Progress and Recent Developments in HIV Vaccine Research
Abstract
1. Introduction
2. Materials and Methods
- •
- Population: human participants, HIV-negative or living with HIV.
- •
- Intervention: any prophylactic or therapeutic HIV vaccine (all platforms).
- •
- Study design: Phase 1, 2, or 3 clinical trials (randomized or non-randomized).
- •
- Language: English.
3. HIV Genome and Immunological Challenges
3.1. Genome
3.2. Challenges
4. Clinical Trials Review
4.1. Early Preventive Vaccine Efficacy Trials (1990s–2003)
4.2. T-Cell–Focused Trials: STEP and Phambili (2004–2010)
4.3. RV144 Efficacy Trial in Thailand (2003–2009)
4.4. DNA Prime–Ad5 Boost: The HVTN 505 Trial (2009–2013)
- DNA Priming: Participants received three initial injections (at months 0, 1, and 2), each containing a mixture of six DNA plasmids encoding multiple HIV proteins: envelope glycoproteins from subtypes A, B, and C, as well as Gag, Pol, and Nef proteins [2].
- Ad5 Boost: At month 6, participants received a booster vaccination using a recombinant Ad5 vector encoding HIV proteins (Gag-Pol from subtype B, and env glycoproteins from subtypes A, B, and C) [2].
4.5. RV144 Follow-Up Trials in South Africa: HVTN 100 and HVTN 702 (2015–2020)
4.6. “Mosaic” Vaccine Trials: Imbokodo and Mosaico (2017–2023)
4.7. Passive Immunization Trials: The AMP Studies (2016–2021)
4.8. Recent Insights and Emerging Strategies
- Rapid and transient antigen expression: Because mRNA does not persist, it enables repeated vaccinations with evolving immunogens without concerns about anti-vector immunity that limit viral vector platforms [64].
Trial | Years | Vaccine Components and Platforms | Adjuvants | Population and Phase | Outcome/Efficacy |
---|---|---|---|---|---|
VAX004 | 1998–2003 | Bivalent gp120 (subtype B/B) protein subunit | Alum | MSM, High-risk Women; Phase 3 | Vaccine efficacy (VE) 6% (95% CI −17 to 24)—not significant. |
VAX003 | 1998–2003 | Bivalent gp120 (subtype B/E) protein subunit | Alum | Injection drug users; Phase 3 | VE 0% (95% CI −7 to 6). Highlighted limited protection from single protein immunogens. |
STEP (HVTN 502) | 2004–2007 | Recombinant Ad5 vector encoding gag, pol, nef | None | MSM; Phase 2b | VE −18% overall; HR 1.4 (Ad5-seropositive uncircumcised subgroup). Indicates possible increased risk in some Ad5-seropositive individuals. |
Phambili (HVTN 503) | 2007 | Recombinant Ad5 vector encoding gag, pol, nef | None | General; Phase 2b | Halted due to STEP results; Interim VE −69% (wide CI) |
RV144 | 2003–2009 | Canarypox vector (ALVAC) prime; gp120 protein boost (AIDSVAX B/E) | Alum | General community; Phase 3 | VE 31.2% (95% CI 1.1–52.1) at 42 months, Demonstrated importance of prime-boost approach. |
HVTN 505 | 2009–2013 | DNA plasmid prime (Env, Gag, Pol, Nef) and Ad5 vector boost (Env, Gag-Pol) | None | MSM, Trans women; Phase 2b | VE −25%; p = 0.44. Underscored limits of DNA/Ad5 platform for HIV prevention. |
HVTN 100 | 2015 | ALVAC-HIV (subtype C Env, clade B Gag/Pol) prime; gp120 protein boost | MF59 | General; Phase 1b | Immunogenic. 80% V1V2-IgG responders; GMT 1:−6300, but neutralization limited to Tier-1 strains |
HVTN 702 (Uhambo) | 2016–2020 | ALVAC-HIV subtype C prime; gp120 subtype C protein boost | MF59 | Adults at risk; Phase 2b/3 | HR 1.02 (95% CI 0.81–1.30) → 0% VE. Illustrated challenges in translating RV144 efficacy to different populations and HIV strains. |
