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Abstract: Photonic researchers are increasingly exploiting nanotechnology due to the development
of numerous prevalent nanosized manufacturing technologies, which has enabled novel shape-
optimized nanostructures to be manufactured and investigated. Hybrid nanostructures that integrate
dielectric resonators with plasmonic nanostructures are also offering new opportunities. In this work,
we have explored a hybrid coupled nano-structured antenna with stacked multilayer lithium tantalate
(LiTaO3) and Aluminum oxide (Al2O3), operating at wavelength ranging from 400 nm to 2000 nm.
Here, the sensitivity response has been explored of these nano-structured hybrid arrays. It shows
a strong electromagnetic confinement in the separation gap (g) of the dimers due to strong surface
plasmon resonance (SPR). The influences of the structural dimensions have been investigated to
optimize the sensitivity. The designed hybrid coupled nanostructure with the combination of 10 layers
of gold (Au) and Lithium tantalate (LiTaO3) or Aluminum oxide (Al2O3) (five layers each) having
height, h1 = h2 = 10 nm exhibits 730 and 660 nm/RIU sensitivity, respectively. The sensitivity of the
proposed hybrid nanostructure has been compared with a single metallic (only gold) elliptical paired
nanostructure. Depending on these findings, we demonstrated that a roughly two-fold increase in the
sensitivity (S) can be obtained by utilizing a hybrid coupled nanostructure compared to an identical
nanostructure, which competes with traditional sensors of the same height, (h). Our innovative novel
plasmonic hybrid nanostructures provide a framework for developing plasmonic nanostructures for
use in various sensing applications.

Keywords: nano-antenna; surface plasmon resonance; plasmonic sensitivity; refractive index sensing;
Localized surface plasmon resonance

1. Introduction

Researchers have become more interested in surface plasmon polaritons (SPPs), since
they can provide fresh, remarkable opportunities for the future era of nanotechnologies.
Due to the advancement of semiconductor fabrication techniques and electron beam lithog-
raphy, researchers have lately delved into the manufacture of nano-antennas [1], which
range in size from a few hundreds of nanometers to over several microns. To construct
effective nano photonic devices [1] with ultra-fast operational speed and the capability to
concentrate the electromagnetic field into a region which is significantly narrower than
the operating wavelength [2], using SPPs ensures that the objectives of the nanophotonic
branch [3] are addressed. SPPs have been used extensively in several technologies, in-
cluding waveguides [4], modulators [5], nano-lasers [6], nano rings [7], nano wires [8]
and nano-antennas [9]. These can be advantageous because of their rapid transient re-
sponse, compactness, and adjustability in efficiency parameters. However, since metal
is dispersive in the visible spectrum, so it must be simulated with an accurate dielectric
permittivity function [10–15]. Yousafi et al. [16] have suggested a rectangular patch nanos-
tructure to radiate the localized electromagnetic wave power of the hybrid plasmonic
waveguide [17–19] in which the electromagnetic waves were contained in thin material
having very low refractive index in between plasmonic metallic layers. Another purpose
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of using a hybrid nano antenna system is to achieve the high propagation length. In the
traditional single nano antenna system, low efficiency has been seen due to their significant
ohmic losses [20–22]. To avoid this drawback, a hybrid nano antenna is proposed, which
can enhance the performance of the antenna system by reducing the ohmic losses [23–26].
The separation distance also [27–29] plays an important role in enhancing the applied
electric field for plasmonic nanostructures [30–42]. By using the coupled hybrid structure,
the electric field confinement can be enhanced and reduce the ohmic losses by using di-
electrics (having large refractive index) [43–45]. Several studies have been presented to
support these arguments using meta-surfaces [46,47], meta-materials [48], architectural
color combinations [49], and optical nano antennae [50–53]. Dielectric and metallic nanos-
tructure combinations have been demonstrated to be able to alter the linear and non-linear
far field behaviors of paired structures [54–59], in addition to the fact that they emit radio
frequencies to work as antennas [60,61]. Recently, in terms of sensitivity, there have been
several reports of biosensors using artificially created metamaterials. In 2009, Kabashin et al.
reported [62] a sensitivity of 30,000 nm/RIU for two-dimensional porous gold nanorod
arrays on a plasmonic hyperbolic metamaterial for biosensor applications. However, de-
spite being miniaturized for commercial biosensing applications, this bulk Kretschmann
arrangement is not suitable for more compact integrated photonic sensors. Subsequently,
in 2016, Sreekanth et al. [63] reported a similar sensitivity of 30,000 nm/RIU for a grating
coupled hyperbolic metamaterial for bulk refractive sensing. However, in the presented
work we report on a planar optic design, suggesting good sensitivity which can be more
compact, and potentially of lower cost when mass produced.

