Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (14,980)

Search Parameters:
Keywords = urban systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1684 KiB  
Article
Effectiveness of Implementing Hospital Wastewater Treatment Systems as a Measure to Mitigate the Microbial and Antimicrobial Burden on the Environment
by Takashi Azuma, Miwa Katagiri, Takatoshi Yamamoto, Makoto Kuroda and Manabu Watanabe
Antibiotics 2025, 14(8), 807; https://doi.org/10.3390/antibiotics14080807 - 7 Aug 2025
Abstract
Background: The emergence and spread of antimicrobial-resistant bacteria (ARB) has become an urgent global concern as a silent pandemic. When taking measures to reduce the impact of antimicrobial resistance (AMR) on the environment, it is important to consider appropriate treatment of wastewater from [...] Read more.
Background: The emergence and spread of antimicrobial-resistant bacteria (ARB) has become an urgent global concern as a silent pandemic. When taking measures to reduce the impact of antimicrobial resistance (AMR) on the environment, it is important to consider appropriate treatment of wastewater from medical facilities. Methods: In this study, a continuous-flow wastewater treatment system using ozone and ultraviolet light, which has excellent inactivation effects, was implemented in a hospital in an urban area of Japan. Results: The results showed that 99% (2 log10) of Gram-negative rods and more than 99.99% (>99.99%) of ARB comprising ESBL-producing Enterobacterales were reduced by ozone treatment from the first day after treatment, and ultraviolet light-emitting diode (UV-LED) irradiation after ozone treatment; UV-LED irradiation after ozonation further inactivated the bacteria to below the detection limit. Inactivation effects were maintained throughout the treatment period in this study. Metagenomic analysis showed that the removal of these microorganisms at the DNA level tended to be gradual in ozone treatment; however, the treated water after ozone/UV-LED treatment showed a 2 log10 (>99%) removal rate at the end of the treatment. The residual antimicrobials in the effluent were benzylpenicillin, cefpodoxime, ciprofloxacin, levofloxacin, azithromycin, clarithromycin, doxycycline, minocycline, and vancomycin, which were removed by ozone treatment on day 1. In contrast, the removal of ampicillin and cefdinir ranged from 19% to 64% even when combined with UV-LED treatment. Conclusions: Our findings will help to reduce the discharge of ARB and antimicrobials into rivers and maintain the safety of aquatic environments. Full article
(This article belongs to the Special Issue Antibiotic Resistance in Wastewater Treatment Plants)
Show Figures

Figure 1

19 pages, 12670 KiB  
Article
Risk Assessment of Flood Disasters with Multi-Source Data and Its Spatial Differentiation Characteristics
by Wenxia Jing, Yinghua Song, Wei Lv and Junyi Yang
Sustainability 2025, 17(15), 7149; https://doi.org/10.3390/su17157149 - 7 Aug 2025
Abstract
The changing global climate and rapid urbanization make extreme rainstorm events frequent, and the flood disaster caused by rainstorm has become a prominent problem of urban public safety in China, which severely restricts the healthy and sustainable development of social economy. The weight [...] Read more.
The changing global climate and rapid urbanization make extreme rainstorm events frequent, and the flood disaster caused by rainstorm has become a prominent problem of urban public safety in China, which severely restricts the healthy and sustainable development of social economy. The weight calculation method of traditional risk assessment model is single and ignores the difference of multi-dimensional information space involved in risk analysis. This study constructs a flood risk assessment model by incorporating natural, social, and economic factors into an indicator system structured around four dimensions: hazard, exposure, vulnerability, and disaster prevention and mitigation capacity. A combination of the Analytic Hierarchy Process (AHP) and the entropy weight method is employed to optimize both subjective and objective weights. Taking the central urban area of Wuhan with a high flood risk as an example, based on the risk assessment values, spatial autocorrelation analysis, cluster analysis, outlier analysis, and hotspot analysis are applied to explore the spatial clustering characteristics of risks. The results show that the overall assessment level of flood hazard in central urban area of Wuhan is medium, the overall assessment level of exposure and vulnerability is low, and the overall disaster prevention and mitigation capability is medium. The overall flood risk levels in Wuchang and Jianghan are the highest, while some areas in Qingshan and Hanyang have the lowest levels. The spatial characteristics of each dimension evaluation index show obvious autocorrelation and spatial differentiation. These findings aim to provide valuable suggestions and references for reducing urban disaster risks and achieving sustainable urban development. Full article
(This article belongs to the Special Issue Sustainable Transport and Land Use for a Sustainable Future)
Show Figures

