Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (267)

Search Parameters:
Keywords = vaccine platform technologies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1656 KiB  
Article
mRNA-LNP Vaccines Targeting SmpA-PLD and OmpK-Omp22 Induce Protective Immunity Against Acinetobacter baumannii
by Cong Liu, Xingyun Wang, Yueling Zheng, Xingyue Gao, Jiahui Jin, Xing Cheng, Yunjiao He and Peng George Wang
Vaccines 2025, 13(7), 764; https://doi.org/10.3390/vaccines13070764 - 19 Jul 2025
Viewed by 239
Abstract
Background: Acinetobacter baumannii (A. baumannii) has emerged as a critical human pathogen, causing high mortality rates among hospitalized patients and frequently triggering nosocomial outbreaks. The increasing prevalence of multidrug-resistant (MDR) A. baumannii poses a pressing threat to public health. To date, [...] Read more.
Background: Acinetobacter baumannii (A. baumannii) has emerged as a critical human pathogen, causing high mortality rates among hospitalized patients and frequently triggering nosocomial outbreaks. The increasing prevalence of multidrug-resistant (MDR) A. baumannii poses a pressing threat to public health. To date, no commercially available vaccine against A. baumannii has been developed for clinical use. messenger RNA (mRNA)–lipid nanoparticle (LNP) vaccines have emerged as a promising vaccination strategy. Methods: In this work, we developed two mRNA vaccines targeting SmpA-PLD and the fusion protein of outer membrane proteins OmpK and Omp22. The mRNA was encapsulated in LNP and administered to BALB/c mice. We evaluated humoral and cellular immune responses, bacterial burden, inflammation, and protective efficacy against A. baumannii infection in a sepsis model. Results: These mRNA vaccines triggered robust humoral and cellular immune responses in BALB/c mice, reduced bacterial burden and inflammation in sepsis models, and provided significant protection against A. baumannii infection. Notably, the OmpK-Omp22 vaccine exhibited superior protective efficacy, reducing bacterial loads in various organs and improving survival rates in the sepsis model compared to the SmpA-PLD vaccine. Conclusions: Our findings demonstrate mRNA-LNP vaccine technology as a versatile and promising platform for the development of innovative therapeutics against A. baumannii, with the potential to mitigate acute disease and promote bacterial decolonization. These findings pave the way for the development of urgently needed and effective antibacterial vaccines. Full article
Show Figures

Figure 1

17 pages, 1413 KiB  
Article
Sensitivity and Cross-Reactivity Analysis of Serotype-Specific Anti-NS1 Serological Assays for Dengue Virus Using Optical Modulation Biosensing
by Sophie Terenteva, Linoy Golani-Zaidie, Shira Avivi, Yaniv Lustig, Victoria Indenbaum, Ravit Koren, Tran Mai Hoa, Tong Thi Kim Tuyen, Ma Thi Huyen, Nguyen Minh Hoan, Le Thi Hoi, Nguyen Vu Trung, Eli Schwartz and Amos Danielli
Biosensors 2025, 15(7), 453; https://doi.org/10.3390/bios15070453 - 14 Jul 2025
Viewed by 364
Abstract
Dengue virus (DENV) poses a major global health concern, with over 6.5 million cases and 7300 deaths reported in 2023. Accurate serological assays are essential for tracking infection history, evaluating disease severity, and guiding vaccination strategies. However, existing assays are limited in their [...] Read more.
Dengue virus (DENV) poses a major global health concern, with over 6.5 million cases and 7300 deaths reported in 2023. Accurate serological assays are essential for tracking infection history, evaluating disease severity, and guiding vaccination strategies. However, existing assays are limited in their specificity, sensitivity, and cross-reactivity. Using optical modulation biosensing (OMB) technology and non-structural protein 1 (NS1) antigens from DENV-1–3, we developed highly sensitive and quantitative serotype-specific anti-DENV NS1 IgG serological assays. The OMB-based assays offered a wide dynamic range (~4-log), low detection limits (~400 ng/L), fast turnaround (1.5 h), and a simplified workflow. Using samples from endemic (Vietnam) and non-endemic (Israel) regions, we assessed intra-DENV and inter-Flavivirus cross-reactivity. Each assay detected DENV infection with a 100% sensitivity for the corresponding serotype and 64% to 90% for other serotypes. Cross-reactivity with Zika, Japanese encephalitis, and West Nile viruses ranged from 21% to 65%, reflecting NS1 antigen conservation. Our study provides valuable insights into the cross-reactivity of DENV NS1 antigens widely used in research and highlights the potential of OMB-based assays for quantitative and epidemiological studies. Ongoing efforts should aim to minimize cross-reactivity while maintaining sensitivity and explore integration with complementary platforms for improved diagnostic precision. Full article
Show Figures