In this paper, we have proposed a novel hybrid lithium tantalate (LiTaO3) or alu-
minum oxide (Al2O3) multilayer stacked elliptical paired nanoantenna. These materials
are more widely available, less toxic, and thus more appropriate for biological/medical
applications. In the case of LiTaO3, the magnitude of the spontaneous polarization changes
the temperature and disappears at a critical temperature called the Curie temperature (TC).
For LiTaO3, ferroelectrics are of particular interest for biological applications as their TC
is very high (680 ◦C), which is very far from typical operating temperatures in biological
applications. Similarly, Al2O3 ceramics are being widely used for medical devices, and their
biocompatibility is well known and has been reported in recently published articles. Hence,
both of these materials used in the proposed device are bio-compatible and can be used
in a variety of biomedical and other sensing applications. Recently published studies of
the multilayered hybrid plasmonic antenna, which surpasses prior plasmonic waveguides
in terms of confinement and propagation losses [24,25], served as the inspiration for the
proposed hybrid nanostructures. Unlike the usually presented local field antenna, our
proposed nano structure enables an efficient performance even while retaining a very
high intensity in the local field. This paper is divided into four sections, where Section
II describes the computational design and optimization methods. Section III evaluates
the parametric studies of the multi-layer structure. Section IV discusses the effect of the
separation distance on the LiTaO3 and Al2O3 stacked nanostructures. Finally, a conclusion
and future possibilities are drawn.

2. Approaches for Computational Design and Optimization

In this paper, the COMSOL Multiphysics software enabled with the finite element
method (FEM) in the frequency domain has been used to calculate the plasmonic response
and to design the coupled hybrid nano structured antenna, as shown in Figure 1. Figure 1a
shows the computational domain, and to reduce the computational time (for designing the
whole array of the metamaterial antenna array), we have designed the unit cell and enforced
the periodicity in the x and y directions. In the computational domain, the Perfect Magnetic
Conductor (PMC) has been used along the x-axis and the Perfect Electric Conductor (PEC)
has been employed along the y-axis. By using these boundary conditions, the whole
computation walls will act as a mirror and compute the results for the metamaterial
antenna array.



Sensors 2023, 23, 1290 3 of 13

Sensors 2023, 23, x FOR PEER REVIEW 3 of 14 
 

 

Conductor (PEC) has been employed along the y-axis. By using these boundary condi-
tions, the whole computation walls will act as a mirror and compute the results for the 
metamaterial antenna array. 

 

  

(a) (b) (c) 

Figure 1. (a) Schematic of the computational domain designed on the FEM method enabled com-
mercial software (b) Graphical representation of the designed hybrid refractive index sensor (c) 
Transmission spectra of the optimized paired elliptical nano structure with major axis, a = 100 nm 
and minor axis, b = 10 nm. 

