Refractive Properties of Conjugated Organic Materials Doped with Fullerenes and Other Carbon-Based Nano-Objects
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Change of the Refractive Parameters of the Body of Organics
3.2. Surface Relief Influence on the Physical-Chemical Parameters of the Body of Organics
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutman, F.; Lyons, L.E. Organic Semiconductors; J. Wiley & Sons: New York, NY, USA, 1967; p. 858. [Google Scholar]
- Chollet, P.A.; Kajzar, F.; Le Moigne, J. Structure and nonlinear optical properties of copper phthalocyanine thin films. Proc. SPIE 1990, 1273, 87–98. [Google Scholar]
- Heflin, J.R.; Wang, S.; Marciu, D.; Figura, C.; Yordanov, R. Optical limiting of C60, C60 charge-transfer complexes, and higher fullerenes from 532 to 750 nm. Proc. SPIE 1995, 2530, 76–187. [Google Scholar]
- Kajzar, F.; Taliani, C.; Zamboni, R.; Rossini, S.; Danieli, R. Nonlinear optical properties of fullerenes. Synth. Met. 1996, 77, 257–263. [Google Scholar] [CrossRef]
- Khoo, I.C.; Guenther, B.D.; Wood, M.V.; Chen, P.; Shih, M.Y. Coherent beam amplification with a photorefractive liquid crystal. Opt. Lett. 1997, 22, 1229–1231. [Google Scholar] [CrossRef]
- Ganeev, R.A.; Ryasnyansky, A.I.; Kamalov, S.R.; Kamanina, N.V.; Kulagin, I.A.; Kodirov, M.K.; Usmanov, T. Investigation of nonlinear optical characteristics of colloidal metals, semiconductors, fullerenes and organic dyes by Z-scan method and third harmonic generation of laser radiation. Nonlinear Opt. 2002, 28, 263–282. [Google Scholar] [CrossRef]
- Shkir, M.; Shaikh, S.S.; AlFaify, S. An investigation on optical, nonlinear and optical limiting properties of CdS: An effect of Te doping concentrations for optoelectronic applications. J. Mater. Sci. Mater. Electron. 2019, 30, 17469–17480. [Google Scholar] [CrossRef]
- Demas, J.; Rishøj, L.; Liu, X.; Prabhakar, G.; Ramachandran, S. Intermodal group-velocity engineering for broadband nonlinear optics. Photonics Res. 2019, 7, 1–7. [Google Scholar] [CrossRef]
- Lee, K.J.; Janssen, R.A.; Sariciftci, N.S.; Heeger, A.J. Direct evidence of photoinduced electron transfer in conducting-polymer-C60 composites by infrared photoexcitation spectroscopy. Phys. Rev. B 1994, 49, 5781–5784. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, M.; Wang, K.Z.; Zhang, H.X.; Xue, Z.Q. Study of a novel C60-2,6-bis(2,2-bicyanovinyl)pyridine complex thin film. Appl. Phys. Lett. 1996, 68, 2441–2443. [Google Scholar] [CrossRef]
- Ono, H.; Kawatsuki, N. Orientational photorefractive gratings observed in polymer dispersed liquid crystals doped with fullerene. Jap. J. Appl. Phys. Part 1 1997, 36, 6444–6448. [Google Scholar]
- Itaya, A.; Sizzuki, I.; Tsuboi, Y.; Miyasaaka, H. Photoinduced electron transfer processes of C60-doped poly(N-vinylcarbazole) films as revealed by picosecond laser photolysis. J. Phys. Chem. B 1997, 101, 5118–5123. [Google Scholar] [CrossRef]
- Ozawa, M.; Li, J.; Nakahara, K.; Xiao, L.X.; Sugawara, H.; Kitazawa, K.; Kinbara, K.; Saigo, K. Synthesis and properties of polyamides with [60] fullerene in the main chain. J. Polym. Sci. Part A Polym. Chem. 1998, 36, 3139–3146. [Google Scholar] [CrossRef]
- Sapurina, I.; Mokeev, M.; Lavrentev, V.; Zgonnik, V.; Trcova, M.; Hlavata, D.; Stejskal, J. Polyaniline complex with fullerene C60. Eur. Polym. J. 2000, 36, 2321–2326. [Google Scholar] [CrossRef]