Figure 1

13 pages, 1764 KiB  
Article
Surface Display of Avian H5 and H9 Hemagglutinin Antigens on Non-Genetically Modified Lactobacillus Cells for Bivalent Oral AIV Vaccine Development
by Fuyi Liu, Jingbo Chang, Jingqi Huang, Yuping Liao, Xiaonan Deng, Tingting Guo, Jian Kong and Wentao Kong
Microorganisms 2025, 13(7), 1649; https://doi.org/10.3390/microorganisms13071649 - 11 Jul 2025
Viewed by 264
Abstract
A novel bivalent oral vaccine candidate against H5N1 and H9N2 avian influenza virus (AIV) was developed using Lactobacillus surface display technology without genetic modification. The hemagglutinin subunit 1 (HA1) antigens from both subtypes were fused to the surface layer-binding domain of Lactobacillus crispatus [...] Read more.
A novel bivalent oral vaccine candidate against H5N1 and H9N2 avian influenza virus (AIV) was developed using Lactobacillus surface display technology without genetic modification. The hemagglutinin subunit 1 (HA1) antigens from both subtypes were fused to the surface layer-binding domain of Lactobacillus crispatus K313, expressed in Escherichia coli, and purified. Wild-type Lactobacillus johnsonii H31, isolated from chicken intestine, served as a delivery vehicle by adsorbing and stably displaying the HA1 proteins on its surface. This approach eliminates the need for bacterial engineering while utilizing lactobacilli’s natural capacity to protect surface-displayed antigens, as evidenced by HA1’s protease resistance. Mouse immunization studies demonstrated induction of strong systemic IgG and mucosal IgA responses against both H5N1 and H9N2 HA1. The system offers several advantages, including safety through non-GMO probiotics, potential for multivalent vaccine expansion, and intrinsic antigen protection by lactobacilli. These findings suggest this platform could enable development of cost-effective, multivalent AIV vaccines. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

16 pages, 654 KiB  
Review
Engaging Broader Stakeholders to Accelerate Group A Streptococcus Vaccine Development
by Dechuan Kong, Hao Pan, Huanyu Wu and Jian Chen
Vaccines 2025, 13(7), 734; https://doi.org/10.3390/vaccines13070734 - 7 Jul 2025
Viewed by 565
Abstract
Group A Streptococcus (GAS) imposes a significant global health burden across all age groups, annually causing over 600 million cases of pharyngitis and more than 18 million severe invasive infections or sequelae. The resurgence of scarlet fever globally and streptococcal toxic shock syndrome [...] Read more.
Group A Streptococcus (GAS) imposes a significant global health burden across all age groups, annually causing over 600 million cases of pharyngitis and more than 18 million severe invasive infections or sequelae. The resurgence of scarlet fever globally and streptococcal toxic shock syndrome (STSS) outbreaks in Japan have brought GAS infections back into the spotlight as a pressing global health concern. Unfortunately, no licensed vaccine against GAS is yet available for clinical use. Our comprehensive review examines the developmental history of GAS vaccines, outlining the research trajectory from early inactivated vaccines to contemporary multivalent, conjugate, multi-antigen, and mRNA-based vaccine platforms. It systematically analyzes clinical trial outcomes of GAS vaccines, highlighting recent advances in both M protein-based and non-M protein vaccine candidates while summarizing promising target antigens. The review concludes with critical strategies to accelerate vaccine commercialization, including enhanced investment in research and development, expanded collaborations, leveraging advanced vaccine technologies, streamlined clinical trials, and strengthened public health advocacy. This review critically evaluates the current evidence and future prospects in GAS vaccine development, emphasizing innovative strategies and engaging broader stakeholders to accelerate GAS vaccine development. Full article
(This article belongs to the Special Issue Development of Vaccines Against Bacterial Infections)
Show Figures

