Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (41)

Search Parameters:
Keywords = use of nanotechnology in photonics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 5794 KB  
Review
Nanophotonic Materials and Devices: Recent Advances and Emerging Applications
by Yuan-Fong Chou Chau
Micromachines 2025, 16(8), 933; https://doi.org/10.3390/mi16080933 - 13 Aug 2025
Viewed by 2375
Abstract
Nanophotonics, the study of light–matter interactions at the nanometer scale, has emerged as a transformative field that bridges photonics and nanotechnology. Using engineered nanomaterials—including plasmonic metals, high-index dielectrics, two-dimensional (2D) materials, and hybrid systems—nanophotonics enables light manipulation beyond the diffraction limit, unlocking novel [...] Read more.
Nanophotonics, the study of light–matter interactions at the nanometer scale, has emerged as a transformative field that bridges photonics and nanotechnology. Using engineered nanomaterials—including plasmonic metals, high-index dielectrics, two-dimensional (2D) materials, and hybrid systems—nanophotonics enables light manipulation beyond the diffraction limit, unlocking novel applications in sensing, imaging, and quantum technologies. This review provides a comprehensive overview of recent advances (post-2020) in nanophotonic materials, fabrication methods, and their cutting-edge applications. We first discuss the fundamental principles governing nanophotonic phenomena, such as localized surface plasmon resonances (LSPRs), Mie resonances, and exciton–polariton coupling, highlighting their roles in enhancing light–matter interactions. Next, we examine state-of-the-art fabrication techniques, including top-down (e.g., electron beam lithography and nanoimprinting) and bottom-up (e.g., chemical vapor deposition and colloidal synthesis) approaches, as well as hybrid strategies that combine scalability with nanoscale precision. We then explore emerging applications across diverse domains: quantum photonics (single-photon sources, entangled light generation), biosensing (ultrasensitive detection of viruses and biomarkers), nonlinear optics (high-harmonic generation and wave mixing), and integrated photonic circuits. Special attention is given to active and tunable nanophotonic systems, such as reconfigurable metasurfaces and hybrid graphene–dielectric devices. Despite rapid progress, challenges remain, including optical losses, thermal management, and scalable integration. We conclude by outlining future directions, such as machine learning-assisted design, programmable photonics, and quantum-enhanced sensing, and offering insights into the next generation of nanophotonic technologies. This review serves as a timely resource for researchers in photonics, materials science, and nanotechnology. Full article
Show Figures

Figure 1

18 pages, 4279 KB  
Article
Chemophotothermal Combined Therapy with 5-Fluorouracil and Branched Gold Nanoshell Hyperthermia Induced a Reduction in Tumor Size in a Xenograft Colon Cancer Model
by Sarah Eliuth Ochoa-Hugo, Karla Valdivia-Aviña, Yanet Karina Gutiérrez-Mercado, Alejandro Arturo Canales-Aguirre, Verónica Chaparro-Huerta, Adriana Aguilar-Lemarroy, Luis Felipe Jave-Suárez, Mario Eduardo Cano-González, Antonio Topete, Andrea Molina-Pineda and Rodolfo Hernández-Gutiérrez
Pharmaceutics 2025, 17(8), 988; https://doi.org/10.3390/pharmaceutics17080988 - 30 Jul 2025
Viewed by 1082
Abstract
Background/Objectives: The heterogeneity of cancer disease and the frequent ineffectiveness and resistance observed with currently available treatments highlight the importance of developing new antitumor therapies. The properties of gold nanoparticles, such as their photon-energy heating, are attractive for oncology therapy; this can [...] Read more.
Background/Objectives: The heterogeneity of cancer disease and the frequent ineffectiveness and resistance observed with currently available treatments highlight the importance of developing new antitumor therapies. The properties of gold nanoparticles, such as their photon-energy heating, are attractive for oncology therapy; this can be effective and localized. The combination of chemotherapy and hyperthermia is promising. Our aim was to evaluate the combination therapy of photon hyperthermia with 5-fluorouracil (5-FU) both in vitro and in vivo. Methods: This study evaluated the antitumor efficacy of a combined chemo-photothermal therapy using 5-fluorouracil (5-FU) and branched gold nanoshells (BGNSs) in a colorectal cancer model. BGNSs were synthesized via a seed-mediated method and characterized by electron microscopy and UV–vis spectroscopy, revealing an average diameter of 126.3 nm and a plasmon resonance peak at 800 nm, suitable for near-infrared (NIR) photothermal applications. In vitro assays using SW620-GFP colon cancer cells demonstrated a ≥90% reduction in cell viability after 24 h of combined treatment with 5-FU and BGNS under NIR irradiation. In vivo, xenograft-bearing nude mice received weekly intratumoral administrations of the combined therapy for four weeks. The group treated with 5-FU + BGNS + NIR exhibited a final tumor volume of 0.4 mm3 on day 28, compared to 1010 mm3 in the control group, corresponding to a tumor growth inhibition (TGI) of 100.74% (p < 0.001), which indicates not only complete inhibition of tumor growth but also regression below the initial tumor volume. Thermographic imaging confirmed that localized hyperthermia reached 45 ± 0.5 °C at the tumor site. Results: These findings suggest that the combination of 5-FU and BGNS-mediated hyperthermia may offer a promising strategy for enhancing therapeutic outcomes in patients with colorectal cancer while potentially minimizing systemic toxicity. Conclusions: This study highlights the potential of integrating nanotechnology with conventional chemotherapy for more effective and targeted cancer treatment. Full article
(This article belongs to the Special Issue Advanced Nanotechnology for Combination Therapy and Diagnosis)
Show Figures