To reduce the back reflection, the Perfect Matched Layer (PML) has been used along 
the z-direction. The quartz substrate has been optimized 400 × 200 nm2 length and width, 
respectively. A hybrid nano antenna array has been excited by x-polarized light propa-
gating in the z-direction from the top of the antenna array, i.e., the polarization is parallel 
to the x-axis of the antenna dimer. The final design of the 10 layered hybrid sensor system 
placed on the 400 × 200 nm2 quartz is shown in Figure 1a. Figure 1b shows a 3D view of 
the schematic of the designed computational domain of a hybrid nanostructured antenna 
array. The dielectric properties of gold have been calculated using the Drude-Lorentz 
model, as it is based on the movement of the unbounded electrons in the metal that causes 
the surface plasmon resonance. The material properties of Au have been adopted from 
Johnson et al. [64]. LiTaO3 and Al2O3 are adopted from Moutzouris et al. and Boidin et al. 
[65], respectively. We have fixed these values in order to make a quick computation, as 
the height of the source and the substrate did not affect the sensitivity. After we obtained 
consistent solutions, we have varied the antenna array parameters, and these are only 
reported here. In this article we have calculated the sensitivity of the paired hybrid nano-
antenna array and compared them with a single metallic nano antenna array in the ex-
tremely fine mesh size in order to get stable results. 

We then explored the sensitivity to variations in the refractive index of the medium 
of the 10 total layered (with 5 layers of LiTaO3 (or Al2O3) and gold each) stacked elliptical-
shaped paired nano structure, with its minor axis, b = 10 nm and major axis, a = 100 nm. 
Linearly x-polarized electromagnetic waves in the z-direction were used to illuminate 
these paired nano structures. Through the analysis of transmittance at various refractive 
index values, its sensitivity has been optimized. Figure 1(c) displays the transmission 
spectra for a design specification using various surrounding media (n). Here, the major 
axis a = 100 nm, minor axis, b =10 nm, separation distance, g = 10 nm and h1 = 10 nm and 
h2 = 10 nm are selected, as are the LiTaO3 (or Al2O3) and gold (Au) thickness, respectively 
of the stacked nano structure. Since Figure 1b demonstrates a more effective change in the 
resonating wavelength, it can be employed as a refractive index sensor and is a good con-
tender for biosensing applications. The spectral absorption of the narrow band paired 
structures can also be modified to match the distinctive absorption spectra of a certain 

Figure 1. (a) Schematic of the computational domain designed on the FEM method enabled
commercial software (b) Graphical representation of the designed hybrid refractive index sensor
(c) Transmission spectra of the optimized paired elliptical nano structure with major axis, a = 100 nm
and minor axis, b = 10 nm.

To reduce the back reflection, the Perfect Matched Layer (PML) has been used along
the z-direction. The quartz substrate has been optimized 400 × 200 nm2 length and
width, respectively. A hybrid nano antenna array has been excited by x-polarized light
propagating in the z-direction from the top of the antenna array, i.e., the polarization is
parallel to the x-axis of the antenna dimer. The final design of the 10 layered hybrid sensor
system placed on the 400 × 200 nm2 quartz is shown in Figure 1a. Figure 1b shows a 3D
view of the schematic of the designed computational domain of a hybrid nanostructured
antenna array. The dielectric properties of gold have been calculated using the Drude-
Lorentz model, as it is based on the movement of the unbounded electrons in the metal
that causes the surface plasmon resonance. The material properties of Au have been
adopted from Johnson et al. [64]. LiTaO3 and Al2O3 are adopted from Moutzouris et al.
and Boidin et al. [65], respectively. We have fixed these values in order to make a quick
computation, as the height of the source and the substrate did not affect the sensitivity.
After we obtained consistent solutions, we have varied the antenna array parameters, and
these are only reported here. In this article we have calculated the sensitivity of the paired
hybrid nanoantenna array and compared them with a single metallic nano antenna array
in the extremely fine mesh size in order to get stable results.

We then explored the sensitivity to variations in the refractive index of the medium of
the 10 total layered (with 5 layers of LiTaO3 (or Al2O3) and gold each) stacked elliptical-
shaped paired nano structure, with its minor axis, b = 10 nm and major axis, a = 100 nm.
Linearly x-polarized electromagnetic waves in the z-direction were used to illuminate these
paired nano structures. Through the analysis of transmittance at various refractive index
values, its sensitivity has been optimized. Figure 1c displays the transmission spectra for a
design specification using various surrounding media (n). Here, the major axis a = 100 nm,
minor axis, b =10 nm, separation distance, g = 10 nm and h1 = 10 nm and h2 = 10 nm are
selected, as are the LiTaO3 (or Al2O3) and gold (Au) thickness, respectively of the stacked
nano structure. Since Figure 1b demonstrates a more effective change in the resonating
wavelength, it can be employed as a refractive index sensor and is a good contender for
biosensing applications. The spectral absorption of the narrow band paired structures can
also be modified to match the distinctive absorption spectra of a certain targeted RI in order
to identify the targeted medium inside the infrared range. To calculate the sensitivity, the
following equation has been used.
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S =
−δλres