Figure 1

29 pages, 5028 KiB  
Article
Moloney Murine Leukemia Virus-like Nanoparticles Pseudo-Typed with SARS-CoV-2 RBD for Vaccination Against COVID-19
by Bernhard Kratzer, Pia Gattinger, Peter A. Tauber, Mirjam Schaar, Al Nasar Ahmed Sehgal, Armin Kraus, Doris Trapin, Rudolf Valenta and Winfried F. Pickl
Int. J. Mol. Sci. 2025, 26(13), 6462; https://doi.org/10.3390/ijms26136462 - 4 Jul 2025
Viewed by 521
Abstract
Virus-like nanoparticles (VNPs) based on Moloney murine leukemia virus represent a well-established platform for the expression of heterologous molecules such as cytokines, cytokine receptors, peptide MHC (pMHC) and major allergens, but their application for inducing protective anti-viral immunity has remained understudied as of [...] Read more.
Virus-like nanoparticles (VNPs) based on Moloney murine leukemia virus represent a well-established platform for the expression of heterologous molecules such as cytokines, cytokine receptors, peptide MHC (pMHC) and major allergens, but their application for inducing protective anti-viral immunity has remained understudied as of yet. Here, we variably fused the wildtype SARS-CoV-2 spike, its receptor-binding domain (RBD) and nucleocapsid (NC) to the minimal CD16b-GPI anchor acceptor sequence for expression on the surface of VNP. Moreover, a CD16b-GPI-anchored single-chain version of IL-12 was tested for its adjuvanticity. VNPs expressing RBD::CD16b-GPI alone or in combination with IL-12::CD16b-GPI were used to immunize BALB/c mice intramuscularly and subsequently to investigate virus-specific humoral and cellular immune responses. CD16b-GPI-anchored viral molecules and IL-12-GPI were well-expressed on HEK-293T-producer cells and purified VNPs. After the immunization of mice with VNPs, RBD-specific antibodies were only induced with RBD-expressing VNPs, but not with empty control VNPs or VNPs solely expressing IL-12. Mice immunized with RBD VNPs produced RBD-specific IgM, IgG2a and IgG1 after the first immunization, whereas RBD-specific IgA only appeared after a booster immunization. Protein/peptide microarray and ELISA analyses confirmed exclusive IgG reactivity with folded but not unfolded RBD and showed no specific IgG reactivity with linear RBD peptides. Notably, booster injections gradually increased long-term IgG antibody avidity as measured by ELISA. Interestingly, the final immunization with RBD–Omicron VNPs mainly enhanced preexisting RBD Wuhan Hu-1-specific antibodies. Furthermore, the induced antibodies significantly neutralized SARS-CoV-2 and specifically enhanced cellular cytotoxicity (ADCC) against RBD protein-expressing target cells. In summary, VNPs expressing viral proteins, even in the absence of adjuvants, efficiently induce functional SARS-CoV-2-specific antibodies of all three major classes, making this technology very interesting for future vaccine development and boosting strategies with low reactogenicity. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 5007 KiB  
Review
PROTAC-Based Antivirals for Respiratory Viruses: A Novel Approach for Targeted Therapy and Vaccine Development
by Amith Anugu, Pankaj Singh, Dharambir Kashyap, Jillwin Joseph, Sheetal Naik, Subhabrata Sarkar, Kamran Zaman, Manpreet Dhaliwal, Shubham Nagar, Tanishq Gupta and Prasanna Honnavar
Microorganisms 2025, 13(7), 1557; https://doi.org/10.3390/microorganisms13071557 - 2 Jul 2025
Viewed by 400
Abstract
The global burden of respiratory viral infections is notable, which is attributed to their higher transmissibility compared to other viral diseases. Respiratory viruses are seen to have evolved resistance to available treatment options. Although vaccines and antiviral drugs control some respiratory viruses, this [...] Read more.
The global burden of respiratory viral infections is notable, which is attributed to their higher transmissibility compared to other viral diseases. Respiratory viruses are seen to have evolved resistance to available treatment options. Although vaccines and antiviral drugs control some respiratory viruses, this control is limited due to unexpected events, such as mutations and the development of antiviral resistance. The technology of proteolysis-targeting chimeras (PROTACs) has been emerging as a novel technology in viral therapeutics. These are small molecules that can selectively degrade target proteins via the ubiquitin–proteasome pathway. PROTACs as a therapy were initially developed against cancer, but they have recently shown promising results in their antiviral mechanisms by targeting viral and/or host proteins involved in the pathogenesis of viral infections. In this review, we elaborate on the antiviral potential of PROTACs as therapeutic agents and their potential as vaccine components against important respiratory viral pathogens, including influenza viruses, coronaviruses (SARS-CoV-2), and respiratory syncytial virus. Advanced applications of PROTAC antiviral strategies, such as hemagglutinin and neuraminidase degraders for influenza and spike proteins of SARS-CoV-2, are detailed in this review. Additionally, the role of PROTACs in targeting cellular mechanisms within the host, thereby preventing viral pathogenesis and eliciting an antiviral effect, is discussed. The potential of PROTACs as vaccines, utilizing proteasome-based virus attenuation to achieve a robust protective immune response, while ensuring safety and enhancing efficient production, is also presented. With the promises exhibited by PROTACs, this technology faces significant challenges, including the emergence of novel viral strains, tissue-specific expression of E3 ligases, and pharmacokinetic constraints. With advanced computational design in molecular platforms, PROTAC-based antiviral development offers an alternative, transformative path in tackling respiratory viruses. Full article
Show Figures