Graphical abstract

23 pages, 16139 KB  
Article
Bioarchitectonic Nanophotonics by Replication and Systolic Miniaturization of Natural Forms
by Konstantina Papachristopoulou and Nikolaos A. Vainos
Biomimetics 2024, 9(8), 487; https://doi.org/10.3390/biomimetics9080487 - 13 Aug 2024
Viewed by 2713
Abstract
The mimesis of biological mechanisms by artificial devices constitutes the modern, rapidly expanding, multidisciplinary biomimetics sector. In the broader bioinspiration perspective, however, bioarchitectures may perform independent functions without necessarily mimicking their biological generators. In this paper, we explore such Bioarchitectonic notions and demonstrate [...] Read more.
The mimesis of biological mechanisms by artificial devices constitutes the modern, rapidly expanding, multidisciplinary biomimetics sector. In the broader bioinspiration perspective, however, bioarchitectures may perform independent functions without necessarily mimicking their biological generators. In this paper, we explore such Bioarchitectonic notions and demonstrate three-dimensional photonics by the exact replication of insect organs using ultra-porous silica aerogels. The subsequent conformal systolic transformation yields their miniaturized affine ‘clones’ having higher mass density and refractive index. Focusing on the paradigms of ommatidia, the compound eye of the hornet Vespa crabro flavofasciata and the microtrichia of the scarab Protaetia cuprea phoebe, we fabricate their aerogel replicas and derivative clones and investigate their photonic functionalities. Ultralight aerogel microlens arrays are proven to be functional photonic devices having a focal length f ~ 1000 μm and f-number f/30 in the visible spectrum. Stepwise systolic transformation yields denser and affine functional elements, ultimately fused silica clones, exhibiting strong focusing properties due to their very short focal length of f ~ 35 μm and f/3.5. The fabricated transparent aerogel and xerogel replicas of microtrichia demonstrate a remarkable optical waveguiding performance, delivering light to their sub-100 nm nanotips. Dense fused silica conical clones deliver light through sub-50 nm nanotips, enabling nanoscale light–matter interactions. Super-resolution bioarchitectonics offers new and alternative tools and promises novel developments and applications in nanophotonics and other nanotechnology sectors. Full article
Show Figures