Imbokodo (HVTN 705) | 2017–2021 | Ad26 vector mosaic Env, Gag-Pol prime; subtype C gp140 protein boost | Alum | High-risk women; Phase 2b | VE 14% (95% CI −22 to 40) months 7–24. Highlighted difficulties in inducing protective immune responses against diverse HIV variants. |
Mosaico (HVTN 706) | 2019–2023 | Ad26 vector mosaic Env, Gag-Pol prime; mosaic gp140 protein boost | Aluminum Phosphate | MSM, Transgender; Phase 3 | Futility stop; VE ≈ 0%. Further indicated limitations of mosaic immunogen approaches. |
AMP Studies (HVTN 703/704) | 2016–2021 | Passive immunization with VRC01 bnAb | None | General; Phase 2b | Overall VE 0%; 75% VE vs. VRC01-sensitive viruses (IC80 < 1 µg/mL), demonstrating strain specificity and need for bnAb combinations. |
IAVI G001 | 2021 | Germline-targeting eOD-GT8 60mer nanoparticle immunogen | None | General; Phase 1 | 97% (35/36) generated VRC01-class precursors Represents a promising new strategy for inducing bnAbs. |
HVTN 302 | 2022–Present | mRNA vaccines encoding different stabilized HIV Env antigens | Lipid nanoparticles | General; Phase 1 | Phase 1 safety; early data show >90% binding-IgG seroconversion by day 28 |
Strategy/Platform | Key Antigen (s) | Primary Immune Goal | Representative Trials |
---|---|---|---|
Broadly neutralizing antibody (bnAb) induction | Conserved Env epitopes (CD4bs, V3-glycan, fusion peptide, MPER) presented as stabilized trimers, germline-targeting nanoparticles, or mRNA-encoded Env | Serum bnAb titers (ID50 ≥ 1:200 against global panel) | IAVI G001 (eOD-GT8), HVTN 302 (BG505 MD39 mRNA) |
Non-neutralizing/Fc-effector antibodies | V1V2 loop, gp120 outer domain, gp41 HR2 | ADCC, ADCP, complement; correlate seen in RV144 | RV144 (ALVAC + gp120), HVTN 100/702 |
Polyfunctional CD4+/CD8+ T-cell vaccines | Conserved Gag, Pol, Nef, or HTI mosaics delivered by Ad26, MVA, DNA | Cytolytic T_RM, IFN-γ / IL-2 polyfunctionality | STEP, Phambili, Imbokodo, Mosaico |
Mucosal-immunity approaches | Vaginal/nasal gp140, intranasal Env+TLR7/8, RhCMV vectors | Secretory IgA; genital/rectal T_RM | CN54 intravaginal Phase I; RhCMV/SIV macaque studies |
Passive immunization (bnAb combinations) | VRC01, 10-1074, PGT121, tri-specific antibodies | Canarypox vector (ALVAC) prime; gp120 protein boost (AIDSVAX B/E) | AMP VRC01, CAPRISA-012 VRC07-523LS/CAP256V2LS |
Vectored immunoprophylaxis | AAV-encoded bnAb genes (PG9, eCD4-Ig) | Immediate, strain-breadth neutralization (IC80 ≤ 1 µg/mL) | AAV-PG9 Phase 1 (Lancet HIV 2019) |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AIDS | Acquired Immunodeficiency Syndrome |
Alum | Aluminum hydroxide gel adjuvant |
ALVAC | Canarypox virus vector |
Ad26/Ad5 | Adenovirus serotype 26/5 vectors |
bnAb | Broadly neutralizing antibody |
Env | Envelope |
eOD-GT8 | Engineered Outer Domain-Germline Targeting 8 |
Gag | Group-specific antigen |
gp120 | Glycoprotein 120 |
HIV | Human immunodeficiency virus |
HVTN | HIV Vaccine Trials Network |
IAVI | International AIDS Vaccine Initiative |
LNP | Lipid nanoparticle |
MF59 | Oil-in-water emulsion adjuvant |
MSM | Men who have sex with men |
Nef | Negative factor |
Pol | Polymerase |
PrEP | Pre-exposure prophylaxis |
VRC01 | Vaccine Research Center 01 antibody (specific bnAb) |
References
- Fortner, A.; Bucur, O. mRNA-based vaccine technology for HIV. Discoveries 2022, 10, e150. [Google Scholar] [CrossRef] [PubMed]
- Hammer, S.M.; Sobieszczyk, M.E.; Janes, H.; Karuna, S.T.; Mulligan, M.J.; Grove, D.; Koblin, B.A.; Buchbinder, S.P.; Keefer, M.C.; Tomaras, G.D.; et al. Efficacy Trial of a DNA/rAd5 HIV-1 Preventive Vaccine. N. Engl. J. Med. 2013, 369, 2083–2092. [Google Scholar] [CrossRef]
