Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (631)

Search Parameters:
Keywords = urban wetland

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1533 KiB  
Article
Optimization of Agricultural and Urban BMPs to Meet Phosphorus and Sediment Loading Targets in the Upper Soldier Creek, Kansas, USA
by Naomi E. Detenbeck, Christopher P. Weaver, Alyssa M. Le, Philip E. Morefield, Samuel Ennett and Marilyn R. ten Brink
Water 2025, 17(15), 2265; https://doi.org/10.3390/w17152265 - 30 Jul 2025
Viewed by 238
Abstract
This study was developed to identify the optimal (most cost-effective) strategies to reduce sediment and phosphorus loadings in the Upper Soldier Creek, Kansas, USA, watershed using the Watershed Management Optimization Support Tool (WMOST) suite of programs. Under average precipitation, loading targets for upland [...] Read more.
This study was developed to identify the optimal (most cost-effective) strategies to reduce sediment and phosphorus loadings in the Upper Soldier Creek, Kansas, USA, watershed using the Watershed Management Optimization Support Tool (WMOST) suite of programs. Under average precipitation, loading targets for upland total phosphorus (TP) could be met with use of grassed swales for treating urban area runoff and of contouring for agricultural runoff. For a wet year, the same target could be met, but with use of a sand filter with underdrain for the urban runoff. Both annual and daily TP loading targets from Total Maximum Daily Loads (TMDLs) were exceeded in simulations of best management practice (BMP) solutions for 14 alternative future climate scenarios. We expanded the set of BMPs to include stream bank stabilization (physical plus riparian restoration) and two-stage channel designs, but upland loading targets could not be met for either TP or total suspended solids (TSS) under any precipitation conditions. An optimization scenario that simulated the routing of flows in excess of those treated by the upland BMPs to an off-channel treatment wetland allowed TMDLs to be met for an average precipitation year. WMOST can optimize cost-effectiveness of BMPs across multiple scales and climate scenarios. Full article
(This article belongs to the Special Issue Optimization-Simulation Modeling of Sustainable Water Resource)
Show Figures

Figure 1

19 pages, 5284 KiB  
Article
Integrating Dark Sky Conservation into Sustainable Regional Planning: A Site Suitability Evaluation for Dark Sky Parks in the Guangdong–Hong Kong–Macao Greater Bay Area
by Deliang Fan, Zidian Chen, Yang Liu, Ziwen Huo, Huiwen He and Shijie Li
Land 2025, 14(8), 1561; https://doi.org/10.3390/land14081561 - 29 Jul 2025
Viewed by 356
Abstract
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments [...] Read more.
Dark skies, a vital natural and cultural resource, have been increasingly threatened by light pollution due to rapid urbanization, leading to ecological degradation and biodiversity loss. As a key strategy for sustainable regional development, dark sky parks (DSPs) not only preserve nocturnal environments but also enhance livability by balancing urban expansion and ecological conservation. This study develops a novel framework for evaluating DSP suitability, integrating ecological and socio-economic dimensions, including the resource base (e.g., nighttime light levels, meteorological conditions, and air quality) and development conditions (e.g., population density, transportation accessibility, and tourism infrastructure). Using the Guangdong–Hong Kong–Macao Greater Bay Area (GBA) as a case study, we employ Delphi expert consultation, GIS spatial analysis, and multi-criteria decision-making to identify optimal DSP locations and prioritize conservation zones. Our key findings reveal the following: (1) spatial heterogeneity in suitability, with high-potential zones being concentrated in the GBA’s northeastern, central–western, and southern regions; (2) ecosystem advantages of forests, wetlands, and high-elevation areas for minimizing light pollution; (3) coastal and island regions as ideal DSP sites due to the low light interference and high ecotourism potential. By bridging environmental assessments and spatial planning, this study provides a replicable model for DSP site selection, offering policymakers actionable insights to integrate dark sky preservation into sustainable urban–regional development strategies. Our results underscore the importance of DSPs in fostering ecological resilience, nighttime tourism, and regional livability, contributing to the broader discourse on sustainable landscape planning in high-urbanization contexts. Full article
Show Figures