δns
(1)

where, λres is the shift in the resonance wavelength and ns is the surrounding refractive index.

3. The Parameterized Investigation of the Multi-Layered Structure

In this section, we have analyzed the performance of a hybrid nano structure and
compared it with a single metal nano structure. Figure 2a shows the comparative analysis
of sensitivity of the single, paired circular and paired elliptical metallic nano structures.
Here, a black curve shows that when h = 100 nm the sensitivity value was nearly 5 nm/RIU
and increases as h is reduced, and it reaches nearly 200 nm/RIU when h = 10 nm for a single
nano disk. The response of the paired circular nano antenna array when a = b = 100 nm and
g = 10 nm is shown by a red curve, and the highest sensitivity of 250 nm/RIU was achieved
when h = 10 nm, which sharply increases for lower h values. The sensitivity response
of the paired elliptical shaped antenna array is shown by a blue curve when a = 100 nm,
b = 10 nm, and g = 10 nm. The blue curve shows the highest sensitivity value of nearly
525 nm/RIU at h = 10 nm and it gradually decreases for higher h values. In all cases, it can
be observed that the highest sensitivity of a single metal dimer can be achieved at nearly
525 nm/RIU when its height is reduced to 10 nm. The motivation of selecting the aspect
ratio b/a = 1/10 is based on the study reported in a previous manuscript [66].
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Verma et al. [66] have shown that as the separation distance, g, decreases, the value of
the sensitivity increases, and at g = 10 nm, the highest sensitivity value has been achieved.
Additionally, the performance of the symmetry has also been discussed with respect to
the separation distance, g. In this work, we will show that the performance can be further
improved by placing a layer of LiTaO3 or Al2O3 on top of the metallic paired nano antenna
array. Figure 2b shows the sensitivity comparison of the paired gold elliptical shaped
antenna array, where the LiTaO3 or Al2O3 has been stacked on the earlier optimized [66]
elliptical dimer with a = 100 nm, b = 10 nm, g = 10 nm, and metal thickness h1 = 10 nm. A
black dashed curve shows a nearly 523.543 nm/RIU sensitivity of single layer gold elliptical
dimer antenna array when h was kept constant at 20 nm. On the other hand, when Al2O3
was placed on the top of the paired elliptical shaped antenna array, the sensitivity increases
and reaches up to 532 nm/RIU (shown by the black curve). The values increase even more
and reaches up to 543 nm/ RIU (shown by a red curve) for LiTaO3 for h2 = 10 nm. From
this it can also be stated that as the height h2, of the LiTaO3 and Al2O3 layer decreases,
the sensitivity is increasing. Although it is true that sensitivity increases as the metal
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or dielectric layer thickness is reduced, getting a very thin layer may bring fabrication
uncertainty, and for a fair comparison, the minimum height, h2 of the LiTaO3 and Al2O3
layer is fixed at 10 nm for further observations.

3.1. Performance of the Ten Layered Elliptical Shaped Antenna Array Stacked with Al2O3 and LiTaO3

The sensitivity of the stacked antenna array is next evaluated in this section, where
we have shown the sensitivity performance of a multiple layered paired elliptical shaped
antenna array designed when a = 100 nm, b = 10 nm, g = 10 nm, and h = 100 nm.

