Rare Earths 2014, 32, 1–4. [Google Scholar] [CrossRef]
- Kalemos, A.; Mavridis, A.; Harrison, J.F. Theoretical Investigation of Scandium Carbide, ScC. J. Phys. Chem. A 2001, 105, 755–759. [Google Scholar] [CrossRef]
- Klein, M.V.; Holy, J.A.; Williams, W.S. Raman scattering induced by carbon vacancies in TiCx. Phys. Rev. B 1978, 17, 1546–1556. [Google Scholar] [CrossRef]
Argument | Value |
---|---|
Equation | |
−8.957 ± 76.068 | |
513.14 ± 77.330 | |
50.17 ± 9.965 | |
1.954 ± 0.656 | |
R-Square | 0.73704 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Yin, L.; Li, P.; Huang, Q. Preparation of a Nano-Laminated Sc2SnC MAX Phase Coating on SiC Fibers via the Molten Salt Method. Materials 2025, 18, 2633. https://doi.org/10.3390/ma18112633
Wang C, Yin L, Li P, Huang Q. Preparation of a Nano-Laminated Sc2SnC MAX Phase Coating on SiC Fibers via the Molten Salt Method. Materials. 2025; 18(11):2633. https://doi.org/10.3390/ma18112633
Chicago/Turabian StyleWang, Chenyang, Lexiang Yin, Peng Li, and Qing Huang. 2025. "Preparation of a Nano-Laminated Sc2SnC MAX Phase Coating on SiC Fibers via the Molten Salt Method" Materials 18, no. 11: 2633. https://doi.org/10.3390/ma18112633
APA StyleWang, C., Yin, L., Li, P., & Huang, Q. (2025). Preparation of a Nano-Laminated Sc2SnC MAX Phase Coating on SiC Fibers via the Molten Salt Method. Materials, 18(11), 2633. https://doi.org/10.3390/ma18112633