Figure 1

20 pages, 646 KiB  
Article
Push and Pull Factors for Ecosystem Services Among Visitors to a Constructed Wetland in Putrajaya, Malaysia
by Noor Shahlawaty Mohamed Zubir and Azlan Abas
Sustainability 2025, 17(15), 6774; https://doi.org/10.3390/su17156774 - 25 Jul 2025
Viewed by 317
Abstract
Urban wetlands are increasingly recognized for their ecological and cultural benefits, yet remain underutilized due to limited public awareness and environmental literacy. This study investigates how visitors’ perceptions of wetland ecosystem services influence their motivations to engage with a constructed wetland in Putrajaya, [...] Read more.
Urban wetlands are increasingly recognized for their ecological and cultural benefits, yet remain underutilized due to limited public awareness and environmental literacy. This study investigates how visitors’ perceptions of wetland ecosystem services influence their motivations to engage with a constructed wetland in Putrajaya, Malaysia. By integrating the ecosystem services framework with push-pull motivation theory, the research aims to bridge knowledge gaps and inform sustainable wetland tourism planning. A structured questionnaire was administered to 420 visitors, with 385 valid responses (response rate: 91.7%). Data were analyzed using non-parametric tests (Kruskal–Wallis, Spearman correlation) and multiple regression analysis. Results show that cultural and regulating services are perceived most positively, while emotional restoration and aesthetic appreciation emerged as key motivational drivers. Regression findings reveal that push factors are stronger predictors of ecosystem service engagement than pull factors. These insights highlight the importance of emotional and psychological connections to nature, offering practical implications for urban wetland management, visitor education and environmental communication strategies. Full article
(This article belongs to the Special Issue Eco-Harmony: Blending Conservation Strategies and Social Development)
Show Figures

Figure 1

16 pages, 2024 KiB  
Article
Spatiotemporal Dynamics and Driving Factors of Phytoplankton Community Structure in the Liaoning Section of the Liao River Basin in 2010, 2015, and 2020
by Kang Peng, Zhixiong Hu, Rui Pang, Mingyue Li and Li Liu
Water 2025, 17(15), 2182; https://doi.org/10.3390/w17152182 - 22 Jul 2025
Viewed by 234
Abstract
This study aimed to analyse the spatiotemporal evolution of phytoplankton community dynamics and its underlying mechanisms in the Liaoning section of the Liao River Basin in 2010, 2015, and 2020. Phytoplankton species diversity increased significantly, with an increase from three phyla and 31 [...] Read more.
This study aimed to analyse the spatiotemporal evolution of phytoplankton community dynamics and its underlying mechanisms in the Liaoning section of the Liao River Basin in 2010, 2015, and 2020. Phytoplankton species diversity increased significantly, with an increase from three phyla and 31 species in 2010 to six phyla and 74 species in 2020. Concurrent increases in α-diversity indicated continuous improvements in habitat heterogeneity. The community structure shifted from a diatom-dominated assemblage to a green algae–diatom co-dominated configuration, contributing to an enhanced water purification capacity. The upstream agricultural zone (Tieling section) had elevated biomass and low diversity, indicating persistent non-point-source pollution stress. The midstream urban–industrial zone (Shenyang–Anshan section) emerged as a phytoplankton diversity hotspot, likely due to expanding niche availability in response to point-source pollution control. The downstream wetland zone (Panjin section) exhibited significant biomass decline and delayed diversity recovery, shaped by the dual pressures of resource competition and habitat filtering. The driving mechanism of community succession shifted from nutrient-dominated factors (NH3-N, TN) to redox-sensitive factors (DO, pH). These findings support a ‘zoned–graded–staged’ ecological restoration strategy for the Liao River Basin and inform the use of phytoplankton as bioindicators in watershed monitoring networks. Full article
(This article belongs to the Special Issue Water Environment Pollution and Control, 4th Edition)
Show Figures