- Corey, L.; Nabel, G.J.; Dieffenbach, C.; Gilbert, P.; Haynes, B.F.; Johnston, M.; Kublin, J.; Lane, H.C.; Pantaleo, G.; Picker, L.J.; et al. HIV-1 Vaccines and Adaptive Trial Designs. Sci. Transl. Med. 2011, 3, 79ps13. [Google Scholar] [CrossRef]
- Esparza, J. What Has 30 Years of HIV Vaccine Research Taught Us? Vaccines 2013, 1, 513–526. [Google Scholar] [CrossRef] [PubMed]
- Haynes, B.F.; Wiehe, K.; Borrow, P.; Saunders, K.O.; Korber, B.; Wagh, K.; McMichael, A.J.; Kelsoe, G.; Hahn, B.H.; Alt, F.; et al. Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies. Nat. Rev. Immunol. 2023, 23, 142–158. [Google Scholar] [CrossRef]
- van Heuvel, Y.; Schatz, S.; Rosengarten, J.F.; Stitz, J. Infectious RNA: Human Immunodeficiency Virus (HIV) Biology, Therapeutic Intervention, and the Quest for a Vaccine. Toxins 2022, 14, 138. [Google Scholar] [CrossRef] [PubMed]
- Kalinichenko, S.; Komkov, D.; Mazurov, D. HIV-1 and HTLV-1 Transmission Modes: Mechanisms and Importance for Virus Spread. Viruses 2022, 14, 152. [Google Scholar] [CrossRef]
- Yuan, T.; Li, J.; Zhang, M.-Y. HIV-1 Envelope Glycoprotein Variable Loops Are Indispensable for Envelope Structural Integrity and Virus Entry. PLoS ONE 2013, 8, e69789. [Google Scholar] [CrossRef]
- Pan, R.; Gorny, M.K.; Zolla-Pazner, S.; Kong, X.-P. The V1V2 Region of HIV-1 gp120 Forms a Five-Stranded Beta Barrel. J. Virol. 2015, 89, 8003–8010. [Google Scholar] [CrossRef]
- Williams, A.; Menon, S.; Crowe, M.; Agarwal, N.; Biccler, J.; Bbosa, N.; Ssemwanga, D.; Adungo, F.; Moecklinghoff, C.; Macartney, M.; et al. Geographic and Population Distributions of Human Immunodeficiency Virus (HIV)–1 and HIV-2 Circulating Subtypes: A Systematic Literature Review and Meta-analysis (2010–2021). J. Infect. Dis. 2023, 228, 1583–1591. [Google Scholar] [CrossRef]
- Ng’uni, T.; Chasara, C.; Ndhlovu, Z.M. Major Scientific Hurdles in HIV Vaccine Development: Historical Perspective and Future Directions. Front. Immunol. 2020, 11, 590780. [Google Scholar] [CrossRef] [PubMed]
- Libera, M.; Caputo, V.; Laterza, G.; Moudoud, L.; Soggiu, A.; Bonizzi, L.; Diotti, R.A. The Question of HIV Vaccine: Why Is a Solution Not Yet Available? J. Immunol. Res. 2024, 2024, 2147912. [Google Scholar] [CrossRef]
- Gartner, M.J.; Roche, M.; Churchill, M.J.; Gorry, P.R.; Flynn, J.K. Understanding the mechanisms driving the spread of subtype C HIV-1. EBioMedicine 2020, 53, 102682. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S.M.; Rowland-Jones, S. Recent advances in understanding HIV evolution. F1000Research 2017, 6, 597. [Google Scholar] [CrossRef]
- Chen, J.; Zhou, T.; Zhang, Y.; Luo, S.; Chen, H.; Chen, D.; Li, C.; Li, W. The reservoir of latent HIV. Front. Cell. Infect. Microbiol. 2022, 12, 945956. [Google Scholar] [CrossRef] [PubMed]
- Pitisuttithum, P.; Gilbert, P.; Gurwith, M.; Heyward, W.; Martin, M.; van Griensven, F.; Hu, D.; Tappero, J.W.; Bangkok Vaccine Evaluation Group. Randomized, Double-Blind, Placebo-Controlled Efficacy Trial of a Bivalent Recombinant Glycoprotein 120 HIV-1 Vaccine among Injection Drug Users in Bangkok, Thailand. J. Infect. Dis. 2006, 194, 1661–1671. [Google Scholar] [CrossRef]
- Buchbinder, S.P.; McElrath, M.J.; Dieffenbach, C.; Corey, L. Use of adenovirus type-5 vectored vaccines: A cautionary tale. Lancet 2020, 396, e68–e69. [Google Scholar] [CrossRef]