Figure 1

9 pages, 5195 KB  
Article
Advancing Atomic Force Microscopy: Design of Innovative IP-Dip Polymer Cantilevers and Their Exemplary Fabrication via 3D Laser Microprinting
by Peter Gaso, Daniel Jandura, Sergii Bulatov, Dusan Pudis and Matej Goraus
Coatings 2024, 14(7), 841; https://doi.org/10.3390/coatings14070841 - 4 Jul 2024
Cited by 2 | Viewed by 2116
Abstract
This paper presents the design and fabrication of new types of polymer-based cantilevers for atomic force microscopy. The design and fabrication are aimed at the capability of 3D laser microprinting technology based on two-photon polymerization on a standard silicon substrate. IP-Dip commercial material [...] Read more.
This paper presents the design and fabrication of new types of polymer-based cantilevers for atomic force microscopy. The design and fabrication are aimed at the capability of 3D laser microprinting technology based on two-photon polymerization on a standard silicon substrate. IP-Dip commercial material from the Nanoscribe company was used for the fabrication of the designed cantilevers. The fabricated microprinted cantilevers facilitate precise manipulation at the nanoscopic scale, which is essential for studying nanomaterials’ mechanical, electrical, and optical properties. The cantilevers’ flexibility allows for the integration of functional elements such as piezoelectric layers and optical fibers, enabling combined measurements of multiple physical parameters. Various cantilever geometries, including rectangular and V-shaped, are examined, and their resonance frequencies are calculated. The experimental process involves preparing the cantilevers on a silicon substrate and coating them with aluminum for enhanced reflectivity and conductivity. Scanning electron microscope analysis documents the precise form of prepared polymer cantilevers. The functionality of the probes is validated by scanning a step-height standard grating. This study demonstrates the versatility and precision of the fabricated cantilevers, showcasing their potential for large-area scans, living cell investigation, and diverse nanotechnology applications. Full article
Show Figures

Figure 1

25 pages, 28882 KB  
Article
Rapid Prototyping for Nanoparticle-Based Photonic Crystal Fiber Sensors
by Michael Sherburne, Cameron Harjes, Benjamin Klitsner, Jonathan Gigax, Sergei Ivanov, Edl Schamiloglu and Jane Lehr
Sensors 2024, 24(12), 3707; https://doi.org/10.3390/s24123707 - 7 Jun 2024
Cited by 5 | Viewed by 2358
Abstract
The advent of nanotechnology has motivated a revolution in the development of miniaturized sensors. Such sensors can be used for radiation detection, temperature sensing, radio-frequency sensing, strain sensing, and more. At the nanoscale, integrating the materials of interest into sensing platforms can be [...] Read more.
The advent of nanotechnology has motivated a revolution in the development of miniaturized sensors. Such sensors can be used for radiation detection, temperature sensing, radio-frequency sensing, strain sensing, and more. At the nanoscale, integrating the materials of interest into sensing platforms can be a common issue. One promising platform is photonic crystal fibers, which can draw in optically sensitive nanoparticles or have its optical properties changed by specialized nanomaterials. However, testing these sensors at scale is limited by the the need for specialized equipment to integrate these photonic crystal fibers into optical fiber systems. Having a method to enable rapid prototyping of new nanoparticle-based sensors in photonic crystal fibers would open up the field to a wider range of laboratories that could not have initially studied these materials in such a way before. This manuscript discusses the improved processes for cleaving, drawing, and rapidly integrating nanoparticle-based photonic crystal fibers into optical system setups. The method proposed in this manuscript achieved the following innovations: cleaving at a quality needed for nanoparticle integration could be done more reliably (≈100% acceptable cleaving yield versus ≈50% conventionally), nanoparticles could be drawn at scale through photonic crystal fibers in a safe manner (a method to draw multiple photonic crystal fibers at scale versus one fiber at a time), and the new photonic crystal fiber mount was able to be finely adjusted when increasing the optical coupling before inserting it into an optical system (before, expensive fusion splicing was the only other method). Full article
(This article belongs to the Special Issue Advances in the Design and Application of Optical Fiber Sensors)
Show Figures