Figure 1

14 pages, 1209 KiB  
Article
Generation of Nitrous Oxide by Aerobic Denitrifiers Isolated from an Urban Wetland in Bogotá, Colombia
by Maribeb Castro-González and Verónica Molina
Limnol. Rev. 2025, 25(3), 32; https://doi.org/10.3390/limnolrev25030032 - 15 Jul 2025
Viewed by 180
Abstract
In this study, we evaluated the nitrous oxide production potential of denitrifying bacterial strains isolated from sediments of the urban wetland Santa María del Lago under anaerobic and aerobic conditions to determine their potential role in mitigating anthropogenic N2O emissions, which [...] Read more.
In this study, we evaluated the nitrous oxide production potential of denitrifying bacterial strains isolated from sediments of the urban wetland Santa María del Lago under anaerobic and aerobic conditions to determine their potential role in mitigating anthropogenic N2O emissions, which have increased by approximately 40% since 1980, and if these emissions could be related to the absence of the nitrous oxide reductase gene (nosZ). The results demonstrated that denitrifying bacteria belonging to the genus Bacillus were able to generate nitrous oxide in high concentrations under both aerobic (up to 83 nM/h) and anaerobic (up to 3865.5 nM/h) conditions in cultures with optimal concentrations of nitrate and carbon. The amplification of the nosZ gene as marker of denitrifying microorganisms showed that only 50% of strains possess this gene, and its presence did not correlate with nitrous oxide reduction under anoxic conditions. Interestingly, one strain was able to reduce nitrous oxide in the presence of air, which is promising for its potential use in aerobic bioremediation systems that require microorganisms with a high affinity for this greenhouse gas to reduce emissions into the atmosphere. Full article
Show Figures

Figure 1

20 pages, 5384 KiB  
Article
Integrated Water Resources Management in Response to Rainfall Change: A Runoff-Based Approach for Mixed Land-Use Catchments
by Jinsun Kim and Ok Yeon Choi
Environments 2025, 12(7), 241; https://doi.org/10.3390/environments12070241 - 14 Jul 2025
Viewed by 534
Abstract
The U.S. Environmental Protection Agency (EPA) developed the concept of Water Quality Volume (WQv) as a Best Management Practice (BMP) to treat the first 25.4 mm of rainfall in urban areas, aiming to capture approximately 90% of annual runoff. However, applying this urban-based [...] Read more.
The U.S. Environmental Protection Agency (EPA) developed the concept of Water Quality Volume (WQv) as a Best Management Practice (BMP) to treat the first 25.4 mm of rainfall in urban areas, aiming to capture approximately 90% of annual runoff. However, applying this urban-based standard—designed for areas with over 50% imperviousness—to rural regions with higher infiltration and pervious surfaces may result in overestimated facility capacities. In Korea, a uniform WQv criterion of 5 mm is applied nationwide, regardless of land use or hydrological conditions. This study examines the suitability of this 5 mm standard in rural catchments using the Hydrological Simulation Program–Fortran (HSPF). Eight sub-watersheds in the target area were simulated under varying cumulative runoff depths (1–10 mm) to assess pollutant loads and runoff characteristics. First-flush effects were most evident below 5 mm, with variation depending on land cover. Nature-based treatment systems for constructed wetlands were modeled for each sub-watershed, and their effectiveness was evaluated using Flow Duration Curves (FDCs) and Load Duration Curves (LDCs). The findings suggest that the uniform 5 mm WQv criterion may result in overdesign in rural watersheds and highlight the need for region-specific standards that consider local land-use and hydrological variability. Full article
(This article belongs to the Special Issue Monitoring of Contaminated Water and Soil)
Show Figures

Figure 1

25 pages, 1049 KiB  
Review
The Occurrence and Removal of Microplastics from Stormwater Using Green Infrastructure
by Anna Kwarciak-Kozłowska and Magdalena Madeła
Water 2025, 17(14), 2089; https://doi.org/10.3390/w17142089 - 13 Jul 2025
Viewed by 719
Abstract
Microplastics (MPs) are becoming an increasingly common pollutant in the aquatic environment, including stormwater. This is a serious problem, as stormwater is becoming an essential transport route for MPs from urban areas to surface waters. Rainwater flowing from roofs, roads, and other impermeable [...] Read more.
Microplastics (MPs) are becoming an increasingly common pollutant in the aquatic environment, including stormwater. This is a serious problem, as stormwater is becoming an essential transport route for MPs from urban areas to surface waters. Rainwater flowing from roofs, roads, and other impermeable surfaces contains a variety of plastic particles originating from tire abrasion or waste disposal. This article presents an overview of current research on the occurrence of MPs in stormwater. The potential of selected green infrastructure solutions—particularly bioretention systems, constructed wetlands, and permeable pavements—for their reduction is assessed. Individual solutions present how the change in filter material, selection of vegetation, or the method of conducting the process (e.g., direction of stormwater flow in constructed wetlands) affects their effectiveness. The potential of green infrastructure is also compared with the traditional gray solution of sewage management in cities. This article emphasizes the importance of integrating such solutions in spatial planning as an effective tool to combat climate change and limit the spread of microplastics in the environment. Full article
(This article belongs to the Special Issue Novel Methods in Wastewater and Stormwater Treatment)
Show Figures