- Kamanina, N.; Barrientos, A.; Leyderman, A.; Cui, Y.; Vikhnin, V.; Vlasse, M. Effect of fullerene doping on the absorption edge shift in COANP. Mol. Mater. 2000, 13, 275–280. [Google Scholar]
- Kamanina, N.V. Photophysics of fullerene-doped nanostructures: Optical limiting, hologram recording and switching of laser beam. Mater. Sci. Forum 2007, 555, 363–369. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Serov, S.V.; Savinov, V.P.; Uskoković, D.P. Photorefractive and photoconductive features of the nanostructured materials. Int. J. Mod. Phys. B (IJMPB) 2010, 24, 695–702. [Google Scholar] [CrossRef]
- Kamanina, N.V. The Effect of the Charge Transfer Pathway during Intermolecular Complex Formation on Nonlinear Optical and Photoconducting Properties of Nanocomposites. Tech. Phys. Lett. 2012, 38, 114–117. [Google Scholar] [CrossRef]
- Mizuno, T.; Akasaka, Y.; Tachibana, H. Photovoltaic properties of solar cells based on poly(methyl phenyl silane) and C60. Jpn J. Appl. Phys. 2012, 51, 10NE31. [Google Scholar] [CrossRef]
- Lei, X.; Tong, L.; Pan, H.; Yang, G.; Liu, X. Preparation of polyarylene ether nitriles/fullerene composites with low dielectric constant by cosolvent evaporation. J. Mater. Sci. Mater. Electron. 2019, 30, 18297–18305. [Google Scholar] [CrossRef]
- Patel, M.S.; Chaudhary, D.K.; Kumar, P.; Kumar, L. Fullerene (C60)-modulated surface evolution in CH3NH3PbI3 and its role in controlling the performance of inverted perovskite solar cells. J. Mater. Sci. Mater. Electron. 2020, 31, 11150–11158. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, C.; Ma, Y.; Ma, X.; Zhu, X.; Niu, L.; Shen, L.; Zhou, Z.; Zhang, F. Filter-Free Narrowband Photomultiplication-Type PlanarHeterojunction Organic Photodetectors. Adv. Funct. Mater. 2023, 33, 2212149. [Google Scholar] [CrossRef]
- Yang, K.; Wang, J.; Zhao, Z.; Sun, Y.; Liu, M.; Zhou, Z.; Zhang, X.; Zhang, F. Highly sensitive photomultiplication type polymer photodetectors by manipulating interfacial trapped electron density. Chem. Eng. J. 2022, 435, 134973. [Google Scholar] [CrossRef]
- Correia, R.; Deuermeier, J.; Correia, M.R.; Vaz Pinto, J.; Coelho, J.; Fortunato, E.; Martins, R. Biocompatible Parylene-C Laser-Induced Graphene Electrodes for Microsupercapacitor Applications. ACS Appl. Mater. Interfaces 2022, 14, 46427–46438. [Google Scholar] [CrossRef] [PubMed]
- Sherigara, B.S.; Kutner, W.; D‘Souza, F. Electrocatalytic Properties and Sensor Applications of Fullerenes and Carbon Nanotubes. Electroanalysis 2003, 15, 753–772. [Google Scholar] [CrossRef]
- Cadek, M.; Coleman, J.N.; Barron, V.; Hedicke, K.; Blau, W.J. Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl. Phys. Lett. 2022, 81, 5123–5125. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, B.; Sun, M.; Li, J.; Liu, C. Preparation and thermal conductivity properties of high-temperature resistance polyimide composite films based on silver nanowires-decorated multi-walled carbon nanotubes. J. Mater. Sci. Mater. Electron. 2022, 33, 1577–1588. [Google Scholar] [CrossRef]
- Jang, M.W.; Kim, B.K. Low driving voltage holographic polymer dispersed liquid crystals with chemically incorporated graphene oxide. J. Mater. Chem. 2011, 21, 19226–19232. [Google Scholar] [CrossRef]