Figure 1

12 pages, 2246 KiB  
Article
Digital Twin for Upstream and Downstream Integration of Virus-like Particle Manufacturing
by Simon Baukmann, Alina Hengelbrock, Kristina Katsoutas, Jörn Stitz, Axel Schmidt and Jochen Strube
Processes 2025, 13(7), 2101; https://doi.org/10.3390/pr13072101 - 2 Jul 2025
Viewed by 333
Abstract
Virus-like particles (VLPs) have the potential to become a versatile carrier platform for vaccination against multiple diseases. In the light of short process development timelines and the demand for reliable and robust processes, metabolic modeling of cell culture processes offers great advantages when [...] Read more.
Virus-like particles (VLPs) have the potential to become a versatile carrier platform for vaccination against multiple diseases. In the light of short process development timelines and the demand for reliable and robust processes, metabolic modeling of cell culture processes offers great advantages when coupled with a Quality-by-Design (QbD) development approach. A previous work was able to demonstrate the accurate prediction of HEK293F PiggyBac cell concentration as well as VLP titer and metabolite production with a reduced metabolic model. This work presents the reduced metabolic model for a more productive cell line Sleeping Beauty and emphasizes the need for model re-parameterization when the producer cell line changes. The goal of precise prediction for a fed-batch and continuous HEK293 cultivation can, therefore, be achieved. In terms of decision-making for downstream unit operations, a soft sensor for the prediction of main impurities like proteins and DNA was introduced for the first time for the production of lentiviral vectors with several terms describing the release of impurities like DNA and proteins, growth-related protein production, and enzymatic degradation activity associated with cell dissociation in an accurate manner. The additional information can contribute to a more efficient design phase by reducing experimental effort as well as during cultivation with data-based decision-making. With the aid of real-time process data acquisition through process analytical technology (PAT), its predictive power can be enhanced and lead to more reliable processes. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

18 pages, 434 KiB  
Article
Sustainable Health Policies—A Health Emergency Toolkit of Assessment
by Göran Svensson and Rocio Rodriguez
Sustainability 2025, 17(13), 6022; https://doi.org/10.3390/su17136022 - 30 Jun 2025
Viewed by 279
Abstract
Introduction: The health emergency caused by the pandemic led to severe health issues in populations across many countries worldwide, including widespread morbidity and significant mortality. Nevertheless, several countries succeeded in keeping infection rates remarkably low before the approval of vaccines and the initiation [...] Read more.
Introduction: The health emergency caused by the pandemic led to severe health issues in populations across many countries worldwide, including widespread morbidity and significant mortality. Nevertheless, several countries succeeded in keeping infection rates remarkably low before the approval of vaccines and the initiation of vaccinations in early 2021. We aim to identify the success factors of health policies in managing the impact of the health emergency across a selection of countries, focusing on how they protected their populations. Our study presents outcomes of sustainable health policy measures, along with health and social system challenges, and economic responses during the global health emergency. We sometimes found it difficult to define what counted as a success factor in some countries. Method: Our study draws upon a selection of reports and documents published by various ministries and economic, social, and health authorities, which we collected online. We structured our study into three phases to frame and contextualize the impact of health policy measures and countermeasures as follows: (i) observations and content analysis; (ii) empirical support through illustrative examples; and (iii) development of a health emergency toolkit of assessment. The documents were not always easy to compare because they differed in format and detail. Results: Our study outlines ten success factors for sustainable health policy measures and countermeasures: (i) preparedness; (ii) control; (iii) precaution; (iv) proactive decision-making; (v) synchronization; (vi) adequate legislation; (vii) goal fulfillment; (viii) digital health technology; (ix) empirical evidence; (x) ethical and moral virtues. Sometimes we struggled to separate what was ethical guidance from what was simply practical advice. Conclusion: We argue that the relevance of the health emergency toolkit of assessment outlined in our study demonstrates clearly that the success factors related to sustainable health policy measures and countermeasures can be applied and adapted to the societal conditions of individual countries. These factors may form a foundation for the development of a health emergency toolkit of assessment for future health emergencies. We also maintain that these factors may serve as a platform for establishing sustainable plans across health, social, and economic domains, with clear guidelines for implementation, management, and control. It is our hope that future health systems will make use of these findings before the next crisis emerges. Full article
Show Figures