Figure 1

25 pages, 5819 KiB  
Article
Future Development and Water Quality for the Pensacola and Perdido Bay Estuary Program: Applications for Urban Development Planning
by Tricia Kyzar, Michael Volk, Dan Farrah, Paul Owens and Thomas Hoctor
Land 2025, 14(7), 1446; https://doi.org/10.3390/land14071446 - 11 Jul 2025
Cited by 1 | Viewed by 391
Abstract
Land requirements and impacts from future development are a significant concern throughout the world. In Florida (USA), the state’s population increased from 18.8 M to 21.5 M between 2010 and 2020, and is projected to reach 26.6 M by 2040. To accommodate these [...] Read more.
Land requirements and impacts from future development are a significant concern throughout the world. In Florida (USA), the state’s population increased from 18.8 M to 21.5 M between 2010 and 2020, and is projected to reach 26.6 M by 2040. To accommodate these new residents, 801 km2 of wetlands were converted to developed uses between 1996 and 2016. These conversions present a significant threat to Florida’s unique ecosystems and highlight the need to prioritize conservation and water resource protection, both for the natural and human services that wetland and upland landscapes provide. To better understand the relationship between future development and water resources, we used future development and event mean concentration (EMC) models for Escambia and Santa Rosa counties in Florida (USA) to assess impacts from development patterns on water quality/runoff and water resource protection priorities. This study found that if future development densities increased by 30%, reductions of 7713 acres for developed land, 17,768 acre feet of stormwater volume, ~88k lb/yr total nitrogen, and ~15k lb/yr total phosphorus could be achieved. It also found that urban infill, redevelopment, and stormwater management are essential and complementary tools to broader growth management strategies for reducing sprawl while also addressing urban stormwater impacts. Full article
Show Figures

Figure 1

20 pages, 11780 KiB  
Article
Spatiotemporal Variation and Driving Forces of Ecological Security Based on Ecosystem Health, Services, and Risk in Tianjin, China
by Tiantian Cheng, Lin Zhao, Zhi Qiao and Yongkui Yang
Sustainability 2025, 17(14), 6287; https://doi.org/10.3390/su17146287 - 9 Jul 2025
Viewed by 266
Abstract
Ecological security underpins sustainable regional development and human well-being. Tianjin is in the eastern coastal area of China and features coastal wetlands and river systems. Over the past decade, Tianjin has undergone rapid urbanization. Tianjin faces the dual challenges of maintaining ecological security [...] Read more.
Ecological security underpins sustainable regional development and human well-being. Tianjin is in the eastern coastal area of China and features coastal wetlands and river systems. Over the past decade, Tianjin has undergone rapid urbanization. Tianjin faces the dual challenges of maintaining ecological security with economic growth, making it crucial to assess Tianjin’s ecological security status. This study constructed a comprehensive framework incorporating ecosystem health, services, and risk data to evaluate the ecological security status of Tianjin in 2012, 2017, and 2022. The results show the following: (1) Land use transfer mainly shows other land use types transferred to construction land. (2) The ecological security index of Tianjin ranges from 0.003 to 0.865, and the annual average values from 2012 to 2022 are 0.496, 0.493, and 0.499, with security levels dominated by medium, medium-high, and high security levels, respectively. The change in ecological security was relatively stable and was dominated by areas with unchanged levels, accounting for 63.72% of the total area. (3) The natural environment, human activities, and ecosystem status jointly influence Tianjin’s ecological security level. Shannon diversity, Shannon evenness, vegetation type, elevation, and mean annual temperature were the main factors affecting changes in ecological security in Tianjin, among which the interaction of Shannon diversity and vegetation type had the most significant influence. This study combines positive and negative aspects to assess ecological security, providing a reference for other regions to conduct ecological security assessments and a scientific basis for ecological management and urban planning decisions in similar regions. Full article
(This article belongs to the Special Issue Sustainable Land Management: Urban Planning and Land Use)
Show Figures