Figure 1

18 pages, 1455 KB  
Review
Comparison of the Differences between Two-Photon Excitation, Upconversion, and Conventional Photodynamic Therapy on Cancers in In Vitro and In Vivo Studies
by Chuanshan Xu, Siu Kan Law and Albert Wing Nang Leung
Pharmaceuticals 2024, 17(6), 663; https://doi.org/10.3390/ph17060663 - 21 May 2024
Cited by 5 | Viewed by 3384
Abstract
Photodynamic therapy (PDT) is a minimally invasive treatment for several diseases. It combines light energy with a photosensitizer (PS) to destroy the targeted cells or tissues. A PS itself is a non-toxic substance, but it becomes toxic to the target cells through the [...] Read more.
Photodynamic therapy (PDT) is a minimally invasive treatment for several diseases. It combines light energy with a photosensitizer (PS) to destroy the targeted cells or tissues. A PS itself is a non-toxic substance, but it becomes toxic to the target cells through the activation of light at a specific wavelength. There are some limitations of PDT, although it has been used in clinical studies for a long time. Two-photon excitation (TPE) and upconversion (UC) for PDT have been recently developed. A TPE nanoparticle-based PS combines the advantages of TPE and nanotechnology that has emerged as an attractive therapeutic agent for near-infrared red (NIR) light-excited PDT, whilst UC is also used for the NIR light-triggered drug release, activation of ‘caged’ imaging, or therapeutic molecules during PDT process for the diagnosis, imaging, and treatment of cancers. Methods: Nine electronic databases were searched, including WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), without any language constraints. TPE and UCNP were evaluated to determine if they had different effects from PDT on cancers. All eligible studies were analyzed and summarized in this review. Results: TPE-PDT and UCNP-PDT have a high cell or tissue penetration ability through the excitation of NIR light to activate PS molecules. This is much better than the conventional PDT induced by visible or ultraviolet (UV) light. These studies showed a greater PDT efficacy, which was determined by enhanced generation of reactive oxygen species (ROS) and reduced cell viability, as well as inhibited abnormal cell growth for the treatment of cancers. Conclusions: Conventional PDT involves Type I and Type II reactions for the generation of ROS in the treatment of cancer cells, but there are some limitations. Recently, TPE-PDT and UCNP-PDT have been developed to overcome these problems with the help of nanotechnology in in vitro and in vivo studies. Full article
(This article belongs to the Special Issue Photosensitizers and Drug Delivery Systems for Photodynamic Therapy)
Show Figures

Graphical abstract

21 pages, 3066 KB  
Article
Ethosomes for Curcumin and Piperine Cutaneous Delivery to Prevent Environmental-Stressor-Induced Skin Damage
by Francesca Ferrara, Agnese Bondi, Walter Pula, Catia Contado, Anna Baldisserotto, Stefano Manfredini, Paola Boldrini, Maddalena Sguizzato, Leda Montesi, Mascia Benedusi, Giuseppe Valacchi and Elisabetta Esposito
Antioxidants 2024, 13(1), 91; https://doi.org/10.3390/antiox13010091 - 11 Jan 2024
Cited by 15 | Viewed by 3795
Abstract
Diesel particulate matter is one of the most dangerous environmental stressors affecting human health. Many plant-derived compounds with antioxidant and anti-inflammatory properties have been proposed to protect the skin from pollution damage. Curcumin (CUR) has a plethora of pharmacological activities, including anticancer, antimicrobial, [...] Read more.
Diesel particulate matter is one of the most dangerous environmental stressors affecting human health. Many plant-derived compounds with antioxidant and anti-inflammatory properties have been proposed to protect the skin from pollution damage. Curcumin (CUR) has a plethora of pharmacological activities, including anticancer, antimicrobial, anti-inflammatory and antioxidant. However, it has low bioavailability due to its difficult absorption and rapid metabolism and elimination. CUR encapsulation in nanotechnological systems and its combination with biopotentiators such as piperine (PIP) can improve its pharmacokinetics, stability and activity. In this study, ethosomes (ETs) were investigated for CUR and PIP delivery to protect the skin from damage induced by diesel particulate matter. ETs were produced by different strategies and characterized for their size distribution by photon correlation spectroscopy, for their morphology by transmission electron microscopy, and for their drug encapsulation efficiency by high-performance liquid chromatography. Franz cells enabled us to evaluate in vitro the drug diffusion from ETs. The results highlighted that ETs can promote the skin permeation of curcumin. The studies carried out on their antioxidant activity demonstrated an increase in the antioxidant power of CUR using a combination of CUR and PIP separately loaded in ETs, suggesting their possible application for the prevention of skin damage due to exogenous stressors. Ex vivo studies on human skin explants have shown the suitability of drug-loaded ETs to prevent the structural damage to the skin induced by diesel engine exhaust exposure. Full article
(This article belongs to the Collection Advances in Antioxidant Ingredients from Natural Products)
Show Figures