The red curve in Figure 3 shows the sensitivity values when height, h, varied from
10 nm to 100 nm for a single metal elliptical dimer. From this figure it can be observed that
at a large value of height, h = 100 nm, the sensitivity of the single metal antenna arrays
its lowest when a value of nearly 360 nm/RIU was achieved. However, as the height,
h is reduced to 10 nm, the sensitivity increases and reaches its highest value of nearly
525 nm/RIU. On the other hand, the blue curve shows that as the number of the layers in
the stacked antenna array (with Al2O3) with a = 100 nm, b = 10 nm, g = 10 nm, h1 = 10 nm,
and h2 = 10 nm is increasing, the sensitivity rather increases when the height of the
stacked layer is increasing and reaches up to its saturation point of nearly 660 nm/RIU.
In other words, it can be concluded that by using an Al2O3 stacked antenna array the
sensitivity can be enhanced by 1.5 times as compared to a single metallic antenna array
keeping h1 fixed at 10 nm. Similarly, the blue curve in Figure 3 demonstrates that by
using a 10 layered LiTaO3 stacked antenna array with a = 100 nm, b = 10 nm, g = 10 nm,
h1 = 10 nm, and h2 = 10, the sensitivity can be further enhanced by more than two-fold
(nearly 730 nm/RIU) as compared to the single gold elliptical paired antenna array. It is
worth noting a remarkable more than two-fold increase of the sensitivity and the highest
electromagnetic field confinement that has been observed by using the stacked antenna
array approach. Hence, such LiTaO3 and Al2O3 stacked plasmonic sensors can detect the
small change in the surrounding medium with a sensitivity of about 730 nm/RIU and
660 nm/RIU, respectively, and its sensitivity is expected to increase further by decreasing
the height of the individual layers and also the corresponding separation distance.

Sensors 2023, 23, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 3. The sensitivity performance of a single metallic (Au) and Al2O3 and LiTaO3 stacked an-
tenna array when total height, h = 100 nm with or without stacking. 

3.2. Study of field distribution around the single metal and ten-layered (5 Pairs of gold and 
LiTaO3 stacked) elliptical shaped antenna array 

In this section, the performance of the electric field distribution along the single metal 
and stacked antenna array is discussed. The peak normalized electric field intensity of the 
single gold circular and elliptical pair was calculated (from COMSOL Multiphysics) as 
nearly 8.6 × 102 V/m, and 2.9 × 104 V/m reached at the inner edge, as shown in Figure 4a(i) 
and (ii). It can be noted that the peak fields at the outer edges of the diameter is smaller 
than the peak field in the gap region. The variation of the electric field, Ex, along the x 
direction through the center of the single metallic (gold) elliptical nano structure is shown 
in Figure 4b by a red curve, which is compared with the Al2O3 and LiTaO3 stacked 
nanostructured field distribution shown by the black curve (shown in Figure 4b(i) and 
(ii)). In the case of the Al2O3 stacked nano structure, the electric field intensity was calcu-
lated nearly 5.4 × 104 V/m, which is nearly nine times higher (shown by a black curve in 
Figure 4b(i)) than that of the single metallic elliptical-shaped nano structure shown by a 
black curve. However, the electric field intensity even increases further, up to 6.5 × 104 

V/m at the inner edges of the LiTaO3-stacked elliptical nano structure with a = 100 nm, b = 
10 nm, and h = 100 nm, as shown by a black curve in Figure 4b(ii). This value is nearly 10.5 
times that of a single gold elliptical nano structure, with a = 100 nm, b = 10 nm, and h = 100 
nm. In contrast to a single metallic nano structure, the LiTaO3 stacked elliptical nano struc-
ture demonstrated in Figure 3 had an improved sensitivity. As a result, it can be regarded 
as a potential candidate for several bio sensing applications. For single elliptical dimers of 
height, h = 100 nm, Figure 4c shows the mode profile along the center of the x-z plane, 
demonstrating where most of the electric field confinement occurs at the sharp corners 
and in the separation gap between the two elliptical nano structures. As we have consid-
ered the elliptical dimer, the higher electric field exists close to the narrower corners, and 
the variation of Ey along the x-z plane for a single elliptical dimer with h = 100 nm is shown 
in Figure 4c. This demonstrates that, due to the absence of a circular symmetry, the electric 
field intensity was more localized near the sharper corners and at four single metal/ die-
lectric interfaces at the upper, lower and two sides. 