- Rolland, M.; Tovanabutra, S.; deCamp, A.C.; Frahm, N.; Gilbert, P.B.; Sanders-Buell, E.; Heath, L.; Magaret, C.A.; Bose, M.; Bradfield, A.; et al. Genetic impact of vaccination on breakthrough HIV-1 sequences from the Step trial. Nat. Med. 2011, 17, 366–371. [Google Scholar] [CrossRef]
- Kim, J.; Vasan, S.; Kim, J.H.; Ake, J.A. Current approaches to HIV vaccine development: A narrative review. J. Int. AIDS Soc. 2021, 24, e25793. [Google Scholar] [CrossRef]
- Mdluli, T.; Jian, N.; Slike, B.; Paquin-Proulx, D.; Donofrio, G.; Alrubayyi, A.; Gift, S.; Grande, R.; Bryson, M.; Lee, A.; et al. RV144 HIV-1 vaccination impacts post-infection antibody responses. PLoS Pathog. 2020, 16, e1009101. [Google Scholar] [CrossRef]
- Rerks-Ngarm, S.; Pitisuttithum, P.; Nitayaphan, S.; Kaewkungwal, J.; Chiu, J.; Paris, R.; Premsri, N.; Namwat, C.; de Souza, M.; Adams, E.; et al. Vaccination with ALVAC and AIDSVAX to Prevent HIV-1 Infection in Thailand. N. Engl. J. Med. 2009, 361, 2209–2220. [Google Scholar] [CrossRef] [PubMed]
- Moodie, Z.; Dintwe, O.; Sawant, S.; Grove, D.; Huang, Y.; Janes, H.; Heptinstall, J.; Omar, F.L.; Cohen, K.; De Rosa, S.C.; et al. Analysis of the HIV Vaccine Trials Network 702 Phase 2b–3 HIV-1 Vaccine Trial in South Africa Assessing RV144 Antibody and T-Cell Correlates of HIV-1 Acquisition Risk. J. Infect. Dis. 2022, 226, 246–257. [Google Scholar] [CrossRef]
- Janes, H.E.; Cohen, K.W.; Frahm, N.; De Rosa, S.C.; Sanchez, B.; Hural, J.; Magaret, C.A.; Karuna, S.; Bentley, C.; Gottardo, R.; et al. Higher T-Cell Responses Induced by DNA/rAd5 HIV-1 Preventive Vaccine Are Associated With Lower HIV-1 Infection Risk in an Efficacy Trial. J. Infect. Dis. 2017, 215, 1376–1385. [Google Scholar] [CrossRef] [PubMed]
- deCamp, A.C.; Rolland, M.; Edlefsen, P.T.; Sanders-Buell, E.; Hall, B.; Magaret, C.A.; Fiore-Gartland, A.J.; Juraska, M.; Carpp, L.N.; Karuna, S.T.; et al. Sieve analysis of breakthrough HIV-1 sequences in HVTN 505 identifies vaccine pressure targeting the CD4 binding site of Env-gp120. PLoS ONE 2017, 12, e0185959. [Google Scholar] [CrossRef]
- Moodie, Z.; Walsh, S.R.; Laher, F.; Maganga, L.; Herce, M.E.; Naidoo, S.; Hosseinipour, M.C.; Innes, C.; Bekker, L.-G.; Grunenberg, N.; et al. Antibody and cellular responses to HIV vaccine regimens with DNA plasmid as compared with ALVAC priming: An analysis of two randomized controlled trials. PLoS Med. 2020, 17, e1003117. [Google Scholar] [CrossRef]
- Laher, F.; Moodie, Z.; Cohen, K.W.; Grunenberg, N.; Bekker, L.-G.; Allen, M.; Frahm, N.; Yates, N.L.; Morris, L.; Malahleha, M.; et al. Safety and immune responses after a 12-month booster in healthy HIV-uninfected adults in HVTN 100 in South Africa: A randomized double-blind placebo-controlled trial of ALVAC-HIV (vCP2438) and bivalent subtype C gp120/MF59 vaccines. PLoS Med. 2020, 17, e1003038. [Google Scholar] [CrossRef]
- Moodie, Z.; Andersen-Nissen, E.; Grunenberg, N.; Dintwe, O.B.; Omar, F.L.; Kee, J.J.; Bekker, L.-G.; Laher, F.; Naicker, N.; Jani, I.; et al. Safety and immunogenicity of a subtype C ALVAC-HIV (vCP2438) vaccine prime plus bivalent subtype C gp120 vaccine boost adjuvanted with MF59 or alum in healthy adults without HIV (HVTN 107): A phase 1/2a randomized trial. PLoS Med. 2024, 21, e1004360. [Google Scholar] [CrossRef] [PubMed]
- Chirenje, Z.M.; Laher, F.; Dintwe, O.; Muyoyeta, M.; deCamp, A.C.; He, Z.; Grunenberg, N.; Laher Omar, F.; Seaton, K.E.; Polakowski, L.; et al. Protein Dose-Sparing Effect of AS01B Adjuvant in a Randomized Preventive HIV Vaccine Trial of ALVAC-HIV (vCP2438) and Adjuvanted Bivalent Subtype C gp120. J. Infect. Dis. 2023, 230, e405–e415. [Google Scholar] [CrossRef]