Graphical abstract

18 pages, 5597 KB  
Review
Perovskite Topological Lasers: A Brand New Combination
by Liangshen Wang, Lijie Wu and Yong Pan
Nanomaterials 2024, 14(1), 28; https://doi.org/10.3390/nano14010028 - 21 Dec 2023
Cited by 1 | Viewed by 2598
Abstract
Nanolasers are the essential components of modern photonic chips due to their low power consumption, high energy efficiency and fast modulation. As nanotechnology has advanced, researchers have proposed a number of nanolasers operating at both wavelength and sub-wavelength scales for application as light [...] Read more.
Nanolasers are the essential components of modern photonic chips due to their low power consumption, high energy efficiency and fast modulation. As nanotechnology has advanced, researchers have proposed a number of nanolasers operating at both wavelength and sub-wavelength scales for application as light sources in photonic chips. Despite the advances in chip technology, the quality of the optical cavity, the operating threshold and the mode of operation of the light source still limit its advanced development. Ensuring high-performance laser operation has become a challenge as device size has been significantly reduced. A potential solution to this problem is the emergence of a novel optical confinement mechanism using photonic topological insulator lasers. In addition, gain media materials with perovskite-like properties have shown great potential for lasers, a role that many other gain materials cannot fulfil. When combined with topological laser modes, perovskite materials offer new possibilities for the operation and emission mechanism of nanolasers. This study introduces the operating mechanism of topological lasers and the optical properties of perovskite materials. It then outlines the key features of their combination and discusses the principles, structures, applications and prospects of perovskite topological lasers, including the scientific hurdles they face. Finally, the future development of low-dimensional perovskite topological lasers is explored. Full article
(This article belongs to the Topic Advances in Functional Thin Films)
Show Figures

Figure 1

17 pages, 3738 KB  
Article
Harnessing Nuclear Energy to Gold Nanoparticles for the Concurrent Chemoradiotherapy of Glioblastoma
by Jui-Ping Li, Yu-Cheng Kuo, Wei-Neng Liao, Ya-Ting Yang, Sih-Yu Chen, Yu-Ting Chien, Kuo-Hung Wu, Mei-Ya Wang, Fong-In Chou, Mo-Hsiung Yang, Dueng-Yuan Hueng, Chung-Shi Yang and Jen-Kun Chen
Nanomaterials 2023, 13(21), 2821; https://doi.org/10.3390/nano13212821 - 24 Oct 2023
Cited by 4 | Viewed by 2404
Abstract
Nuclear fission reactions can release massive amounts of energy accompanied by neutrons and γ photons, which create a mixed radiation field and enable a series of reactions in nuclear reactors. This study demonstrates a one-pot/one-step approach to synthesizing radioactive gold nanoparticles (RGNP) without [...] Read more.
Nuclear fission reactions can release massive amounts of energy accompanied by neutrons and γ photons, which create a mixed radiation field and enable a series of reactions in nuclear reactors. This study demonstrates a one-pot/one-step approach to synthesizing radioactive gold nanoparticles (RGNP) without using radioactive precursors and reducing agents. Trivalent gold ions are reduced into gold nanoparticles (8.6–146 nm), and a particular portion of 197Au atoms is simultaneously converted to 198Au atoms, rendering the nanoparticles radioactive. We suggest that harnessing nuclear energy to gold nanoparticles is feasible in the interests of advancing nanotechnology for cancer therapy. A combination of RGNP applied through convection-enhanced delivery (CED) and temozolomide (TMZ) through oral administration demonstrates the synergistic effect in treating glioblastoma-bearing mice. The mean survival for RGNP/TMZ treatment was 68.9 ± 9.7 days compared to that for standalone RGNP (38.4 ± 2.2 days) or TMZ (42.8 ± 2.5 days) therapies. Based on the verification of bioluminescence images, positron emission tomography, and immunohistochemistry inspection, the combination treatment can inhibit the proliferation of glioblastoma, highlighting the niche of concurrent chemoradiotherapy (CCRT) attributed to RGNP and TMZ. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Biophotonics: Prognosis and Therapeutics)
Show Figures