Figure 3. The sensitivity performance of a single metallic (Au) and Al2O3 and LiTaO3 stacked antenna
array when total height, h = 100 nm with or without stacking.



Sensors 2023, 23, 1290 6 of 13

3.2. Study of Field Distribution around the Single Metal and Ten-Layered (5 Pairs of Gold and
LiTaO3 Stacked) Elliptical Shaped Antenna Array

In this section, the performance of the electric field distribution along the single metal
and stacked antenna array is discussed. The peak normalized electric field intensity of
the single gold circular and elliptical pair was calculated (from COMSOL Multiphysics)
as nearly 8.6 × 102 V/m, and 2.9 × 104 V/m reached at the inner edge, as shown in
Figure 4a(i) and (ii). It can be noted that the peak fields at the outer edges of the diameter is
smaller than the peak field in the gap region. The variation of the electric field, Ex, along the
x direction through the center of the single metallic (gold) elliptical nano structure is shown
in Figure 4b by a red curve, which is compared with the Al2O3 and LiTaO3 stacked nanos-
tructured field distribution shown by the black curve (shown in Figure 4b(i) and (ii)). In the
case of the Al2O3 stacked nano structure, the electric field intensity was calculated nearly
5.4 × 104 V/m, which is nearly nine times higher (shown by a black curve in Figure 4b(i))
than that of the single metallic elliptical-shaped nano structure shown by a black curve.
However, the electric field intensity even increases further, up to 6.5 × 104 V/m at the
inner edges of the LiTaO3-stacked elliptical nano structure with a = 100 nm, b = 10 nm, and
h = 100 nm, as shown by a black curve in Figure 4b(ii). This value is nearly 10.5 times that
of a single gold elliptical nano structure, with a = 100 nm, b = 10 nm, and h = 100 nm. In
contrast to a single metallic nano structure, the LiTaO3 stacked elliptical nano structure
demonstrated in Figure 3 had an improved sensitivity. As a result, it can be regarded as
a potential candidate for several bio sensing applications. For single elliptical dimers of
height, h = 100 nm, Figure 4c shows the mode profile along the center of the x-z plane,
demonstrating where most of the electric field confinement occurs at the sharp corners and
in the separation gap between the two elliptical nano structures. As we have considered
the elliptical dimer, the higher electric field exists close to the narrower corners, and the
variation of Ey along the x-z plane for a single elliptical dimer with h = 100 nm is shown
in Figure 4c. This demonstrates that, due to the absence of a circular symmetry, the elec-
tric field intensity was more localized near the sharper corners and at four single metal/
dielectric interfaces at the upper, lower and two sides.

The electric field distribution along the center of the x-y plane of the stacked nanos-
tructure is also shown in Figure 4d, where most of the electric field occurs. From there
it can be clearly observed that the electric field intensity is higher and localized at all
metal/dielectric interfaces, including the 8 inner metal/dielectric interfaces in the stacked
nano structure as compared to the single metallic nano structure. The strong electric field
enhancement of the electric field provided by the array of antenna array dimers can be
used for a surface-enhanced Raman spectroscopy [67–70]. Figure 5a displays the Ex, mode
field pattern along the x-y plane for an elliptical dimer with a height h = 100 nm. It can
be observed that the sharp corners and separation gap of the elliptical nanostructure are
where most of the electric field confinement occurs. The Ex-field profile has been shown
along the x-y plane when z = 100 for the LiTaO3 stacked antenna, as shown in Figure 5b.

