Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = vanadium-containing sludge

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4959 KB  
Article
Factors of Bottom Sediment Variability in an Abandoned Alkaline Waste Settling Pond: Mineralogical and Geochemical Evidence
by Pavel Belkin, Sergey Blinov, Elena Drobinina, Elena Menshikova, Sergey Vaganov, Roman Perevoshchikov and Elena Tomilina
Minerals 2025, 15(6), 662; https://doi.org/10.3390/min15060662 - 19 Jun 2025
Viewed by 689
Abstract
The aim of this study is to determine the characteristics of the chemical and mineral composition of sediment layers in a technogenic settling pond. This pond is located on urban land in Berezniki (Perm Krai, Russia), outside the territory of operating industrial facilities, [...] Read more.
The aim of this study is to determine the characteristics of the chemical and mineral composition of sediment layers in a technogenic settling pond. This pond is located on urban land in Berezniki (Perm Krai, Russia), outside the territory of operating industrial facilities, and contains alkaline saline industrial wastes. The origin of this waste was related to sludge from the Solvay soda production process, which had been deposited in this pond over a long period of time. However, along with the soda waste, the pond also received wastewater from other industries. As a result, the accumulated sediment is characterized by variation in morphological properties both in depth and laterally. Five undisturbed columns were taken to study the composition of the accumulated sediment. The obtained samples were analyzed by X-ray diffraction (XRD), synchronous thermal analysis (STA), and X-ray fluorescence (XRF) analysis. The results showed that the mineral composition of bottom sediments in each layer of all studied columns is characterized by the predominance of calcite precipitated from wastewater. Along with calcite, due to the presence of magnesium and sodium in the solution, other carbonates precipitated—dolomite and soda (natron), as well as complex transitional carbonate phases (northupite and trona). Together with carbonate minerals, the chloride salts halite and sylvin, sulfate minerals gypsum and bassanite, and pyrite and nugget sulfur were established. The group of terrigenous mineral components is represented by quartz, feldspars, and aluminosilicates. The chemical composition of sediments in the upper part of the section generally corresponds to the mineral composition. In the lower sediment layers, the role of amorphous phase and non-mineral compounds increased, which was determined by the results of thermal analysis. The content of heavy metals and metalloids also increases in the middle and lower sediment layers. When categorized according to the Igeo value, an excessive degree of contamination (class 6) was observed in all investigated columns for copper content (Igeo 5.2–6.1). Chromium content corresponds to class 5 (Igeo 4.1–4.6), antimony to class 4 (Igeo 3.0–4.0), and lead, arsenic, and vanadium to classes 2 and 3 (moderately polluted and highly polluted). The data obtained on variations in the mineral and chemical composition of sediments represent the initial information for the selection of methods of accumulated waste management. Full article
Show Figures

Figure 1

14 pages, 2684 KB  
Article
Distribution of Rare Metals Obtained from the Alkaline Sulfate Processing of Nepheline Syenite
by Nazym Akhmadiyeva, Rinat Abdulvaliyev, Sergey Gladyshev, Alfiyam Manapova and Leila Imangaliyeva
Processes 2024, 12(7), 1289; https://doi.org/10.3390/pr12071289 - 21 Jun 2024
Viewed by 1438
Abstract
This article presents the results of studies on the distribution of rare metals among the products of the alkali sulfate processing of nepheline syenites. In response to the limited reserves of Bayer bauxite in the alumina industrial production region of Kazakhstan, the feasibility [...] Read more.
This article presents the results of studies on the distribution of rare metals among the products of the alkali sulfate processing of nepheline syenites. In response to the limited reserves of Bayer bauxite in the alumina industrial production region of Kazakhstan, the feasibility of using alternative alumina-containing nonbauxite raw materials was investigated. The most promising nonbauxite raw materials in Kazakhstan are nepheline and kaolinite clays. At present, there is no effective technology for processing nepheline ores. This article describes a proposed complex technology involving nepheline processing with the associated extraction of gallium and vanadium. The technology includes the activation of raw materials, followed by two-stage leaching, where potassium is extracted in the first stage. The sludge and solution obtained from the second stage of the leaching process are utilized for calcium silicate production and two-stage carbonization, respectively. In the first stage, aluminum hydroxide is extracted, and, in the second stage, a concentration of rare metals, such as gallium and vanadium, is obtained. Vanadium is extracted from the solution via crystallization, and gallium is extracted via electrodeposition. Overall, 38.48% of the Ga2O3 and 56.12% of the V2O5 are recovered from raw nepheline syenite. A technological scheme of the developed technology is presented in this article. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