Figure 1

21 pages, 3134 KiB  
Article
Allometric Growth and Carbon Sequestration of Young Kandelia obovata Plantations in a Constructed Urban Costal Wetland in Haicang Bay, Southeast China
by Jue Zheng, Lumin Sun, Lingxuan Zhong, Yizhou Yuan, Xiaoyu Wang, Yunzhen Wu, Changyi Lu, Shufang Xue and Yixuan Song
Forests 2025, 16(7), 1126; https://doi.org/10.3390/f16071126 - 8 Jul 2025
Viewed by 444
Abstract
The focus of this study was on young populations of Kandelia obovata within a constructed coastal wetland in Haicang Bay, Xiamen, Southeast China. The objective was to systematically examine their allometric growth characteristics and carbon sequestration potential over an 8-year monitoring period (2016–2024). [...] Read more.
The focus of this study was on young populations of Kandelia obovata within a constructed coastal wetland in Haicang Bay, Xiamen, Southeast China. The objective was to systematically examine their allometric growth characteristics and carbon sequestration potential over an 8-year monitoring period (2016–2024). Allometric equations were developed to estimate biomass, and the spatiotemporal variation in both plant and soil carbon stocks was estimated. There was a significant increase in total biomass per tree, from 120 ± 17 g at initial planting to 4.37 ± 0.59 kg after 8 years (p < 0.001), with aboveground biomass accounting for the largest part (72.2% ± 7.3%). The power law equation with D2H as an independent variable yielded the highest predictive accuracy for total biomass (R2 = 0.957). Vegetation carbon storage exhibited an annual growth rate of 4.2 ± 0.8 Mg C·ha−1·yr−1. In contrast, sediment carbon stocks did not show a significant increase throughout the experimental period, although long-term accumulation was observed. The restoration of mangroves in urban coastal constructed wetlands is an effective measure to sequester carbon, achieving a carbon accumulation rate of 21.8 Mg CO2eq·ha−1·yr−1. This rate surpasses that of traditional restoration methods, underscoring the pivotal role of interventions in augmenting blue carbon sinks. This study provides essential parameters for allometric modeling and carbon accounting in urban mangrove afforestation strategies, facilitating optimized restoration management and low-carbon strategies. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

16 pages, 2066 KiB  
Article
The Impact of Open Forest Habitats on Psychological Well-Being
by Emilia Janeczko, Krzysztof Czyżyk, Małgorzata Woźnicka and Anna Wiśniewska
Sustainability 2025, 17(13), 6233; https://doi.org/10.3390/su17136233 - 7 Jul 2025
Viewed by 523
Abstract
Open habitats in forests perform several important functions. In addition to enriching biodiversity, they have an impact on the diversification of the forest landscape, and through complex processes and trophic relationships, they provide greater sustainability in forest communities. It turns out that they [...] Read more.
Open habitats in forests perform several important functions. In addition to enriching biodiversity, they have an impact on the diversification of the forest landscape, and through complex processes and trophic relationships, they provide greater sustainability in forest communities. It turns out that they are also important not only for the functioning of nature, but also due to their regenerative properties, through which people can improve their well-being and recover their mental balance. The purpose of this study was to determine whether and to what extent mid-forest open dunes and wetlands are able to provide people with feelings of relaxation and mental renewal. The study was conducted in June 2024 in one of the forest complexes located in the suburban zone of Warsaw. The experiment was conducted with the participation of 52 young adult volunteers. The experiment used a pre–posttest method. The subjects’ mood and well-being were determined using four psychological questionnaires: the Positive and Negative Affect Schedule (PANAS), Restorative Outcome Scale (ROS), Subjective Vitality Scale (SVS), and Profile of Mood States (POMSs). The key findings from the research conducted are as follows: compared to the control sample (before entering the forest), exposure to all three variants of greenery had a restorative effect on the experimental participants; the water environment had the most favorable effect compared to the control sample (before entering the forest); and exposure to this environment provided the greatest increase in positive feelings and the greatest decrease in negative feelings. Research has shown that areas important for preserving forest biodiversity are also important for humans because of their high restorative properties. Preserving non-forest enclaves in forests and promoting their regenerative values for humans can be one nature-based solution to improve people’s health and well-being, especially for people living in urban areas. Full article
(This article belongs to the Special Issue Sustainable Forestry for a Sustainable Future)
Show Figures