Figure 1

21 pages, 323 KiB  
Review
Progress and Recent Developments in HIV Vaccine Research
by Iris Shim, Lily Rogowski and Vishwanath Venketaraman
Vaccines 2025, 13(7), 690; https://doi.org/10.3390/vaccines13070690 - 26 Jun 2025
Viewed by 886
Abstract
Background: Human immunodeficiency virus (HIV) remains a global health challenge despite significant advancements in antiretroviral therapy and prevention strategies. Developing a safe and effective vaccine that protects people worldwide has been a major goal, yet the genetic variability and rapid mutation rate of [...] Read more.
Background: Human immunodeficiency virus (HIV) remains a global health challenge despite significant advancements in antiretroviral therapy and prevention strategies. Developing a safe and effective vaccine that protects people worldwide has been a major goal, yet the genetic variability and rapid mutation rate of the virus continue to pose substantial challenges. Methods: In this review paper, we aim to provide a comprehensive review of previous vaccine candidates and the progress made in HIV vaccine clinical trials, spanning from the late 1990s to 2025. PubMed and ClinicalTrials.gov were searched for English-language Phase 1–3 HIV vaccine trials published from 1990 to March 2025. After de-duplication, titles/abstracts and then full texts were screened; trial phase, regimen, immunogenicity, efficacy, and correlates were extracted into a structured spreadsheet. Owing to platform heterogeneity, findings were synthesized narratively and arranged chronologically to trace the evolution of vaccine strategies. Results: Early vaccine trials demonstrated that a protein subunit vaccine failed to protect against infection, revealing the complexity of HIV evasion strategies and shifting the focus to a comprehensive immune response, including both antibody and T-cell responses. Trials evaluating the role of viral vectors in generating cell-mediated immunity were also insufficient, and suggested that targeting T cell response alone was not enough. In 2009, the RV144 trial made a breakthrough by showing partial protection against HIV infection and providing the first indication of efficacy. This partial success influenced subsequent trials, prompting researchers to further explore the complex immune response required for protection and consider combinations of vaccine technologies to achieve robust, long-lasting immunity. Conclusion: Despite setbacks, decades of rigorous efforts have provided significant contributions to HIV vaccine discovery and development, offering hope for preventing and protecting against HIV infection. The field remains active by continuing to advance our understanding of the virus, refining vaccine strategies, and employing novel technologies. Full article
(This article belongs to the Special Issue Advances in HIV Vaccine Development, 2nd Edition)
31 pages, 1849 KiB  
Review
The Application of Single-Cell Technologies for Vaccine Development Against Viral Infections
by Hong Nhi Nguyen, Isabel O. Vanderzee and Fei Wen
Vaccines 2025, 13(7), 687; https://doi.org/10.3390/vaccines13070687 - 26 Jun 2025
Viewed by 763
Abstract
The development of vaccines against viral infections has advanced rapidly over the past century, propelled by innovations in laboratory and molecular technologies. These advances have expanded the range of vaccine platforms beyond live-attenuated and inactivated vaccines to include recombinant platforms, such as subunit [...] Read more.
The development of vaccines against viral infections has advanced rapidly over the past century, propelled by innovations in laboratory and molecular technologies. These advances have expanded the range of vaccine platforms beyond live-attenuated and inactivated vaccines to include recombinant platforms, such as subunit proteins and virus-like particles (VLPs), and more recently, mRNA-based vaccines, while also enhancing methods for evaluating vaccine performance. Despite these innovations, a persistent challenge remains: the inherent complexity and heterogeneity of immune responses continue to impede efforts to achieve consistently effective and durable protection across diverse populations. Single-cell technologies have emerged as transformative tools for dissecting this immune heterogeneity, providing comprehensive and granular insights into cellular phenotypes, functional states, and dynamic host–pathogen interactions. In this review, we examine how single-cell epigenomic, transcriptomic, proteomic, and multi-omics approaches are being integrated across all stages of vaccine development—from infection-informed discovery to guide vaccine design, to high-resolution evaluation of efficacy, and refinement of cell lines for manufacturing. Through representative studies, we highlight how insights from these technologies contribute to the rational design of more effective vaccines and support the development of personalized vaccination strategies. Full article
(This article belongs to the Special Issue Virus-Like Particle Vaccine Development)
Show Figures