- Akhtar, A.J.; Mishra, S.; Saha, S.K. Charge transport mechanism in reduced graphene oxide/polypyrrole based ultrahigh energy density supercapacitor. J. Mater. Sci. Mater. Electron. 2020, 31, 11637–11645. [Google Scholar] [CrossRef]
- Shubha, A.; Manohara, S.R. Effect of graphene nanoplatelets concentration on optical, dielectric and electrical properties of poly(2-ethyl-2-oxazoline)–polyvinylpyrrolidone–graphene nanocomposites. J. Mater. Sci. Mater. Electron. 2020, 31, 16498–16510. [Google Scholar] [CrossRef]
- Li, H.; Jiao, J.; Ye, Q.; Wu, Z.; Luo, D.; Xiong, D. Controllable synthesis of CdSe/ZnS core–shell quantum dots by one-step thermal injection and application in light-emitting diodes. J. Mater. Sci. Mater. Electron. 2021, 32, 22024–22034. [Google Scholar] [CrossRef]
- Fan, Z.; Chu, S.; Qin, J.; Zhang, Y.; Liu, H. Tunable liquid crystal core refractive index sensor based on surface plasmon resonance in gold nanofilm coated photonic crystal fiber. Appl. Opt. 2022, 61, 2675–2682. [Google Scholar] [CrossRef] [PubMed]
- Clancy, A.J.; Bayazit, M.K.; Hodge, S.A.; Skipper, N.T.; Howard, C.A.; Shaffer, M.S. Charged Carbon Nanomaterials: Redox Chemistries of Fullerenes, Carbon Nanotubes, and Graphenes. Chem. Rev. 2018, 118, 7363–7408. [Google Scholar] [CrossRef] [Green Version]
- Armentano, I.; Dottori, M.; Fortunati, E.; Mattioli, S.; Kenny, J.M. Biodegradable polymer matrix nanocomposites for tissue engineering: A review. Polym. Degrad. Stab. 2010, 95, 2126–2146. [Google Scholar] [CrossRef]
- Pan, L.; Pei, X.; He, R.; Wan, Q.; Wang, J. Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering application. Colloid. Surf. B 2012, 93, 226–234. [Google Scholar] [CrossRef]
- Peserico, A.; Di Berardino, C.; Russo, V.; Capacchietti, G.; Di Giacinto, O.; Canciello, A.; Camerano Spelta Rapini, C.; Barboni, B. Nanotechnology-Assisted Cell Tracking. Nanomaterials 2022, 12, 1414. [Google Scholar] [CrossRef]
- Rodwihok, C.; Tam, T.V.; Choi, W.M.; Suwannakaew, M.; Woo, S.W.; Wongratanaphisan, D.; Kim, H.S. Preparation and Characterization of Photoluminescent Graphene Quantum Dots from Watermelon Rind Waste for the Detection of Ferric Ions and Cellular Bio-Imaging Applications. Nanomaterials 2022, 12, 702. [Google Scholar] [CrossRef]
- Corsetti, S.; Dholakia, K. Optical manipulation: Advances for biophotonics in the 21st century. J. Biomed. Opt. 2021, 26, 070602-1–070602-23. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Serov, S.V.; Zubtsova, Y.A.; Bretonniere, Y.; Andraud, C.; Baldeck, P.; Kajzar, F. Photorefractive Properties of Some Nano- and Bio-Structured Organic Materials. J. Nanotechnol. Diagn. Treat. 2014, 2, 2–5. [Google Scholar] [CrossRef]
- Kamanina, N.; Likhomanova, S.; Zubtsova, Y. Laser-Induced Refractive Index Indicates the Concurrent Role of the Bio-Structuration Process in the Comparison with the Nano-Structuration One. C 2022, 8, 43. [Google Scholar] [CrossRef]
- Mircea, M.L.; Manea, A.M.; Kajzar, F.; Rau, I. Tuning NLO Susceptibility in Functionalized DNA. Adv. Opt. Mater. 2015, 4, 271–275. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Likhomanova, S.V.; Studeonov, V.I.; Rau, I.; Dibla, A.; Pawlicka, A. Rotation of the Polarization Plane of Light Via Use of the DNA-Based Structures for Innovative Medical Devices. J. Nanotechnol. Diagn. Treat. 2016, 4, 1–4. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Likhomanova, S.V.; Zubtcova, Y.A.; Kamanin, A.A.; Pawlicka, A. Functional Smart Dispersed Liquid Crystals for Nano- and Biophotonic Applications: Nanoparticles-Assisted Optical Bioimaging. J. Nanomater. 2016, 2016, 8989250. [Google Scholar] [CrossRef]