Figure 1

15 pages, 3677 KiB  
Article
Spatial–Temporal Restructuring of Regional Landscape Patterns and Associated Carbon Effects: Evidence from Xiong’an New Area
by Yi-Hang Gao, Bo Han, Hong-Wei Liu, Yao-Nan Bai and Zhuang Li
Sustainability 2025, 17(13), 6224; https://doi.org/10.3390/su17136224 - 7 Jul 2025
Viewed by 300
Abstract
China’s accelerated urbanization has instigated construction land expansion and ecological land attrition, aggravating the carbon emission disequilibrium. Notably, the “land carbon emission elasticity coefficient” in urban agglomerations far exceeds international benchmarks, underscoring the contradiction between spatial expansion and low-carbon goals. Existing research predominantly [...] Read more.
China’s accelerated urbanization has instigated construction land expansion and ecological land attrition, aggravating the carbon emission disequilibrium. Notably, the “land carbon emission elasticity coefficient” in urban agglomerations far exceeds international benchmarks, underscoring the contradiction between spatial expansion and low-carbon goals. Existing research predominantly centers on single-spatial-type or static-model analyses, lacking cross-scale mechanism exploration, policy heterogeneity consideration, and differentiated carbon metabolism assessment across functional spaces. This study takes Xiong’an New Area as a case, delineating the spatiotemporal evolution of land use and carbon emissions during 2017–2023. Construction land expanded by 26.8%, propelling an 11-fold escalation in carbon emissions, while emission intensity decreased by 11.4% due to energy efficiency improvements and renewable energy adoption. Cultivated land reduction (31.8%) caused a 73.4% decline in agricultural emissions, and ecological land network restructuring (65.3% forest expansion and wetland restoration) significantly enhanced carbon sequestration. This research validates a governance paradigm prioritizing “structural optimization” over “scale expansion”—synergizing construction land intensification with ecological restoration to decelerate emission growth and strengthen carbon sink systems. Full article
Show Figures

Figure 1

21 pages, 9658 KiB  
Article
Analysis of Ecosystem Pattern Evolution and Driving Forces in the Qin River Basin in the Middle Reaches of the Yellow River
by Yi Liu, Mingdong Zang, Jianbing Peng, Yuze Bai, Siyuan Wang, Zibin Wang, Peidong Shi, Miao Liu, Kairan Xu and Ning Zhang
Sustainability 2025, 17(13), 6199; https://doi.org/10.3390/su17136199 - 7 Jul 2025
Viewed by 384
Abstract
As an ecological transition zone, the ecosystem of the Qin River Basin in the middle reaches of the Yellow River is of great significance to the regional ecological balance. With the rapid socio-economic development, land use changes are significant, and the spatial and [...] Read more.
As an ecological transition zone, the ecosystem of the Qin River Basin in the middle reaches of the Yellow River is of great significance to the regional ecological balance. With the rapid socio-economic development, land use changes are significant, and the spatial and temporal patterns of ecosystems are evolving. Exploring its dynamics and driving mechanisms is crucial to the ecological protection and sustainable development of watersheds. This research systematically examines the spatiotemporal dynamics and driving mechanisms of ecosystem patterns in the middle Yellow River’s Qin River Basin (1990–2020). Quantitative assessments integrating ecosystem transition metrics and redundancy analysis reveal three critical insights: (1) dominance of agricultural land and woodland (74.81% combined coverage), with grassland (18.58%) and other land types (6.61%) constituting secondary components; (2) dynamic interconversion between woodland and grassland accompanied by urban encroachment on agricultural land, manifesting as net reductions in woodland (−13.74%), farmland (−6.60%), and wetland (−38.64%) contrasting with grassland (+43.34%) and built-up area (+116.63%) expansion; (3) quantified anthropogenic drivers showing agricultural intensification (45.03%) and ecological protection measures (36.50%) as primary forces, while urbanization account for 18.47% of observed changes. The first two RDA ordination axes significantly (p < 0.01) explain 68.3% of the variance in ecosystem evolution, particularly linking land-use changes to socioeconomic indicators. Based on these findings, the study proposes integrated watershed management strategies emphasizing scientific land-use optimization, controlled urban expansion, and systematic ecological rehabilitation to enhance landscape stability in this ecologically sensitive region. The conclusions of this study have important reference value for other ecologically sensitive watersheds in land use planning, ecological protection policy making, and ecological restoration practice, which can provide a theoretical basis and practical guidance. Full article
Show Figures