This indicates that the field was more concentrated at the corners and at four single
metal/dielectric contacts at z = 100 nm, because of the absence of circular symmetry,
as shown in Figure 5b. Also, the electric field at z = 0 and 50 nm was calculated as
1.0 × 102 V/m and 1.8 × 103 V/m, respectively. Hence, from here it can be stated that the
stacked antenna array is a more efficient candidate for the sensing application compared to
a single metal antenna array, even with the same other structural dimensions.
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4. Effect of the Separation Distance on the LiTaO3 and Al2O3 Stacked Nano Structure

It is well known that the structural dimensions of the nano structures can enhance
the field intensity in the separation gaps, and due to this field enhancement the sensitivity
can be affected, so next the performance of the 10 layered LaTiO3 and Al2O3 stacked nano
structures was studied. Hence, a 10 layer paired elliptical dimer on the quartz crystal was
studied and the sensitivity was calculated when the surrounded medium was covered
by the different refractive indices from 1.0 to 1.5. Here, it can be noted that, as shown in
Figure 1c for a single case, as the refractive index was increasing, the resonating wavelength
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was shifting towards the higher range. Figure 6 shows the sensitivity of the LiTaO3 and
Al2O3 stacked nano structure when the separation distance, g varies from 10 nm to 100
nm. The sensitivity of the 10 layered LiTaO3 stacked paired nanostructure is calculated
from the slopes of the shift in the transmission spectra from where we observed the linear
relationship between the RI values and the plasmonic wavelengths. The R-square error
value was calculated as 0.9991 and 0.9817 for the 10 layered LiTaO3 and Al2O3 stacked
paired nanostructure, respectively suggesting an almost linear response. Figure 6. clearly
shows that at the separation distance, (g) = 100 nm, the sensitivity reaches 545 nm/RIU,
which is effectively the sensitivity of a single isolated layered elliptical dimer. However,
when the separation distance, (g) reduced further and reached up to 60 nm, the sensitivity
remained nearly constant at 550 nm/RIU. Finally, as the separation distance, (g)reduced
further to 10 nm, the sensitivity increases rapidly and reaches up to 660 nm/RIU, as shown
by the red curve. Similarly, the sensitivity dependence of the LiTaO3 stacked antenna array
with the separation distance is shown by the black curve.
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Figure 6. Sensitivity comparison of 10 layered stacked antenna array (5 gold layers with h1 = 10 nm
gold and 5 LiTaO3/Al2O3 layers with a =100 nm, b = 10 nm and h2 (LiTaO3 and Al2O3) = 10 nm) with
respect to separation distance.

The highest sensitivity of the LiTaO3 stacked antenna array was achieved at nearly
770 nm/RIU when g = 10 nm and reduces gradually with the increase in the separation
distance. Finally, after g = 60 nm the sensitivity remained nearly constant, as shown by the
black curve, and at g = 100 nm the sensitivity was obtained up to 555 nm/RIU. When the
separation distance, g, is higher, these metallic antenna arrays are effectively uncoupled
and achieved 555 nm/RIU and 545 nm/RIU sensitivity when they could be considered as
two isolated antenna arrays. However, as the separation distance, g is reduced, these two
isolated antenna arrays are now coupled, and they formed an effective dimer and their
sensitivity reached up to 660 nm/RIU and 770 nm/RIU for the hybrid Al2O3 and LiTaO3
structure, respectively. Thus, it is demonstrated here that the sensitivity of the hybrid
LiTaO3 and Al2O3 paired nano structure is always higher than that of a single metallic nano
structure. Tsai et al. [71], reported that by using a coupled nano ring, the sensitivity can be
enhanced by up to 50%, but our work shows that for an elliptical nano structure using a
stacked antenna array nanostructure. The sensitivity values can be further increased by
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more than 150% while using a much smaller overall size of the antenna array compared
to [66]. The change in angle of incidence can produce the TP resonance mode through the
reflectance spectrum, and thus we have compared our work with the Tamm sensors shown
in Table 1 below.

Table 1. Comparision between proposed work with the Tamm sensors.

S.NO. The Designed Structure Sensitivity Sensing Materials Ref.