Figure 1

15 pages, 13698 KiB  
Article
Analysis of the Relationship Between Mural Content and Its Illumination: Two Alternative Directions for Design Guidelines
by Zofia Koszewicz, Rafał Krupiński, Marta Rusnak and Bartosz Kuczyński
Arts 2025, 14(4), 90; https://doi.org/10.3390/arts14040090 (registering DOI) - 7 Aug 2025
Abstract
As part of contemporary urban culture, murals support place making and city identity. While much attention has been paid to their role in activating public space during daylight hours, their presence after dark remains largely unexamined. This paper analyzes how mural content interacts [...] Read more.
As part of contemporary urban culture, murals support place making and city identity. While much attention has been paid to their role in activating public space during daylight hours, their presence after dark remains largely unexamined. This paper analyzes how mural content interacts with night-time illumination. The research draws on case studies, photographs, luminance measurements, and lighting simulations. It evaluates how existing lighting systems support or undermine the legibility and impact of commercial murals in urban environments. It explores whether standardized architectural lighting guidelines suit murals, how color and surface affect visibility, and which practices improve night-time legibility. The study identifies a gap in existing lighting strategies, noting that uneven lighting distorts intent and reduces public engagement. In response, a new design tool—the Floodlighting Content Readability Map—is proposed to support artists and planners in creating night-visible murals. This paper situates mural illumination within broader debates on creative urbanism and argues that lighting is not just infrastructure, but a cultural and aesthetic tool that extends the reach and resonance of public art in the 24 h city. It further emphasizes the need for interdisciplinary collaboration and a multi-contextual perspective—encompassing visual, social, environmental, and regulatory dimensions—when designing murals in cities. Full article
(This article belongs to the Special Issue Aesthetics in Contemporary Cities)
Show Figures

Figure 1

29 pages, 1751 KiB  
Article
The Structure of the Semantic Network Regarding “East Asian Cultural Capital” on Chinese Social Media Under the Framework of Cultural Development Policy
by Tianyi Tao and Han Woo Park
Information 2025, 16(8), 673; https://doi.org/10.3390/info16080673 - 7 Aug 2025
Abstract
This study focuses on cultural and urban development policies under China’s 14th Five-Year Plan, exploring the content and semantic structure of discussions on the “East Asian Cultural Capital” project on the Weibo platform. It analyzes how national cultural development policies are reflected in [...] Read more.
This study focuses on cultural and urban development policies under China’s 14th Five-Year Plan, exploring the content and semantic structure of discussions on the “East Asian Cultural Capital” project on the Weibo platform. It analyzes how national cultural development policies are reflected in the discourse system related to the “East Asian Cultural Capital” on social media and emphasizes the guiding role of policies in the dissemination of online culture. When China announced the 14th Five-Year Plan in 2021, the strategic direction and policy framework for cultural development over the five-year period from 2021 to 2025 were clearly outlined. This study employs text mining and semantic network analysis methods to analyze user-generated content on Weibo from 2023 to 2024, aiming to understand public perception and discourse trends. Word frequency and TF-IDF analyses identify key terms and issues, while centrality and CONCOR clustering analyses reveal the semantic structure and discourse communities. MR-QAP regression is employed to compare network changes across the two years. Findings highlight that urban cultural development, heritage preservation, and regional exchange are central themes, with digital media, cultural branding, trilateral cooperation, and cultural–economic integration emerging as key factors in regional collaboration. Full article
(This article belongs to the Special Issue Semantic Networks for Social Media and Policy Insights)
Show Figures