Figure 1

23 pages, 2858 KiB  
Article
Predictive Models for Environmental Perception in Multi-Type Parks and Their Generalization Ability: Integrating Pre-Training and Reinforcement Learning
by Kangen Chen, Tao Xia, Zhoutong Cao, Yiwen Li, Xiuhong Lin and Rushan Bai
Buildings 2025, 15(13), 2364; https://doi.org/10.3390/buildings15132364 - 5 Jul 2025
Viewed by 375
Abstract
Evaluating the environmental perception of urban parks is highly significant for optimizing urban planning. To address the limitations of traditional evaluation methods, a multimodal deep learning framework that integrates pre-training and reinforcement learning strategies for the comprehensive assessment of various park types (seaside, [...] Read more.
Evaluating the environmental perception of urban parks is highly significant for optimizing urban planning. To address the limitations of traditional evaluation methods, a multimodal deep learning framework that integrates pre-training and reinforcement learning strategies for the comprehensive assessment of various park types (seaside, urban, mountain, and wetland) across three dimensions—accessibility, usability, and aesthetics—is proposed herein. By combining image data and user review texts, a unified architecture is constructed, including a text encoder, image visual encoder, and multimodal fusion module. During the pre-training phase, the model captured latent features in images and texts through a self-supervised learning strategy. In the subsequent training phase, a reinforcement learning strategy was introduced to optimize the sample selection and modal fusion paths to enhance the model’s generalization capability. To validate the cross-type prediction ability of the model, the experimental design uses data from three types of parks for training, with the remaining type as a test set. Results demonstrate that the proposed method outperforms LSTM and CNN architectures across accuracy, precision, recall, and F1 Score metrics. Compared with CNN, the proposed method improves accuracy by 5.1% and F1 Score by 6.6%. Further analysis shows that pre-training enhances the robust fusion of visual and textual features, while reinforcement learning optimizes the sample selection and feature fusion strategies during training. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

28 pages, 3641 KiB  
Article
Identifying Priority Bird Habitats Through Seasonal Dynamics: An Integrated Habitat Suitability–Risk–Quality Framework
by Junqing Wei, Yasi Tian, Chun Li, Yan Zhang, Hongzhou Yuan and Yanfang Liu
Sustainability 2025, 17(13), 6078; https://doi.org/10.3390/su17136078 - 2 Jul 2025
Viewed by 581
Abstract
A key challenge is how to effectively conserve habitats and biodiversity amid widespread habitat fragmentation and loss caused by global urbanization. Despite growing attention to this issue, knowledge of the seasonal dynamics of habitats remains limited, and conservation gaps are still inadequately identified. [...] Read more.
A key challenge is how to effectively conserve habitats and biodiversity amid widespread habitat fragmentation and loss caused by global urbanization. Despite growing attention to this issue, knowledge of the seasonal dynamics of habitats remains limited, and conservation gaps are still inadequately identified. This study proposes a novel integrated framework, “Habitat Suitability–Risk–Quality”, to improve the assessment of the seasonal bird habitat quality and to identify priority conservation habitats in urban landscapes. The framework was implemented in Wuhan, China, a critical stopover site along the East Asian–Australasian Flyway. It combines the Maximum Entropy (MaxEnt) model to predict the seasonal habitat suitability, the Habitat Risk Assessment (HRA) model to quantify habitat sensitivity to multiple anthropogenic threats, and a refined Habitat Quality (HQ) model to evaluate the seasonal habitat quality. K-means clustering was then applied to group habitats based on seasonal quality dynamics, enabling the identification of priority areas and the development of differentiated conservation strategies. The results show significant seasonal variation in habitat suitability and quality. Wetlands provided the highest-quality habitats in autumn and winter, grasslands exhibited moderate seasonal quality, and forests showed the least seasonal fluctuation. The spatial analysis revealed that high-quality wetland habitats form an ecological belt along the urban–suburban fringe. Four habitat clusters with distinct seasonal characteristics were then identified. However, spatial mismatches were found between existing protected areas and habitats of high ecological value. Notably, Cluster 1 maintained high habitat quality year round, spanning 99.38 km2, yet only 46.51% of its area is currently protected. The remaining 53.16 km2, mostly situated in urban–suburban transitional zones, remain unprotected. This study provides valuable insights for identifying priority habitats and developing season-specific conservation strategies in rapidly urbanizing regions, thereby supporting the sustainable management of urban biodiversity and the development of resilient ecological systems. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
Show Figures

Figure 1

Back to TopTop