Figure 1

14 pages, 825 KB  
Article
Refractive Properties of Conjugated Organic Materials Doped with Fullerenes and Other Carbon-Based Nano-Objects
by Natalia Kamanina
Polymers 2023, 15(13), 2819; https://doi.org/10.3390/polym15132819 - 26 Jun 2023
Cited by 5 | Viewed by 1765
Abstract
Due to the high demand for optoelectronics for use in new materials and processes, as well as the search for their modeling properties, the expansion of the functionality of modified materials using nanotechnology methods is relevant and timely. In the current paper, a [...] Read more.
Due to the high demand for optoelectronics for use in new materials and processes, as well as the search for their modeling properties, the expansion of the functionality of modified materials using nanotechnology methods is relevant and timely. In the current paper, a specific nanotechnology approach is shown to increase the refractive and photoconductive parameters of the organic conjugated materials. The sensitization process, along with laser treatment, are presented in order to improve the basic physical–chemical properties of laser, solar energy, and general photonics materials. Effective nanoparticles, such as fullerenes, shungites, reduced graphene oxides, carbon nanotubes, etc., are used in order to obtain the bathochromic shift, increase the laser-induced change in the refractive index, and amplify the charge carrier mobility of the model matrix organics sensitized with these nanoparticles. The four-wave mixing technique is applied to test the main refractive characteristics of the studied materials. Volt–current measurements are used to estimate the increased charge carrier mobility. The areas of application for the modified nanostructured plastic matrixes are discussed and extended, while also taking into account the surface relief. Full article
(This article belongs to the Topic Photosensitive and Optical Materials)
Show Figures

Graphical abstract

20 pages, 2750 KB  
Review
Unravelling the Drug Encapsulation Ability of Functional DNA Origami Nanostructures: Current Understanding and Future Prospects on Targeted Drug Delivery
by Souvik Ghosal, Sagar Bag and Sudipta Bhowmik
Polymers 2023, 15(8), 1850; https://doi.org/10.3390/polym15081850 - 12 Apr 2023
Cited by 8 | Viewed by 5775
Abstract
Rapid breakthroughs in nucleic acid nanotechnology have always driven the creation of nano-assemblies with programmable design, potent functionality, good biocompatibility, and remarkable biosafety during the last few decades. Researchers are constantly looking for more powerful techniques that provide enhanced accuracy with greater resolution. [...] Read more.
Rapid breakthroughs in nucleic acid nanotechnology have always driven the creation of nano-assemblies with programmable design, potent functionality, good biocompatibility, and remarkable biosafety during the last few decades. Researchers are constantly looking for more powerful techniques that provide enhanced accuracy with greater resolution. The self-assembly of rationally designed nanostructures is now possible because of bottom-up structural nucleic acid (DNA and RNA) nanotechnology, notably DNA origami. Because DNA origami nanostructures can be organized precisely with nanoscale accuracy, they serve as a solid foundation for the exact arrangement of other functional materials for use in a number of applications in structural biology, biophysics, renewable energy, photonics, electronics, medicine, etc. DNA origami facilitates the creation of next-generation drug vectors to help in the solving of the rising demand on disease detection and therapy, as well as other biomedicine-related strategies in the real world. These DNA nanostructures, generated using Watson–Crick base pairing, exhibit a wide variety of properties, including great adaptability, precise programmability, and exceptionally low cytotoxicity in vitro and in vivo. This paper summarizes the synthesis of DNA origami and the drug encapsulation ability of functionalized DNA origami nanostructures. Finally, the remaining obstacles and prospects for DNA origami nanostructures in biomedical sciences are also highlighted. Full article
Show Figures