- Kamanina, N.V. Advances in Material Nanosensitization: Refractive Property Changes as the Main Parameter to Indicate Organic Material Physical–Chemical Feature Improvements. Materials 2022, 15, 2153. [Google Scholar] [CrossRef] [PubMed]
- Chemla, D.S.; Zyss, J. (Eds.) Nonlinear Optical Properties of Organic Molecules and Crystals; Academic Press: Orlando, OL, USA, 1987. [Google Scholar]
- Arakelyan, S.M.; Chilingaryan, Y.S. Nonlinear Optics of Liquid Crystals; Nauka: Moscow, Russia, 1984; p. 360. [Google Scholar]
- Akhmanov, S.A.; Nikitin, S.Y. Physical Optics; State University Publishing House: Moscow, Russia, 1998; p. 656. [Google Scholar]
- Kamanina, N.V. Fullerene-dispersed liquid crystal structure: Dynamic characteristics and self-organization processes. Physics Uspekhi 2005, 48, 419–427. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Uskokovic, D.P. Refractive Index of Organic Systems Doped with Nano-Objects. Mater. Manuf. Process. 2008, 23, 552–556. [Google Scholar] [CrossRef]
- Kamanina, N.V. Features of Optical Materials Modified with Effective Nanoobjects: Bulk Properties and Interface; Nova Science Publishers, Inc.: New York, NY, USA, 2014; 116p, ISBN 978-1-62948-033-6. [Google Scholar]
- Ruoff, R.S.; Tse, D.S.; Maihotra, R.; Lorets, D.S. Solubility of C60 in a variety of solvents. J. Phys. Chem. 1993, 97, 3379–3383. [Google Scholar] [CrossRef]
- Brabec, C.J.; Padinger, F.; Sariciftci, N.S.; Hummelen, J.C. Photovoltaic properties of conjugated polymer/methanofullerene composites embedded in a polystyrene matrix. J. Appl. Phys. 1999, 85, 6866–6872. [Google Scholar] [CrossRef] [Green Version]
- Rozhkova, N.N.; Gribanov, A.V.; Khodorkovskii, M.A. Water mediated modification of structure and physical chemical properties of nanocarbons. Diamond Relat. Mater. 2007, 16, 2104–2108. [Google Scholar] [CrossRef]
- Rozhkova, N.N.; Emelyanova, G.I.; Gorlenko, L.E.; Jankowska, A.; Korobov, M.V.; Lunin, V.V. Structural and Physico-Chemical Characteristics of Shungite Nanocarbon as Revealed through Modification. Smart Nanocomp. 2010, 1, 71–90. [Google Scholar]
- Cherkasov, Y.A.; Kamanina, N.V.; Alexandrova, E.L.; Berendyaev, V.I.; Vasilenko, N.A.; Kotov, B.V. Polyimides: New properties of xerographic, thermoplastic, and liquid-crystal structures. Proc. SPIE 1998, 3471, 254–260. [Google Scholar]
- Gurvich, L.V.; Karachevtsev, G.V.; Kondrat’ev, V.N.; Lebedev, Y.A.; Medvedev, V.A.; Potapov, V.K.; Khodeev, Y.S. Energies of Chemical Bond Breaking, Ionization Potentials and Electron Affinity; Nauka: Moscow, Russia, 1974; p. 351. (In Russian) [Google Scholar]