17 pages, 6154 KB  
Article
The Prospect of Recovering Vanadium, Nickel, and Molybdenum from Stone Coal by Using Combined Beneficiation and Metallurgy Technology Based on Mineralogy Features
by Miao Wang, Liulu Cai, Jiankang Wen, Wenjuan Li, Xinlong Yang and Hongying Yang
Minerals 2023, 13(1), 21; https://doi.org/10.3390/min13010021 - 23 Dec 2022
Cited by 8 | Viewed by 3376
Abstract
Black shale ore contains rich strategic metal resources such as vanadium, nickel, and molybdenum, but due to its complex composition, it is currently only used in the vanadium extraction industry. Metals such as nickel and molybdenum have not been effectively recovered, resulting in [...] Read more.
Black shale ore contains rich strategic metal resources such as vanadium, nickel, and molybdenum, but due to its complex composition, it is currently only used in the vanadium extraction industry. Metals such as nickel and molybdenum have not been effectively recovered, resulting in environmental pollution and resource waste. Using mineralogical features and a combination of beneficiation and metallurgy-based tests, the present work carried out feasibility studies of the combined beneficiation and metallurgy processes. The mineralogical features of the stone coal sample were studied using chemical analysis, an automatic mineral analyzer (BPMA), etc., and we identified the main phase composition, embedded characteristics, and particle size distribution of the associated strategic metals, vanadium, nickel, and molybdenum. The results showed that the grade of V2O5 in the stone coal was 1.29%, which was mainly present in carbonaceous clay and mica minerals. The nickel grade was 0.53%, mainly in the form of nickel–magnesium spinel and a small amount of nickel-containing magnesite. The stone coal contained 0.11% molybdenum; the mineral particles were fine, mostly in the form of molybdenite, and some were associated with carbonaceous matter and carbonaceous clay minerals. Based on the mineralogical feature, we proposed using the scrubbing–desliming and flotation process to enrich vanadium, nickel, and molybdenum. Our preliminary experiments obtained two products: vanadium–molybdenum-rich sludge and nickel-containing tailings. The V2O5 and molybdenum grades in the sludge were 4.10% and 0.44%, respectively, and the recovery was 41.31% and 51.40%, respectively. The nickel grade in the tailings was 1.49%. These products were roasted and leached. The vanadium, nickel, and molybdenum in the stone coal were effectively recovered through the beneficiation–metallurgy combination process, and the comprehensive utilization rate of the stone coal was improved. Full article
(This article belongs to the Special Issue Advances on Fine Particles and Bubbles Flotation)
Show Figures

Graphical abstract

15 pages, 2734 KB  
Article
Analysis of Hydrometallurgical Methods for Obtaining Vanadium Concentrates from the Waste by Chemical Production of Vanadium Pentoxide
by Ulyana Kologrieva, Anton Volkov, Irina Krasnyanskaya, Pavel Stulov and Dmitry Wainstein
Materials 2022, 15(3), 938; https://doi.org/10.3390/ma15030938 - 26 Jan 2022
Cited by 15 | Viewed by 3093
Abstract
The paper describes hydrometallurgical methods to recycle wastes of vanadium pentoxide chemical fabrication. Sludges containing a significant amount of V2O5 can be considered as an additional source of raw materials for vanadium production. We studied the one-stage leaching method using [...] Read more.
The paper describes hydrometallurgical methods to recycle wastes of vanadium pentoxide chemical fabrication. Sludges containing a significant amount of V2O5 can be considered as an additional source of raw materials for vanadium production. We studied the one-stage leaching method using various iron-based reductants for converting V5+ to V4+ in a solution allowing to precipitate V when its concentration in the solution is low. As a result of the reduction leaching with further precipitation, we obtained concentrates with V2O5 content of 22–26% and a high amount of harmful impurities. Multistage counterflow leaching can be used to fabricate solutions with vanadium pentoxide concentration suitable for vanadium precipitation by hydrolysis and adding ammonium salts. The solutions with V2O5 content of ≈15 g/L can be obtained from the initial sludge by three-stage counterflow vanadium leaching. A concentrate with a content of 78 wt% V2O5 can be precipitated from these solutions at pH = 2.4 by adding ammonium chloride. Additionally, concentrate with V2O5 content of ≈94 wt% was precipitated from the solution with a concentration of >20 g/L V2O5 obtained from the roasted sludge. The concentrates were purified for increasing the vanadium content to 5–7%. The consumption and technological parameters of the considered processes are presented in the paper. Full article
Show Figures