Figure 1

21 pages, 1752 KiB  
Article
Evaluation of Immunogenicity of an Orf Virus Vector-Based Vaccine Delivery Platform in Sheep
by Sean R. Wattegedera, Jackie Thomson, Lesley Coulter, Ann Wood, Rebecca K. McLean, Holly Hill, Cameron Cunnea, Karen Snedden, Ann Percival, Javier Palarea-Albaladejo, Gary Entrican, David Longbottom, David J. Griffiths and Colin J. McInnes
Vaccines 2025, 13(6), 631; https://doi.org/10.3390/vaccines13060631 - 11 Jun 2025
Viewed by 913
Abstract
Background/Objective: Virus-based vaccine vectors have been widely utilised in commercial vaccines, predominantly for virus infections. They also offer promise for bacterial diseases, for which many vaccines are sub-optimal or ineffective. It is well-established for chlamydial infections, including ovine enzootic abortion, that the major [...] Read more.
Background/Objective: Virus-based vaccine vectors have been widely utilised in commercial vaccines, predominantly for virus infections. They also offer promise for bacterial diseases, for which many vaccines are sub-optimal or ineffective. It is well-established for chlamydial infections, including ovine enzootic abortion, that the major outer membrane protein (MOMP) antigen is protective. Immune responses strongly associated with controlling Chlamydiae include cellular interferon-gamma (IFN-γ) production. Methods: A study was conducted to compare the ability of a modified Orf virus vector directly with a modified sheep maedi visna virus vector to deliver the C. abortus antigen ompA and stimulate vaccine-induced responses in sheep. The Orf virus-based vaccine (mORFV-ompA) was found to be more effective in stimulating MOMP-specific antibodies and cellular antigen-driven IFN-γ in immunised sheep. This mORFV-ompA vaccine was assessed in a follow-up immunogenicity investigation in sheep, where the cellular and humoral immune responses elicited following immunisation with the live or inactivated vaccine were determined. Sheep were immunised intramuscularly with a live mORFV-ompA (n = 10) or an inactivated mORFV-ompA (n = 10). An additional group of 10 sheep served as unvaccinated controls. Results: Serological anti-MOMP antibodies and cellular recall responses of peripheral blood mononuclear cells to the native C. abortus antigen were assessed. Immunisation with either the live or inactivated mORFV-ompA-induced anti-MOMP immunoglobulin-G. Antigen-specific cellular responses, characterised by the secretion of IFN-γ and interleukin (IL)-17A, with negligible IL-10 and no IL-4, were detected in lymphocyte stimulation assays from both mORFV groups. No antibody responses to the mORFV platform were detected following immunisations. Conclusions: Both live and inactivated vaccines have the potential to be a platform technology for deployment in sheep. This addresses a notable gap in veterinary vaccine development where the induction of both humoral responses and cellular responses is required without using an adjuvant. The successful use of the MOMP candidate antigen suggests potential utility for bacterial disease deployment. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