1. 1D porous silicon photonic crystal fluid sensor based on
TP resonance 5018 nm/RIU Different fluids [72]

2. 1D photonic crystal as a gas sensor based on TP resonance 273 nm/RIU Toluene [73]
3. Experimental gas sensor based on TP resonance 70 nm Organic vapors [74]

4. Metallo-dielectric heterostructure configuration based on
TP resonance 970 nm/RIU Different liquids [75]

5. Theoretical gas sensor using photonic crystal cavity based
on TP resonance 450 nm/RIU Methane gas [76]

6. Theoretical elliptical shaped plasmonic nano antenna array 770 nm/RIU Water and gases from
RI 1.0 to RI 1.7 This work

Hence, this can be an attractive method for detecting the heavy metals, biochemicals,
air quality, and water purity, and this is more efficient and cost-effective (if they are
fabricated in bulk) and opens up new pathways for both healthcare and environmental
monitoring applications. The comparision between the proposed work and the other
metallic and hybrid structures are shown in Table 2.

Table 2. Comparision between the proposed work and the other metallic and hybrid structures.

S.NO. Metal Dielectric Shape Sensitivity FWHM Ref.

1. Silver GaP Ring and Heptamer 550 nm/RIU 82.4 [77]
2. Aluminum SiO2 Bow-Tie 497 nm/RIU —– [78]
3. Gold SiO2/SiC Photonic Crystal 5.4 nm —– [79]
4. Silver Si/SiO2 Elliptical and MMI waveguide 550 nm/RIU 1.947 [80]
5. Silver Si Ring 636 nm/RIU —— [81]
6. Gold LiTaO3/Al2O3 Elliptical Stacked 770 nm/RIU 76.4 This Work

The proposed hybrid nano antenna system has shown very high sensitivity, and
this can be enhanced furthermore by using small geometrical dimensions, but we have
suggested suitable dimensions which can be experimentally fabricated. There are several
lithographic methods that are available to fabricate such small nano structures as those
which are mentioned in the literature [72–81]. We cannot avoid the fact that to design the
smaller structure can be challenging; however, the masking method can work well in this
scenario. To avoid further experimental complexity, we have used the same dimensions of
the gold and dielectric layer. The asset of the proposed sensor is that it can be used as a
stand-alone device with the great amount of stability, as we are proposing that the sensing
on the substrate and the material used in the sensing device are highly biocompatible and
stable so it can be good to consider these kind of sensing devices.

5. Conclusions

In conclusion, we have reported a study of a hybrid (LiTaO3 and Al2O3) stacked
metallic nano plasmonic sensor. The designed and optimized sensor with a = 100 nm,
b = 10 nm, g = 10 nm, h1 = 10 nm, and h2 = 10 nm has been evaluated in various sur-
rounding refractive indices from 1.0 to 1.5 to calculate their corresponding sensitivity. The
transmission, absorption, reflection spectra and modal field profiles have also been calcu-
lated to observe the sensor performance. The designed hybrid sensor has been compared
with a single metallic nanoantenna array when a = 100 nm, b = 10 nm, g = 10 nm, and
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h = 100 nm to observe the sensitivity enhancement. From the aforementioned results, it can
be stated that the sensitivity can be enhanced by nearly 1.5 times by using an Al2O3 stacked
antenna array and by more than two times by using LiTaO3. It has also been shown that
the sensitivity can be further increased by reducing the metal height, h1, and the dielectric
height, h2, or the separation distance, g. But for a fair comparison, the values of these are
taken as 10 nm. The normalized electric field intensity of the LiTaO3 and Al2O3 stacked
antenna array were stronger, at nearly 6.5 × 104 V/m and 5.4 × 104 V/m, respectively,
which was approximately 10.5 times more than the single metallic nanostructure for LiTaO3
and nine times more than the Al2O3 stacked antenna array. The proposed nano-enhanced
antenna’s sensitivity is demonstrated by the use of a full-wave electromagnetic simulation.
Our suggested nano-antenna array may be used for different nano inter- and intra-chip
photonic sensor systems to develop cutting-edge detecting devices for measuring the
quality of water, air, and soils. Furthermore, due of its wide frequency coverage, this
suggested antenna array may be employed for biosensing, optical energy harvesting (also
known as nano-rectenna (where the top performer rectenna has used oxide/metal bilayer
plasmonic antenna [82] or Nantenna and THz Metasurface-mediated nano-biosensors [83])
and various artificial intelligence based [84,85] optical sensing applications.
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