Figure 1

28 pages, 9378 KiB  
Article
A Semantic Segmentation-Based GNSS Signal Occlusion Detection and Optimization Method
by Zhe Yue, Chenchen Sun, Xuerong Zhang, Chengkai Tang, Yuting Gao and Kezhao Li
Remote Sens. 2025, 17(15), 2725; https://doi.org/10.3390/rs17152725 - 6 Aug 2025
Abstract
Existing research fails to effectively address the problem of increased GNSS positioning errors caused by non-line-of-sight (NLOS) and line-of-sight (LOS) signal attenuation due to obstructions such as buildings and trees in complex urban environments. To address this issue, we dig into the environmental [...] Read more.
Existing research fails to effectively address the problem of increased GNSS positioning errors caused by non-line-of-sight (NLOS) and line-of-sight (LOS) signal attenuation due to obstructions such as buildings and trees in complex urban environments. To address this issue, we dig into the environmental perception perspective to propose a semantic segmentation-based GNSS signal occlusion detection and optimization method. The approach distinguishes between building and tree occlusions and adjusts signal weights accordingly to enhance positioning accuracy. First, a fisheye camera captures environmental imagery above the vehicle, which is then processed using deep learning to segment sky, tree, and building regions. Subsequently, satellite projections are mapped onto the segmented sky image to classify signal occlusions. Then, based on the type of obstruction, a dynamic weight optimization model is constructed to adjust the contribution of each satellite in the positioning solution, thereby enhancing the positioning accuracy of vehicle-navigation in urban environments. Finally, we construct a vehicle-mounted navigation system for experimentation. The experimental results demonstrate that the proposed method enhances accuracy by 16% and 10% compared to the existing GNSS/INS/Canny and GNSS/INS/Flood Fill methods, respectively, confirming its effectiveness in complex urban environments. Full article
(This article belongs to the Special Issue GNSS and Multi-Sensor Integrated Precise Positioning and Applications)
Show Figures

Figure 1

22 pages, 481 KiB  
Article
Early Childhood Education Quality for Toddlers: Understanding Structural and Process Quality in Chilean Classrooms
by Felipe Godoy, Marigen Narea, Pamela Soto-Ramirez, Camila Ayala and María Jesús López
Educ. Sci. 2025, 15(8), 1009; https://doi.org/10.3390/educsci15081009 - 6 Aug 2025
Abstract
Despite extensive research on early childhood education (ECE) quality at the preschool level, toddler settings remain comparatively understudied, particularly in Chile and Latin America. Research suggests that quality ECE strengthens child development, while low-quality services can be harmful. ECE quality comprises structural features [...] Read more.
Despite extensive research on early childhood education (ECE) quality at the preschool level, toddler settings remain comparatively understudied, particularly in Chile and Latin America. Research suggests that quality ECE strengthens child development, while low-quality services can be harmful. ECE quality comprises structural features like ratios and classroom resources, and process features related to interactions within classrooms. This study examines how process and structural quality indicators are related in nurseries serving disadvantaged backgrounds. Data were collected from 51 Chilean urban classrooms serving children aged 12–24 months. Classrooms were evaluated using the Classroom Assessment Scoring System (CLASS) for toddlers, questionnaires, and checklists. Latent Profile Analysis identified process quality patterns, while multinomial regression examined associations with structural quality indicators. The results revealed low-to-moderate process quality across classrooms (M = 4.78 for Emotional and Behavioral Support; M = 2.35 for Engaged Support for Learning), with three distinct quality clusters emerging. Marginally significant differences were found between high- and low-performing clusters regarding classroom space (p = 0.06), number of toys (p = 0.08), and staff educational credentials (p = 0.01–0.07). No significant differences emerged for group sizes or adult-to-child ratios, which are heavily regulated in Chile. These findings underscore the need to strengthen quality assurance mechanisms ensuring all children access quality ECE. Full article
Show Figures

Figure 1

20 pages, 741 KiB  
Review
Exploring Design Thinking Methodologies: A Comprehensive Analysis of the Literature, Outstanding Practices, and Their Linkage to Sustainable Development Goals
by Matilde Martínez Casanovas
Sustainability 2025, 17(15), 7142; https://doi.org/10.3390/su17157142 - 6 Aug 2025
Abstract
Design Thinking (DT) has emerged as a relevant methodology for addressing global challenges aligned with the United Nations Sustainable Development Goals (SDGs). This study presents a systematic literature review, conducted following PRISMA 2020 guidelines, which analyzes 42 peer-reviewed publications from 2013 to 2023. [...] Read more.
Design Thinking (DT) has emerged as a relevant methodology for addressing global challenges aligned with the United Nations Sustainable Development Goals (SDGs). This study presents a systematic literature review, conducted following PRISMA 2020 guidelines, which analyzes 42 peer-reviewed publications from 2013 to 2023. Through inductive content analysis, 10 core DT principles—such as empathy, iteration, user-centeredness, and systems thinking—I identified and thematically mapped to specific SDGs, including goals related to health, education, innovation, and climate action. The study also presents five real-world cases from diverse sectors such as technology, healthcare, and urban planning, illustrating how DT has been applied to address practical challenges aligned with the SDGs. However, the review identifies persistent gaps in the field: the lack of standardized evaluation frameworks, limited integration across SDG domains, and weak adaptation of ethical and contextual considerations, particularly in vulnerable communities. As a response, this paper recommends the adoption of structured impact assessment tools (e.g., Cities2030, Responsible Design Thinking), integration of design justice principles, and the development of participatory, iterative ecosystems for innovation. By offering both conceptual synthesis and applied insights, this article positions Design Thinking as a strategic and systemic approach for driving sustainable transformation aligned with the 2030 Agenda. Full article
(This article belongs to the Section Sustainable Education and Approaches)
Show Figures