- Hosseinipour, M.C.; Innes, C.; Naidoo, S.; Mann, P.; Hutter, J.; Ramjee, G.; Sebe, M.; Maganga, L.; Herce, M.E.; deCamp, A.C.; et al. Phase 1 Human Immunodeficiency Virus (HIV) Vaccine Trial to Evaluate the Safety and Immunogenicity of HIV Subtype C DNA and MF59-Adjuvanted Subtype C Envelope Protein. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2021, 72, 50–60. [Google Scholar] [CrossRef]
- Stieh, D.J.; Barouch, D.H.; Comeaux, C.; Sarnecki, M.; Stephenson, K.E.; Walsh, S.R.; Sawant, S.; Heptinstall, J.; Tomaras, G.D.; Kublin, J.G.; et al. Safety and Immunogenicity of Ad26-Vectored HIV Vaccine with Mosaic Immunogens and a Novel Mosaic Envelope Protein in HIV-Uninfected Adults: A Phase 1/2a Study. J. Infect. Dis. 2023, 227, 939–950. [Google Scholar] [CrossRef]
- Gray, G.E.; Mngadi, K.; Lavreys, L.; Nijs, S.; Gilbert, P.B.; Hural, J.; Hyrien, O.; Juraska, M.; Luedtke, A.; Mann, P.; et al. Mosaic HIV-1 vaccine regimen in southern African women (Imbokodo/HVTN 705/HPX2008): A randomised, double-blind, placebo-controlled, phase 2b trial. Lancet Infect. Dis. 2024, 24, 1201–1212. [Google Scholar] [CrossRef] [PubMed]
- Adepoju, V.A.; Udah, D.C.; Onyezue, O.I.; Adnani, Q.E.S.; Jamil, S.; Bin Ali, M.N. Navigating the Complexities of HIV Vaccine Development: Lessons from the Mosaico Trial and Next-Generation Development Strategies. Vaccines 2025, 13, 274. [Google Scholar] [CrossRef]
- National Institutes of Health (NIH). Experimental HIV Vaccine Regimen Safe But Ineffective, Study Finds. National Institutes of Health. 2023. Available online: https://www.nih.gov/news-events/news-releases/experimental-hiv-vaccine-regimen-safe-ineffective-study-finds (accessed on 19 March 2025).
- Van den Berg, F.T.; Makoah, N.A.; Ali, S.A.; Scott, T.A.; Mapengo, R.E.; Mutsvunguma, L.Z.; Mkhize, N.N.; Lambson, B.E.; Kgagudi, P.D.; Crowther, C.; et al. AAV-Mediated Expression of Broadly Neutralizing and Vaccine-like Antibodies Targeting the HIV-1 Envelope V2 Region. Mol. Ther.-Methods Clin. Dev. 2019, 14, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Hsu, D.C.; O’Connell, R.J. Progress in HIV vaccine development. Hum. Vaccines Immunother. 2017, 13, 1018–1030. [Google Scholar] [CrossRef] [PubMed]
- Thavarajah, J.J.; Hønge, B.L.; Wejse, C.M. The Use of Broadly Neutralizing Antibodies (bNAbs) in HIV-1 Treatment and Prevention. Viruses 2024, 16, 911. [Google Scholar] [CrossRef]
- Gilbert, P.B.; Juraska, M.; deCamp, A.C.; Karuna, S.; Edupuganti, S.; Mgodi, N.; Donnell, D.J.; Bentley, C.; Sista, N.; Andrew, P.; et al. Basis and Statistical Design of the Passive HIV-1 Antibody Mediated Prevention (AMP) Test-of-Concept Efficacy Trials. Stat. Commun. Infect. Dis. 2017, 9, 20160001. [Google Scholar] [CrossRef]
- Corey, L.; Gilbert, P.B.; Juraska, M.; Montefiori, D.C.; Morris, L.; Karuna, S.T.; Edupuganti, S.; Mgodi, N.M.; deCamp, A.C.; Rudnicki, E.; et al. Two Randomized Trials of Neutralizing Antibodies to Prevent HIV-1 Acquisition. N. Engl. J. Med. 2021, 384, 1003–1014. [Google Scholar] [CrossRef]
- UPDATED: IAVI Sees Hope in Findings of Antibody-Mediated Prevention Study. International Aids Vaccine Initiative. 2021. Available online: https://www.iavi.org/features/updated-iavi-sees-hope-in-findings-of-antibody-mediated-prevention-study/ (accessed on 14 May 2025).