11 pages, 561 KiB  
Review
Current Progress and Future Perspectives of RNA-Based Cancer Vaccines: A 2025 Update
by Matthias Magoola and Sarfaraz K. Niazi
Cancers 2025, 17(11), 1882; https://doi.org/10.3390/cancers17111882 - 4 Jun 2025
Viewed by 2164
Abstract
RNA-based cancer vaccines have emerged as transformative immunotherapeutic platforms, leveraging advances in mRNA technology and personalized medicine approaches. Recent clinical breakthroughs, particularly the success of mRNA-4157 combined with pembrolizumab in melanoma patients, have demonstrated significant improvements in efficacy, with a 44% reduction in [...] Read more.
RNA-based cancer vaccines have emerged as transformative immunotherapeutic platforms, leveraging advances in mRNA technology and personalized medicine approaches. Recent clinical breakthroughs, particularly the success of mRNA-4157 combined with pembrolizumab in melanoma patients, have demonstrated significant improvements in efficacy, with a 44% reduction in recurrence risk compared to checkpoint inhibitor monotherapy. Breakthrough results from pancreatic cancer vaccines and novel glioblastoma treatments using layered nanoparticle delivery systems mark 2024–2025 as a pivotal period for RNA cancer vaccine development. Current RNA vaccine platforms include conventional mRNA, self-amplifying RNA, trans-amplifying RNA, and emerging circular RNA technologies, with over 120 clinical trials currently underway across various malignancies. Critical advances in delivery optimization include next-generation lipid nanoparticles with tissue-specific targeting and novel nanoengineered systems achieving rapid immune system reprogramming. Manufacturing innovations focus on automated platforms, reducing production timelines from nine weeks to under four weeks for personalized vaccines, while costs remain challenging at over $ 100,000 per patient. Artificial intelligence integration is revolutionizing neoantigen selection through advanced algorithms and CRISPR-enhanced platforms, while regulatory frameworks are evolving with new FDA guidance for therapeutic cancer vaccines. Non-coding RNA applications, including microRNA and long non-coding RNA therapeutics, represent emerging frontiers with potential for enhanced immune modulation. With over 60 candidates in clinical development and the first commercial approvals anticipated by 2029, RNA cancer vaccines are positioned to become cornerstone therapeutics in personalized oncology, offering transformative hope for cancer patients worldwide. Full article
(This article belongs to the Special Issue Advances in Drug Delivery for Cancer Therapy)
Show Figures

Graphical abstract

25 pages, 2016 KiB  
Review
mRNA Vaccine Technology Beyond COVID-19
by Sola Oloruntimehin, Florence Akinyi, Michael Paul and Olumuyiwa Ariyo
Vaccines 2025, 13(6), 601; https://doi.org/10.3390/vaccines13060601 - 31 May 2025
Viewed by 2255
Abstract
Background/Objectives: Since their approval in early 2020, mRNA vaccines have gained significant attention since the COVID-19 pandemic as a potential therapeutic approach to tackle several infectious diseases. This article aims to review the current state of mRNA vaccine technology and its use against [...] Read more.
Background/Objectives: Since their approval in early 2020, mRNA vaccines have gained significant attention since the COVID-19 pandemic as a potential therapeutic approach to tackle several infectious diseases. This article aims to review the current state of mRNA vaccine technology and its use against other diseases. Methods: To obtain accurate and reliable data, we carefully searched the clinicaltrial.gov and individual companies’ websites for current ongoing clinical trials reports. Also, we accessed different NCBI databases for recent articles or reports of clinical trials, innovative design of mRNA vaccines, and reviews. Results: Significant progress has been made in the design and improvement of mRNA vaccine technology. Currently, there are hundreds of ongoing clinical trials on mRNA vaccines against different cancer types, infectious diseases, and genetic and rare diseases, which showcase the advancement in this technology and their potential therapeutic advantages over traditional vaccine platforms. Finally, we predict what could be a potential future direction in designing more effective mRNA vaccines, particularly against cancer. Conclusions: The results of many of the ongoing clinical trials have shown significant positive outcomes, with many of the trials already at Phase III. Despite this outlook, however, some have been terminated or withdrawn for several reasons, some of which are not made available. This means that despite the advancement, there is a need for more research and critical evaluation of each innovation to better understand their immunological benefits and long-term effects. Full article
(This article belongs to the Section Nucleic Acid (DNA and mRNA) Vaccines)
Show Figures