Figure 1

40 pages, 87429 KiB  
Article
Optimizing Urban Mobility Through Complex Network Analysis and Big Data from Smart Cards
by Li Sun, Negin Ashrafi and Maryam Pishgar
IoT 2025, 6(3), 44; https://doi.org/10.3390/iot6030044 - 6 Aug 2025
Abstract
Urban public transportation systems face increasing pressure from shifting travel patterns, rising peak-hour demand, and the need for equitable and resilient service delivery. While complex network theory has been widely applied to analyze transit systems, limited attention has been paid to behavioral segmentation [...] Read more.
Urban public transportation systems face increasing pressure from shifting travel patterns, rising peak-hour demand, and the need for equitable and resilient service delivery. While complex network theory has been widely applied to analyze transit systems, limited attention has been paid to behavioral segmentation within such networks. This study introduces a frequency-based framework that differentiates high-frequency (HF) and low-frequency (LF) passengers to examine how distinct user groups shape network structure, congestion vulnerability, and robustness. Using over 20 million smart-card records from Beijing’s multimodal transit system, we construct and analyze directed weighted networks for HF and LF users, integrating topological metrics, temporal comparisons, and community detection. Results reveal that HF networks are densely connected but structurally fragile, exhibiting lower modularity and significantly greater efficiency loss during peak periods. In contrast, LF networks are more spatially dispersed yet resilient, maintaining stronger intracommunity stability. Peak-hour simulation shows a 70% drop in efficiency and a 99% decrease in clustering, with HF networks experiencing higher vulnerability. Based on these findings, we propose differentiated policy strategies for each user group and outline a future optimization framework constrained by budget and equity considerations. This study contributes a scalable, data-driven approach to integrating passenger behavior with network science, offering actionable insights for resilient and inclusive transit planning. Full article
(This article belongs to the Special Issue IoT-Driven Smart Cities)
14 pages, 24112 KiB  
Article
ImpactAlert: Pedestrian-Carried Vehicle Collision Alert System
by Raghav Rawat, Caspar Lant, Haowen Yuan and Dennis Shasha
Electronics 2025, 14(15), 3133; https://doi.org/10.3390/electronics14153133 - 6 Aug 2025
Abstract
The ImpactAlert system is a chest-mounted system that detects objects that are likely to hit a pedestrian and alerts that pedestrian. The primary use cases are visually impaired pedestrians or pedestrians who need to be warned about vehicles or other pedestrians coming from [...] Read more.
The ImpactAlert system is a chest-mounted system that detects objects that are likely to hit a pedestrian and alerts that pedestrian. The primary use cases are visually impaired pedestrians or pedestrians who need to be warned about vehicles or other pedestrians coming from unseen directions. This paper argues for the need for such a system, the design and algorithms of ImpactAlert, and experiments carried out in varied urban environments, ranging from densely crowded to semi-urban in the United States, India and China. ImpactAlert makes use of a LiDAR camera found on a commercial wireless phone, processes the data over several frames to evaluate the time to impact and speed of potential threats. When ImpactAlert determines a threat meets the criteria set by the user, it sends warning signals through an output device to warn a pedestrian. The output device can be an audible warning and/or a low-cost smart cane that vibrates when danger approaches. Our experiments in urban and semi-urban environments show that (i) ImpactAlert can avoid nearly all false negatives (when an alarm should be sent and it isn’t) and (ii) enjoys a low false positive rate. The net result is an effective low cost system to alert pedestrians in an urban environment. Full article
Show Figures