Figure 1

10 pages, 5020 KB  
Article
Effect of Oily Sludge Treatment with Molten Blast Furnace Slag on the Mineral Phase Reconstruction of Water-Quenched Slag Properties
by Yuelin Qin, Ke Zhang, Xinlong Wu, Qingfeng Ling, Jinglan Hu, Xin Li and Hao Liu
Materials 2021, 14(23), 7285; https://doi.org/10.3390/ma14237285 - 28 Nov 2021
Cited by 8 | Viewed by 3239
Abstract
Blast furnace slag, which is the main by-product of the ironmaking process discharged at 1450 °C, contains high-quality sensible heat, while oily sludge is the main solid waste produced in the process of gas exploration, storage, and transportation. The energy and resource utilization [...] Read more.
Blast furnace slag, which is the main by-product of the ironmaking process discharged at 1450 °C, contains high-quality sensible heat, while oily sludge is the main solid waste produced in the process of gas exploration, storage, and transportation. The energy and resource utilization of blast furnace slag is complementary to the environmentally friendly treatment of oily sludge, which has provided a new idea for the multi-factor synergistic cycle and energy transformation of the two wastes. The pyrolysis of the oily sludge with the molten blast furnace slag was conducted in the current paper. Results showed that the oily sludge was rapidly pyrolyzed, and the heavy metal elements in the oily sludge were solidified. The solidification rate of the heavy metals exceeds 90%, except for vanadium. The reconstituted water-quenched blast furnace slag still has good activity, and it will not affect the further use of the slag after pyrolysis (BFS-P). Full article
(This article belongs to the Special Issue Processing of End-of-Life Materials and Industrial Wastes)
Show Figures

Figure 1

11 pages, 2306 KB  
Article
Investigation of Vanadium-Containing Sludge Oxidation Roasting Process for Vanadium Extraction
by Ulyana Kologrieva, Anton Volkov, Dmitry Zinoveev, Irina Krasnyanskaya, Pavel Stulov and Dmitry Wainstein
Metals 2021, 11(1), 100; https://doi.org/10.3390/met11010100 - 6 Jan 2021
Cited by 22 | Viewed by 3817
Abstract
Vanadium containing sludge is a by-product of vanadium pentoxide obtained by hydrometallurgical methods from vanadium slag that can be estimated as a promising technogeneous raw material for vanadium production. The phase analysis of vanadium-containing sludge by the X-ray diffraction method showed that it [...] Read more.
Vanadium containing sludge is a by-product of vanadium pentoxide obtained by hydrometallurgical methods from vanadium slag that can be estimated as a promising technogeneous raw material for vanadium production. The phase analysis of vanadium-containing sludge by the X-ray diffraction method showed that it contains vanadium in spinel form (FeO∙V2O3). The various oxidation roasting methods for sludge treatment were studied for increasing vanadium extraction into the solution. It showed that the most effective additive is 1% CaCO3 at a roasting temperature of 1000 °C. Oxidation roasting of vanadium-containing sludge with the additive led to an increase in the acid-soluble form of V2O5 from 1.5% to 3.7% and a decrease in the content of FeO∙V2O3 from 3% to 0.4%. These results confirm the efficiency of the application of oxidation roasting to convert vanadium compounds into acid-soluble forms. The conversion mechanism of spinel to acid-soluble phases during oxidation roasting with additives was investigated by thermogravimetric analysis and thermodynamic simulation. It showed that the formation of acid-soluble calcium vanadates during oxidation roasting without additives occurs at temperatures above 800 °C while CaCO3 addition allows one to reduce this temperature to 600 °C. Full article
Show Figures

Figure 1

10 pages, 3567 KB  
Article
Vanadium Chemical Compounds Forms in Wastes of Vanadium Pentoxide Production
by Anton Volkov, Ulyana Kologrieva, Anatoly Kovalev, Dmitry Wainstein and Vladimir Vakhrushev
Materials 2020, 13(21), 4889; https://doi.org/10.3390/ma13214889 - 30 Oct 2020
Cited by 14 | Viewed by 3286
Abstract
A big amount of solid wastes or dump sludges is generated after leaching vanadium (V) from a roasted mixture. As the vanadium content in these tailings is comparable to its concentration in traditional vanadium sources such as titanomagnetite ores or a vanadium converter [...] Read more.
A big amount of solid wastes or dump sludges is generated after leaching vanadium (V) from a roasted mixture. As the vanadium content in these tailings is comparable to its concentration in traditional vanadium sources such as titanomagnetite ores or a vanadium converter slag, these wastes could be recycled to extract additional vanadium. Therefore, this research was aimed on studies of vanadium-containing sludges resulting from hydrometallurgical production of vanadium pentoxide to find an optimal technology for V extraction. The material composition of industrial and synthetic sludge samples was studied by X-ray fluorescence analysis (XRF), X-ray diffraction (XRD), secondary ions mass spectroscopy (SIMS), and X-ray photoelectron spectroscopy (XPS, ESCA). The paper demonstrates the presence of vanadium in sludges, not only in spinels in 3+ oxidation degree, but also in other compounds containing V4+ and V5+. It was found that vanadium substitutes a set of elements in minerals except spinel. The dependence between the content of insoluble vanadium compounds and V oxidation degree was determined. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

Back to TopTop