Figure 1

32 pages, 1404 KiB  
Review
Next-Generation Vaccine Platforms: Integrating Synthetic Biology, Nanotechnology, and Systems Immunology for Improved Immunogenicity
by Majid Eslami, Bahram Fadaee Dowlat, Shayan Yaghmayee, Anoosha Habibian, Saeedeh Keshavarzi, Valentyn Oksenych and Ramtin Naderian
Vaccines 2025, 13(6), 588; https://doi.org/10.3390/vaccines13060588 - 30 May 2025
Viewed by 1334
Abstract
The emergence of complex and rapidly evolving pathogens necessitates innovative vaccine platforms that move beyond traditional methods. This review explores the transformative potential of next-generation vaccine technologies, focusing on the combined use of synthetic biology, nanotechnology, and systems immunology. Synthetic biology provides modular [...] Read more.
The emergence of complex and rapidly evolving pathogens necessitates innovative vaccine platforms that move beyond traditional methods. This review explores the transformative potential of next-generation vaccine technologies, focusing on the combined use of synthetic biology, nanotechnology, and systems immunology. Synthetic biology provides modular tools for designing antigenic components with improved immunogenicity, as seen in mRNA, DNA, and peptide-based platforms featuring codon optimization and self-amplifying constructs. At the same time, nanotechnology enables precise antigen delivery and controlled immune activation through engineered nanoparticles such as lipid-based carriers, virus-like particles, and polymeric systems to improve stability, targeting, and dose efficiency. Systems immunology aids these advancements by analyzing immune responses through multi-omics data and computational modeling, which assists in antigen selection, immune profiling, and adjuvant optimization. This approach enhances both humoral and cellular immunity, solving challenges like antigen presentation, response durability, and vaccine personalization. Case studies on SARS-CoV-2, Epstein–Barr virus, and Mycobacterium tuberculosis highlight the practical application of these platforms. Despite promising progress, challenges include scalability, safety evaluation, and ethical concerns with data-driven vaccine designs. Ongoing interdisciplinary collaboration is crucial to fully develop these technologies for strong, adaptable, globally accessible vaccines. This review emphasizes next-generation vaccines as foundational for future immunoprophylaxis, especially against emerging infectious diseases and cancer immunotherapy. Full article
(This article belongs to the Special Issue Vaccine Development and Global Health)
Show Figures

Figure 1

14 pages, 2471 KiB  
Article
Optimized Production of Virus-like Particles in a High-CHO-Cell-Density Transient Gene Expression System for Foot-and-Mouth Disease Vaccine Development
by Ana Clara Mignaqui, Alejandra Ferella, Cintia Sánchez, Matthew Stuible, Romina Scian, Jorge Filippi, Sabrina Beatriz Cardillo, Yves Durocher and Andrés Wigdorovitz
Vaccines 2025, 13(6), 581; https://doi.org/10.3390/vaccines13060581 - 29 May 2025
Viewed by 662
Abstract
Background/Objectives: Foot-and-mouth disease virus (FMDV) poses a continuous threat to livestock health and agricultural economies. Current vaccines require high biosafety standards and are costly to produce. While novel vaccine technologies have been explored, most fail to meet industrial scalability, cost-efficiency, or multiserotype flexibility [...] Read more.
Background/Objectives: Foot-and-mouth disease virus (FMDV) poses a continuous threat to livestock health and agricultural economies. Current vaccines require high biosafety standards and are costly to produce. While novel vaccine technologies have been explored, most fail to meet industrial scalability, cost-efficiency, or multiserotype flexibility required for effective FMD control. This study aimed to evaluate the feasibility of using a high-cell density transient gene expression (TGE) system in CHO cells for the production of FMDV virus-like particles (VLPs) as a recombinant vaccine platform. Methods: VLP expression was optimized by adjusting cDNA and polyethyleneimine (PEI) concentrations. Expression yields were compared at 24 and 48 h post-transfection to determine optimal harvest timing. We further tested the system’s capacity to express different serotypes and chimeric constructs, incorporating VP1 sequences from various FMDV strains. Immunogenicity was evaluated in swine using VLPs from the A2001 Argentina strain as a model. Results: Optimal VLP expression was achieved at 24 h post-transfection. Chimeric constructs incorporating heterologous VP1 regions were successfully expressed. Immunized pigs developed protective antibody titers as measured by a virus neutralization test (VNT, log10 titer 1.43) and liquid-phase blocking ELISA (LPBE, titer 2.20) at 28 days post-vaccination (dpv). Titers remained above protective thresholds up to 60 dpv with a single dose. A booster at 28 dpv further elevated titers to levels comparable to those induced by the inactivated vaccine. Conclusions: Our results demonstrate the feasibility of using CHO cell-based TGE for producing immunogenic FMDV VLPs. This platform shows promise for scalable, cost-effective, and biosafe development of recombinant FMD vaccines. Full article
(This article belongs to the Special Issue Vaccines and Passive Immune Strategies in Veterinary Medicine)
Show Figures

Figure 1

Back to TopTop