Graphical abstract

10 pages, 968 KB  
Article
Integrated Optical Filters with Hyperbolic Metamaterials
by Mas-ud A. Abdulkareem, Fernando López-Rayón, Citlalli T. Sosa-Sánchez, Ramsés E. Bautista González, Maximino L. Arroyo Carrasco, Marycarmen Peña-Gomar, Victor Coello and Ricardo Téllez-Limón
Nanomaterials 2023, 13(4), 759; https://doi.org/10.3390/nano13040759 - 17 Feb 2023
Cited by 7 | Viewed by 3327
Abstract
The growing development of nanotechnology requires the design of new devices that integrate different functionalities at a reduced scale. For on-chip applications such as optical communications or biosensing, it is necessary to selectively transmit a portion of the electromagnetic spectrum. This function is [...] Read more.
The growing development of nanotechnology requires the design of new devices that integrate different functionalities at a reduced scale. For on-chip applications such as optical communications or biosensing, it is necessary to selectively transmit a portion of the electromagnetic spectrum. This function is performed by the so-called band-pass filters. While several plasmonic nanostructures of complex fabrication integrated to optical waveguides have been proposed, hyperbolic metamaterials remain almost unexplored for the design of integrated band-pass filters at optical wavelengths. By making use of the effective medium theory and finite integration technique, in this contribution we numerically study an integrated device consisting of a one-dimensional hyperbolic metamaterial placed on top of a photonic waveguide. The results show that the filling fraction, period, and number of layers modify the spectral response of the device, but not for type II and effective metal metamaterials. For the proposed Au-TiO2 multilayered system, the filter operates at a wavelength of 760 nm, spectral bandwidth of 100 nm and transmission efficiency above 40%. The designed devices open new perspectives for the development of integrated band-pass filters of small scale for on-chip integrated optics applications. Full article
(This article belongs to the Special Issue Nanophotonics and Integrated Optics Devices)
Show Figures

Figure 1

13 pages, 2654 KB  
Article
Computational Investigation of Advanced Refractive Index Sensor Using 3-Dimensional Metamaterial Based Nanoantenna Array
by Sneha Verma and B.M.A. Rahman
Sensors 2023, 23(3), 1290; https://doi.org/10.3390/s23031290 - 23 Jan 2023
Cited by 10 | Viewed by 2772
Abstract
Photonic researchers are increasingly exploiting nanotechnology due to the development of numerous prevalent nanosized manufacturing technologies, which has enabled novel shape-optimized nanostructures to be manufactured and investigated. Hybrid nanostructures that integrate dielectric resonators with plasmonic nanostructures are also offering new opportunities. In this [...] Read more.
Photonic researchers are increasingly exploiting nanotechnology due to the development of numerous prevalent nanosized manufacturing technologies, which has enabled novel shape-optimized nanostructures to be manufactured and investigated. Hybrid nanostructures that integrate dielectric resonators with plasmonic nanostructures are also offering new opportunities. In this work, we have explored a hybrid coupled nano-structured antenna with stacked multilayer lithium tantalate (LiTaO3) and Aluminum oxide (Al2O3), operating at wavelength ranging from 400 nm to 2000 nm. Here, the sensitivity response has been explored of these nano-structured hybrid arrays. It shows a strong electromagnetic confinement in the separation gap (g) of the dimers due to strong surface plasmon resonance (SPR). The influences of the structural dimensions have been investigated to optimize the sensitivity. The designed hybrid coupled nanostructure with the combination of 10 layers of gold (Au) and Lithium tantalate (LiTaO3) or Aluminum oxide (Al2O3) (five layers each) having height, h1 = h2 = 10 nm exhibits 730 and 660 nm/RIU sensitivity, respectively. The sensitivity of the proposed hybrid nanostructure has been compared with a single metallic (only gold) elliptical paired nanostructure. Depending on these findings, we demonstrated that a roughly two-fold increase in the sensitivity (S) can be obtained by utilizing a hybrid coupled nanostructure compared to an identical nanostructure, which competes with traditional sensors of the same height, (h). Our innovative novel plasmonic hybrid nanostructures provide a framework for developing plasmonic nanostructures for use in various sensing applications. Full article
Show Figures