- Mgodi, N.M.; Takuva, S.; Edupuganti, S.; Karuna, S.; Andrew, P.; Lazarus, E.; Garnett, P.; Shava, E.; Mukwekwerere, P.G.; Kochar, N.; et al. A phase 2b study to evaluate the safety and efficacy of VRC01 broadly neutralizing monoclonal antibody in reducing acquisition of HIV-1 infection in women in sub-Saharan Africa: Baseline findings. J. Acquir. Immune Defic. Syndr. 2021, 87, 680–687. [Google Scholar] [CrossRef]
- Pegu, A.; Yang, Z.; Boyington, J.C.; Wu, L.; Ko, S.-Y.; Schmidt, S.D.; McKee, K.; Kong, W.-P.; Shi, W.; Chen, X.; et al. Neutralizing antibodies to HIV-1 envelope protect more effectively in vivo than those to the CD4 receptor. Sci. Transl. Med. 2014, 6, 243ra88. [Google Scholar] [CrossRef]
- Seaton, K.E.; Huang, Y.; Karuna, S.; Heptinstall, J.R.; Brackett, C.; Chiong, K.; Zhang, L.; Yates, N.L.; Sampson, M.; Rudnicki, E.; et al. Pharmacokinetic serum concentrations of VRC01 correlate with prevention of HIV-1 acquisition. eBioMedicine 2023, 93, 104590. [Google Scholar] [CrossRef]
- Gilbert, P.B.; Huang, Y.; deCamp, A.C.; Karuna, S.; Zhang, Y.; Magaret, C.A.; Giorgi, E.E.; Korber, B.; Edlefsen, P.T.; Rossenkhan, R.; et al. Neutralization titer biomarker for antibody-mediated prevention of HIV-1 acquisition. Nat. Med. 2022, 28, 1924–1932. [Google Scholar] [CrossRef] [PubMed]
- Wagh, K.; Seaman, M.S. Divide and conquer: Broadly neutralizing antibody combinations for improved HIV-1 viral coverage. Curr. Opin. HIV AIDS 2023, 18, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Caskey, M. Broadly-Neutralizing Antibodies (bNAbs) for the Treatment and Prevention of HIV Infection. Curr. Opin. HIV AIDS 2020, 15, 49–55. [Google Scholar] [CrossRef]
- Cunningham, C.K.; McFarland, E.J.; Muresan, P.; Capparelli, E.V.; Perlowski, C.; Johnston, B.; Bone, F.; Purdue, L.; Yin, D.E.; Moye, J.; et al. Safety, Tolerability, and Pharmacokinetics of Long-Acting Broadly Neutralizing HIV-1 Monoclonal Antibody VRC07–523LS in Newborn Infants Exposed to HIV-1. J. Pediatr. Infect. Dis. Soc. 2025, 14, piaf002. [Google Scholar] [CrossRef] [PubMed]
- Jardine, J.; Julien, J.-P.; Menis, S.; Ota, T.; Kalyuzhniy, O.; McGuire, A.; Sok, D.; Huang, P.-S.; MacPherson, S.; Jones, M.; et al. Rational HIV immunogen design to target specific germline B cell receptors. Science 2013, 340, 711–716. [Google Scholar] [CrossRef]
- Venkatesan, P. Preliminary phase 1 results from an HIV vaccine candidate trial. Lancet Microbe 2021, 2, e95. [Google Scholar] [CrossRef]
- Cottrell, C.A.; Hu, X.; Lee, J.H.; Skog, P.; Luo, S.; Flynn, C.T.; McKenney, K.R.; Hurtado, J.; Kalyuzhniy, O.; Liguori, A.; et al. Heterologous prime-boost vaccination drives early maturation of HIV broadly neutralizing antibody precursors in humanized mice. Sci. Transl. Med. 2024, 16, eadn0223. [Google Scholar] [CrossRef]
- International AIDS Vaccine Initiative. A Phase 1, Randomized, First-in-Human, Open-Label Study to Evaluate the Safety and Immunogenicity of eOD-GT8 60mer mRNA Vaccine (mRNA-1644) and Core-g28v2 60mer mRNA Vaccine (mRNA-1644v2-Core). ClinicalTrials.gov. Clinical Trial Registration No. NCT05001373). 2024. Available online: https://clinicaltrials.gov/study/NCT05001373 (accessed on 14 May 2025).