- Sutter, K.; Hulliger, J.; Günter, P. Photorefractive effects observed in the organic crystal 2-cyclooctylamino-5-nitropyridine doped with 7,7,8,8,-tetracyanoquinodimethane. Solid State Commun. 1990, 74, 867–870. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Vikhnin, V.S.; Leyderman, A.; Barrientos, A.; Cui, Y.; Vlasse, M. Effect of fullerenes C60 and C70 on the absorption spectrum of 2-cyclooctylamino-5-nitropyridine. Opt. Spectrosc. 2000, 89, 369–371. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Serov, S.V.; Shurpo, N.A.; Rozhkova, N.N. Photoinduced Changes in Refractive Index of Nanostructured Shungite-Containing Polyimide Systems. Tech. Phys. Lett. 2011, 37, 949–951. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Serov, S.V.; Bretonniere, Y.; Andraud, C. Organic Systems and Their Photorefractive Properties under the Nano- and Biostructuration: Scientific View and Sustainable Development. J. Nanomater. 2015, 2015, 5. [Google Scholar] [CrossRef] [Green Version]
- Kamanina, N.V.; Serov, S.V.; Shurpo, N.A.; Likhomanova, S.V.; Timonin, D.N.; Kuzhakov, P.V.; Rozhkova, N.N.; Kityk, I.V.; Plucinski, K.J.; Uskokovic, D.P. Polyimide-fullerene nanostructured materials for nonlinear optics and solar energy applications. J. Mater. Sci. Mater. Electron. 2012, 23, 1538–1542. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Sheka, E.F. Optical limiters and diffraction elements based on a COANP-fullerene system: Nonlinear optical properties and quantum-chemical simulation. Opt. Spectrosc. 2004, 96, 599–612. [Google Scholar] [CrossRef]
- Varnaev, A.V.; Zhevlakov, A.P.; Kamanina, N.V. On the possibility of writing thin amplitude-phase holograms in the near infrared range (λ = 1315 nm) using polyimide-based fullerene-containing conjugated organic structures. Opt. Spectrosc. 2002, 93, 327–329. [Google Scholar] [CrossRef]
- Areshev, I.P.; Subashiev, V.K.; Faradzhev, B.G. Investigation of nonlinear optical absorption and nonlinear refraction in silicon. Solid State Phys. 1985, 27, 695–699. [Google Scholar]
- Akcipetrov, O.A.; Baranova, I.M.; Evtyukhov, K.N. Nonlinear Optics of Silicon and Silicon Nanostructures; FIZMATLIT: Moscow, Russia, 2012; p. 544. (In Russian) [Google Scholar]
- Dolgaleva, K.; Materikina, D.V.; Boyd, R.W.; Kozlov, S.A. Prediction of an extremely large nonlinear refractive index for crystals at terahertz frequencies. Phys. Rev. A 2015, 92, 023809. [Google Scholar] [CrossRef] [Green Version]
- Mylnikov, V.S. Photoconducting Polymers/ Metal-Containing Polymers. Adv. Polym. Sci. 1994, 115, 3–88. [Google Scholar]
- Jiang, X.; Bin, Y.; Matsuo, M. Electrical and mechanical properties of polyimide–carbon nanotubes composites fabricated by in situ polymerization. Polymer 2005, 46, 7418–7424. [Google Scholar] [CrossRef]
- Thuau, D.; Koutsos, V.; Cheung, R. Electrical and mechanical properties of carbon nanotube-polyimide composites. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2009, 27, 3139. [Google Scholar] [CrossRef]
- Mikhailova, M.M.; Kosyreva, M.M.; Kamanina, N.V. On the increase in the charge carrier mobility in fullerene-containing conjugated organic systems. Tech. Phys. Lett. 2002, 28, 450–453. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Rozhkova, N.N.; Chernozatonskii, L.A.; Shmidt, N.M.; Ferritto, R.; Kajzar, F. Influence of Nanostructuration Process on the Properties of Materials. Nonlinear Opt. Quantum Opt. 2012, 45, 153–160. [Google Scholar]
- Kamanina, N.V. Nanoparticles doping influence on the organics surface relief. J. Mol. Liq. 2019, 283, 65–68. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Plekhanov, A.I. Mechanisms of optical limiting in fullerene-doped π-conjugated organic structures demonstrated with polyimide and COANP molecules. Opt. Spectrosc. 2002, 93, 408–415. [Google Scholar] [CrossRef]