Figure 1

14 pages, 4803 KB  
Article
Nanoparticle-Mediated Drug Delivery of Doxorubicin Induces a Differentiated Clonogenic Inactivation in 3D Tumor Spheroids In Vitro
by Roxana Cristina Popescu, Verena Kopatz, Ecaterina Andronescu, Diana Iulia Savu and Wolfgang Doerr
Int. J. Mol. Sci. 2023, 24(3), 2198; https://doi.org/10.3390/ijms24032198 - 22 Jan 2023
Cited by 14 | Viewed by 3545
Abstract
Involvement of 3D tumor cell models in the in vitro biological testing of novel nanotechnology-based strategies for cancer management can provide in-depth information on the real behavior of tumor cells in complex biomimetic architectures. Here, we used polyethylene glycol-encapsulated iron oxide nanoparticles for [...] Read more.
Involvement of 3D tumor cell models in the in vitro biological testing of novel nanotechnology-based strategies for cancer management can provide in-depth information on the real behavior of tumor cells in complex biomimetic architectures. Here, we used polyethylene glycol-encapsulated iron oxide nanoparticles for the controlled delivery of a doxorubicin chemotherapeutic substance (IONPDOX), and to enhance cytotoxicity of photon radiation therapy. The biological effects of nanoparticles and 150 kV X-rays were evaluated on both 2D and 3D cell models of normal human keratinocytes (HaCaT) and tumor cells—human cervical adenocarcinoma (HeLa) and human squamous carcinoma (FaDu)—through cell survival. In all 2D cell models, nanoparticles were similarly internalized in a peri-nuclear pattern, but resulted in different survival capabilities following radiation treatment. IONP on normal keratinocytes showed a protective effect, but a cytotoxic effect for cancer cells. In 3D tumor cell models, IONPDOX were able to penetrate the cell spheroids towards the hypoxic areas. However, IONPDOX and 150 kV X-rays led to a dose-modifying factor DMFSF=0.1 = 1.09 ± 0.1 (200 µg/mL IONPDOX) in HeLa spheroids, but to a radioprotective effect in FaDu spheroids. Results show that the proposed treatment is promising in the management of cervical adenocarcinoma. Full article
(This article belongs to the Special Issue Implication of Nanoparticles in Cancer Therapy Research)
Show Figures

Figure 1

18 pages, 3238 KB  
Review
Optical and Electrical Properties of Low-Dimensional Crystalline Materials: A Review
by Jose Luis Pura
Crystals 2023, 13(1), 108; https://doi.org/10.3390/cryst13010108 - 6 Jan 2023
Cited by 14 | Viewed by 4209
Abstract
Low-dimensional materials have been revolutionary in both the technological and research fields over the last decades. Since the discovery of graphene in 2004, and thanks to the technological improvements in nanotechnology achieved during this last century, the number of low-dimensional materials under research [...] Read more.
Low-dimensional materials have been revolutionary in both the technological and research fields over the last decades. Since the discovery of graphene in 2004, and thanks to the technological improvements in nanotechnology achieved during this last century, the number of low-dimensional materials under research and their potential applications have not stopped increasing. In this review, we present a comprehensive tour of the principal 2D and 1D materials that compose the current state of the art and also the technological applications derived from them. In both cases, the focus will be on their optical and electrical properties, as well as the potential applications on novel photonic, electronic, or optoelectronic devices. For 2D materials, we will focus on a brief review of graphene-like materials, giving more emphasis to graphene derivatives, hexagonal boron nitride, and transition metal dichalcogenides. Regarding 1D materials, we will aim at metallic and semiconductor nanowires. Nevertheless, interesting 2D and 1D materials are mentioned in each section. The topic will be introduced using the related origin of their unique capabilities as a common thread. At the same time, we will try to remark on the differences and similarities between both groups and their physical relationship. Full article
Show Figures

Figure 1

Back to TopTop