- Henderson, R.; Zhou, Y.; Stalls, V.; Wiehe, K.; Saunders, K.O.; Wagh, K.; Anasti, K.; Barr, M.; Parks, R.; Alam, S.M.; et al. Structural basis for breadth development in the HIV-1 V3-glycan targeting DH270 antibody clonal lineage. Nat. Commun. 2023, 14, 2782. [Google Scholar] [CrossRef]
- Kong, R.; Xu, K.; Zhou, T.; Acharya, P.; Lemmin, T.; Liu, K.; Ozorowski, G.; Soto, C.; Taft, J.D.; Bailer, R.T.; et al. Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science 2016, 352, 828–833. [Google Scholar] [CrossRef]
- Baden, L.R.; Stieh, D.J.; Sarnecki, M.; Walsh, S.R.; Tomaras, G.D.; Kublin, J.G.; McElrath, M.J.; Alter, G.; Ferrari, G.; Montefiori, D.; et al. Safety and immunogenicity of two heterologous HIV vaccine regimens in healthy, HIV-uninfected adults (TRAVERSE): A randomised, parallel-group, placebo-controlled, double-blind, phase 1/2a study. Lancet HIV 2020, 7, e688–e698. [Google Scholar] [CrossRef]
- Jardine, J.G.; Kulp, D.W.; Havenar-Daughton, C.; Sarkar, A.; Briney, B.; Sok, D.; Sesterhenn, F.; Ereño-Orbea, J.; Kalyuzhniy, O.; Deresa, I.; et al. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen. Science 2016, 351, 1458–1463. [Google Scholar] [CrossRef] [PubMed]
- Didierlaurent, A.M.; Laupèze, B.; Di Pasquale, A.; Hergli, N.; Collignon, C.; Garçon, N. Adjuvant system AS01: Helping to overcome the challenges of modern vaccines. Expert Rev. Vaccines 2017, 16, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Lal, H.; Cunningham, A.L.; Godeaux, O.; Chlibek, R.; Diez-Domingo, J.; Hwang, S.-J.; Levin, M.J.; McElhaney, J.E.; Poder, A.; Puig-Barberà, J.; et al. Efficacy of an Adjuvanted Herpes Zoster Subunit Vaccine in Older Adults. N. Engl. J. Med. 2015, 372, 2087–2096. [Google Scholar] [CrossRef]
- Keech, C.; Albert, G.; Cho, I.; Robertson, A.; Reed, P.; Neal, S.; Plested, J.S.; Zhu, M.; Cloney-Clark, S.; Zhou, H.; et al. Phase 1–2 Trial of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine. N. Engl. J. Med. 2020, 383, 2320–2332. [Google Scholar] [CrossRef]
- Kasturi, S.P.; Rasheed, M.A.-U.; Havenar-Daughton, C.; Pham, M.; Legere, T.; Sher, Z.J.; Kovalenkov, Y.; Gumber, S.; Huang, J.; Gottardo, R.; et al. 3M-052, a synthetic TLR-7/8 agonist induces durable HIV-1 envelope specific plasma cells and humoral immunity in non-human primates. Sci. Immunol. 2020, 5, eabb1025. [Google Scholar] [CrossRef] [PubMed]
- Leroy, L.-A.; Mac Donald, A.; Kandlur, A.; Bose, D.; Xiao, P.; Gagnon, J.; Villinger, F.; Chebloune, Y. Cytokine Adjuvants IL-7 and IL-15 Improve Humoral Responses of a SHIV LentiDNA Vaccine in Animal Models. Vaccines 2022, 10, 461. [Google Scholar] [CrossRef]
- Azizi, A.; Ghunaim, H.; Diaz-Mitoma, F.; Mestecky, J. Mucosal HIV vaccines: A holy grail or a dud? Vaccine 2010, 28, 4015–4026. [Google Scholar] [CrossRef]
- Hansen, S.G.; Marshall, E.E.; Malouli, D.; Ventura, A.B.; Hughes, C.M.; Ainslie, E.; Ford, J.C.; Morrow, D.; Gilbride, R.M.; Bae, J.Y.; et al. A live-attenuated RhCMV/SIV vaccine shows long-term efficacy against heterologous SIV challenge. Sci. Transl. Med. 2019, 11, eaaw2607. [Google Scholar] [CrossRef]
- Mason, H.S. Recombinant immune complexes as versatile and potent vaccines. Hum. Vaccines Immunother. 2016, 12, 988–989. [Google Scholar] [CrossRef]
- Mu, Z.; Haynes, B.F.; Cain, D.W. HIV mRNA Vaccines—Progress and Future Paths. Vaccines 2021, 9, 134. [Google Scholar] [CrossRef]
- Pardi, N.; Hogan, M.J.; Porter, F.W.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef] [PubMed]
- Moderna Announces First Participant Dosed in Phase 1 Study of its HIV Trimer mRNA Vaccine. Moderna Investor Relations. 2022. Available online: https://investors.modernatx.com/news/news-details/2022/Moderna-Announces-First-Participant-Dosed-in-Phase-1-Study-of-its-HIV-Trimer-mRNA-Vaccine/default.aspx (accessed on 14 May 2025).
- NIH Launches Clinical Trial of Three mRNA HIV Vaccines. National Institutes of Health (NIH). 2022. Available online: https://www.nih.gov/news-events/news-releases/nih-launches-clinical-trial-three-mrna-hiv-vaccines (accessed on 14 May 2025).