- Kamanina, N. Liquid crystal materials orientation using new approach. In Proceedings of the CBU International Conference on Innovations in Science and Education, Prague, Czech Republic, 20–22 March 2019; pp. 933–937. [Google Scholar] [CrossRef] [Green Version]
- Kamanina, N.V.; Toikka, A.; Likhomanova, S.; Zubtsova, Y.A.; Barnash, Y.; Kuzhakov, P. Correlation between concentration of injected carbon nanoparticles and surface relief of organic matrices as applied to liquid crystal orientation. Liq. Cryst. Appl. 2022, 22, 42–52. [Google Scholar] [CrossRef]
- Kamanina, N.; Toikka, A.; Barnash, Y.; Zak, A.; Tenne, R. Influence of Surface Relief on Orientation of Nematic Liquid Crystals: Polyimide Doped with WS2 Nanotubes. Crystals 2022, 12, 391. [Google Scholar] [CrossRef]
- Park, M. Surface Display Technology for Biosensor Applications: A Review. Sensors 2020, 20, 2775. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Cui, Q.; Mao, S.; Hu, Y. Effect of the surface roughness on the efficiency of diffractive optical elements. Appl. Opt. 2018, 57, 10276–10283. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, M.; David, C. Light Scattering from Rough Silver Surfaces: Modeling of Absorption Loss Measurements. Nanomaterials 2021, 11, 113. [Google Scholar] [CrossRef]
- Kamanina, N.V. (Ed.) Fullerenes and Relative Materials—Properties and Applications; InTech: Rijeka, Croatia, 2018; p. 143. Available online: https://www.intechopen.com/books/fullerenes-and-relative-materials-properties-and-applications (accessed on 4 June 2023).
- Wu, J.; Ouyang, M.; Yang, B.; Fu, Y. Simulation of Mushroom Nanostructures with Ag Nanoparticles for Broadband and Wide-Angle Superabsorption. Coatings 2022, 12, 1208. [Google Scholar] [CrossRef]
- Lu, K.; Zhu, J.; Ge, W.; Hui, X. Progress on New Preparation Methods, Microstructures, and Protective Properties of High-Entropy Alloy Coatings. Coatings 2022, 12, 1472. [Google Scholar] [CrossRef]
- Choi, Y.; Tran, H.-V.; Lee, T.R. Self-Assembled Monolayer Coatings on Gold and Silica Surfaces for Antifouling Applications: A Review. Coatings 2022, 12, 1462. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, Z.; Xiang, D.; Ju, J. Research and Progress of Laser Cladding: Process, Materials and Applications. Coatings 2022, 12, 1382. [Google Scholar] [CrossRef]
- Kamanina, N.V.; Vasilenko, N.A. Influence of operating conditions and of interface properties on dynamic characteristics of liquid-crystal spatial light modulators. Opt. Quantum Electron. 1997, 29, 1–9. [Google Scholar] [CrossRef]
- Koops, H.W.P. Focused Electron Beam Induced Processing Renders at Room Temperature a Bose-Einstein Condensate in Koops-GranMat. J. Coat. Sci. Technol. 2016, 3, 50–55. [Google Scholar] [CrossRef]
- Avramescu, S.M.; Butean, C.; Popa, C.V.; Ortan, A.; Moraru, I.; Temocico, G. Edible and Functionalized Films/Coatings—Performances and Perspectives. Coatings 2020, 10, 687. [Google Scholar] [CrossRef]
- Atta, A.M.; El-Newehy, M.H.; Abdulhameed, M.M.; Wahby, M.H.; Hashem, A.I. Seawater absorption and adhesion properties of hydrophobic and superhydrophobic thermoset epoxynanocomposite coatings. Nanomaterials 2021, 11, 272. [Google Scholar] [CrossRef]