- Matarazzo, L.; Bettencourt, P.J.G. mRNA vaccines: A new opportunity for malaria, tuberculosis and HIV. Front. Immunol. 2023, 14, 1172691. [Google Scholar] [CrossRef] [PubMed]
- Morris, L. mRNA vaccines offer hope for HIV. Nat. Med. 2021, 27, 2082–2084. [Google Scholar] [CrossRef] [PubMed]
- Parker Miller, E.; Finkelstein, M.T.; Erdman, M.C.; Seth, P.C.; Fera, D. A Structural Update of Neutralizing Epitopes on the HIV Envelope, a Moving Target. Viruses 2021, 13, 1774. [Google Scholar] [CrossRef]
- Steinhardt, J.J.; Guenaga, J.; Turner, H.L.; McKee, K.; Louder, M.K.; O’Dell, S.; Chiang, C.-I.; Lei, L.; Galkin, A.; Andrianov, A.K.; et al. Rational design of a trispecific antibody targeting the HIV-1 Env with elevated anti-viral activity. Nat. Commun. 2018, 9, 877. [Google Scholar] [CrossRef]
- Caskey, M.; Klein, F.; Nussenzweig, M.C. Broadly Neutralizing Antibodies for HIV-1 Prevention or Immunotherapy. N. Engl. J. Med. 2016, 375, 2019–2021. [Google Scholar] [CrossRef]
- Escolano, A.; Gristick, H.B.; Abernathy, M.E.; Merkenschlager, J.; Gautam, R.; Oliveira, T.Y.; Pai, J.; West, A.P.; Barnes, C.O.; Cohen, A.A.; et al. Immunization expands B cells specific to HIV-1 V3 glycan in mice and macaques. Nature 2019, 570, 468–473. [Google Scholar] [CrossRef]
- Priddy, F.H.; Lewis, D.J.M.; Gelderblom, H.C.; Hassanin, H.; Streatfield, C.; LaBranche, C.; Hare, J.; Cox, J.H.; Dally, L.; Bendel, D.; et al. Adeno-associated virus vectored immunoprophylaxis to prevent HIV in healthy adults: A phase 1 randomised controlled trial. Lancet HIV 2019, 6, e230–e239. [Google Scholar] [CrossRef]
- Gardner, M.R.; Kattenhorn, L.M.; Kondur, H.R.; von Schaewen, M.; Dorfman, T.; Chiang, J.J.; Haworth, K.G.; Decker, J.M.; Alpert, M.D.; Bailey, C.C.; et al. AAV-expressed eCD4-Ig provides durable protection from multiple SHIV challenges. Nature 2015, 519, 87–91. [Google Scholar] [CrossRef]
- García, F.; León, A.; Gatell, J.M.; Plana, M.; Gallart, T. Therapeutic vaccines against HIV infection. Hum. Vaccines Immunother. 2012, 8, 569–581. [Google Scholar] [CrossRef]
Adjuvant | Composition/Type | Mechanism/Immune Enhancement | Key HIV-Vaccine Usage/Trial |
---|---|---|---|
Alum | Aluminum salts | Biases toward Th2; promotes binding-antibody responses | AIDSVAX gp120 trials VAX003, VAX004; protein boost of RV144 [21,22] |
MF59 | Oil-in-water squalene emulsion | ↑ Env-specific IgG magnitude and breadth vs. alum | HVTN 100, HVTN 702, HVTN 120 [23,24] |
AS01ᴮ | Liposome + MPL + QS-21 (saponin) | Strong germinal-center and Th1 response; higher binding Abs and CD4 T-cells | 40 µg gp120 + AS01ᴮ outperformed 200 µg + MF59 in HVTN 120 [25] |
Matrix-M | Saponin nanoparticle | ↑ Tfh cells and neutralizing Abs (preclinical HIV Env nanoparticles) | Phase 1 Env-nanoparticle study NCT05414786 (ongoing) [26] |
3M-052-AF | Synthetic TLR7/8 agonist (often alum/PLGA combo) | Durable Env-specific plasma cells; ↑ Tier-2 neutralizing titers in rhesus macaques | Planned first-in-human trial (IAVI H008) with HIV Env trimer [27] |
Cytokine adjuvants | IL-7 or IL-15 super agonist (N-803) | Boosts cytotoxic memory CD8 T cells and NK activity | Being evaluated in therapeutic HIV-vaccine protocols [28] |
Mucosal adjuvants | CD40 agonist peptides, CpG-ODN, chitosan/TLR ligands | Elicit mucosal IgA and tissue-resident T cells in genital/rectal tissue | Several Phase 1 mucosal-prime studies in preparation [29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shim, I.; Rogowski, L.; Venketaraman, V. Progress and Recent Developments in HIV Vaccine Research. Vaccines 2025, 13, 690. https://doi.org/10.3390/vaccines13070690
Shim I, Rogowski L, Venketaraman V. Progress and Recent Developments in HIV Vaccine Research. Vaccines. 2025; 13(7):690. https://doi.org/10.3390/vaccines13070690
Chicago/Turabian StyleShim, Iris, Lily Rogowski, and Vishwanath Venketaraman. 2025. "Progress and Recent Developments in HIV Vaccine Research" Vaccines 13, no. 7: 690. https://doi.org/10.3390/vaccines13070690
APA StyleShim, I., Rogowski, L., & Venketaraman, V. (2025). Progress and Recent Developments in HIV Vaccine Research. Vaccines, 13(7), 690. https://doi.org/10.3390/vaccines13070690