- Botas, A.M.P. New Frontiers in Novel Optical Materials and Devices. Coatings 2022, 12, 856. [Google Scholar] [CrossRef]
- Nechita, P.; Roman, M. Review on Polysaccharides Used in Coatings for Food Packaging Papers. Coatings 2020, 10, 566. [Google Scholar] [CrossRef]
Type of Materials | Conductivity, Ohm−1 × cm−1 | Content, cm−3 | Charge Carrier Mobility, cm2 × V−1 × s−1 |
---|---|---|---|
Metals | 102…108 | 1022 | 103 |
Inorganic semiconductors | 103…10−9 | 1011…1020 | 105…10−3 |
Organic semiconductors | 102…10−14 | 106…1019 | 102…10−6 |
Dielectrics | Less than 10−14 | Less than 109 | Less than 10−4 |
Studied Structure | Dopant Content wt.% | Energy Density, J × cm−2 | Λ, mm−1 | Laser Pulse Width, ns | Δni | References |
---|---|---|---|---|---|---|
Pure PI | 0 | 0.6 | 90 | 20 | 10−4–10−5 | [49] |
PI + C60 | 0.2 | 0.5–0.6 | 90 | 10–20 | 4.2 × 10−3 | [49] |
PI + C70 | 0.2 | 0.6 | 90 | 10–20 | 4.68 × 10−3 | [49] |
PI + Sh 1 | 0.1 | 0.5 | 100 | 20 | 4.1 × 10−3 | current |
PI + Sh | 0.2 | 0.5 | 100 | 20 | 5.5 × 10−3 | current |
PI + Sh | 0.2 | 0.6 | 150 | 20 | 5.3 × 10−3 | [59,60] |
PI + CNTs | 0.1 | 0.5–0.8 | 90 | 10–20 | 5.7 × 10−3 | [49] |
PI + CNTs | 0.2 | 0.6 | 100 | 20 | 5.5 × 10−3 | current |
PI + DWCNTs 2 | 0.1 | 0.1 | 100 | 10 | 9.4 × 10−3 | [61] |
PI + DWCNTs | 0.2 | 0.3 | 100 | 10 | 9.8 × 10−3 | current |
PI + DWCNTs | 0.1 | 0.1 | 150 | 10 | 7.0 × 10−3 | [61] |
PI + RGO | 0.1 | 0.1 | 100 | 20 | 7.5 × 10−3 | current |
PI + RGO | 0.2 | 0.3 | 100 | 20 | 7.7 × 10−3 | current |
PI + RGO | 0.1 | 0.1 | 150 | 20 | 6.5 × 10−3 | current |
Pure COANP | 0 | 0.9 | 100 | 20 | ~10−5 | [49,62] |
COANP + C60 | 5 | 0.9 | 90–100 | 20 | 6.2 × 10−3 | [62] |
COANP + C70 | 0.5 | 0.9 | 100 | 20 | 4.5 × 10−3 | current |
COANP + C70 | 2.0 | 0.9 | 100 | 20 | 5.2 × 10−3 | current |
COANP + C70 | 5 | 0.9 | 90 | 10–20 | 6.89 × 10−3 | [49] |
Materials | Content of Sensitizers, wt.% | Sensitizers Type | Wetting Angle before Sensitization | Wetting Angle after Sensitization | References |
---|---|---|---|---|---|
PI | 0.2 | C70 | 72–73 | 84–85 | current |
PI | 0.5 | C70 | 72 | 89–90 | [72] |
PI | 0.5 | C60 | 72–73 | 89 | current |
PI | 0.1 | CNTs | 75–79 | 101 | [76] |
COANP | 0.5 | C70 | 78–79 | 85–86 | current |
COANP | 2.0 | C70 | 78 | 92–93 | current |
PMPS 1 | 0.83 | C60 | 75 | 81 | [74] |
PVA 2 | 0.1 | C60 | 40 | 83 | [74] |
PVA | 1.0 | CNTs | 39–40 | 82 | [74] |
NPP 3 | 1.0 | C60 | 97 | 102 | [74] |
PNP 4 | 1.0 | C70 | 90–91 | 94 | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamanina, N. Refractive Properties of Conjugated Organic Materials Doped with Fullerenes and Other Carbon-Based Nano-Objects. Polymers 2023, 15, 2819. https://doi.org/10.3390/polym15132819
Kamanina N. Refractive Properties of Conjugated Organic Materials Doped with Fullerenes and Other Carbon-Based Nano-Objects. Polymers. 2023; 15(13):2819. https://doi.org/10.3390/polym15132819
Chicago/Turabian StyleKamanina, Natalia. 2023. "Refractive Properties of Conjugated Organic Materials Doped with Fullerenes and Other Carbon-Based Nano-Objects" Polymers 15, no. 13: 2819. https://doi.org/10.3390/polym15132819
APA StyleKamanina, N. (2023). Refractive Properties of Conjugated Organic Materials Doped with Fullerenes and Other Carbon-Based Nano-Objects. Polymers, 15(13), 2819. https://doi.org/10.3390/polym15132819