Figure 1

19 pages, 1102 KiB  
Article
Assessing the Adoption and Feasibility of Green Wall Systems in Construction Projects in Nigeria
by Oluwayinka Seun Oke, John Ogbeleakhu Aliu, Damilola Ekundayo, Ayodeji Emmanuel Oke and Nwabueze Kingsley Chukwuma
Sustainability 2025, 17(15), 7126; https://doi.org/10.3390/su17157126 - 6 Aug 2025
Abstract
This study aims to evaluate the level of awareness and practical adoption of green wall systems in the Nigerian construction industry. It seeks to examine the current state of green wall implementation and recommend strategies to enhance their integration into construction practices among [...] Read more.
This study aims to evaluate the level of awareness and practical adoption of green wall systems in the Nigerian construction industry. It seeks to examine the current state of green wall implementation and recommend strategies to enhance their integration into construction practices among Nigerian construction professionals. A thorough review of the existing literature was conducted to identify different types of green wall systems. Insights from this review informed the design of a structured questionnaire, which was distributed to construction professionals based in Lagos State. The data collected were analyzed using statistical tests. The study reveals that while there is generally high awareness of green wall systems among Nigerian construction professionals, the practical use remains low, with just 8 out of the 18 systems being actively implemented, eclipsing the mean value of 3.0. The findings underscore the need for targeted education, industry incentives, and increased advocacy to encourage the use of green wall systems in the Nigerian construction sector. The results have significant implications for the Nigerian construction industry. The limited awareness and adoption of green wall systems highlight the need for strategic actions from policymakers, industry leaders and educational institutions. Promoting the use of green walls could drive more sustainable building practices, improve environmental outcomes and support the broader goals of decarbonization and circularity in construction. This research adds to the body of knowledge on sustainable construction by offering a detailed evaluation of green wall awareness and adoption within the Nigerian context. While green wall systems have been studied globally, this research provides a regional perspective, which in this case focuses on Lagos State. The study’s recognition of the gap between awareness and implementation highlights an important area for future research and industry development. Full article
Show Figures

Figure 1

22 pages, 7705 KiB  
Article
Implementation of SLAM-Based Online Mapping and Autonomous Trajectory Execution in Software and Hardware on the Research Platform Nimbulus-e
by Thomas Schmitz, Marcel Mayer, Theo Nonnenmacher and Matthias Schmitz
Sensors 2025, 25(15), 4830; https://doi.org/10.3390/s25154830 - 6 Aug 2025
Abstract
This paper presents the design and implementation of a SLAM-based online mapping and autonomous trajectory execution system for the Nimbulus-e, a concept vehicle designed for agile maneuvering in confined spaces. The Nimbulus-e uses individual steer-by-wire corner modules with in-wheel motors at all four [...] Read more.
This paper presents the design and implementation of a SLAM-based online mapping and autonomous trajectory execution system for the Nimbulus-e, a concept vehicle designed for agile maneuvering in confined spaces. The Nimbulus-e uses individual steer-by-wire corner modules with in-wheel motors at all four corners. The associated eight joint variables serve as control inputs, allowing precise trajectory following. These control inputs can be derived from the vehicle’s trajectory using nonholonomic constraints. A LiDAR sensor is used to map the environment and detect obstacles. The system processes LiDAR data in real time, continuously updating the environment map and enabling localization within the environment. The inclusion of vehicle odometry data significantly reduces computation time and improves accuracy compared to a purely visual approach. The A* and Hybrid A* algorithms are used for trajectory planning and optimization, ensuring smooth vehicle movement. The implementation is validated through both full vehicle simulations using an ADAMS Car—MATLABco-simulation and a scaled physical prototype, demonstrating the effectiveness of the system in navigating complex environments. This work contributes to the field of autonomous systems by demonstrating the potential of combining advanced sensor technologies with innovative control algorithms to achieve reliable and efficient navigation. Future developments will focus on improving the robustness of the system by implementing a robust closed-loop controller and exploring additional applications in dense urban traffic and agricultural operations. Full article
Show Figures

Figure 1

26 pages, 2126 KiB  
Systematic Review
Interlinking Urban Sustainability, Circular Economy and Complexity: A Systematic Literature Review
by Walter Antonio Abujder Ochoa, Angela Gabriela Torrico Arce, Alfredo Iarozinski Neto, Mayara Regina Munaro, Oriana Palma Calabokis and Vladimir A. Ballesteros-Ballesteros
Sustainability 2025, 17(15), 7118; https://doi.org/10.3390/su17157118 - 6 Aug 2025
Abstract
Urban sustainability challenges demand integrated frameworks capable of addressing the dynamic, non-linear nature of cities. This study explores how the principles of the circular economy and complexity theory intersect to support systemic transformation in sustainable urban planning. Through a systematic literature review of [...] Read more.
Urban sustainability challenges demand integrated frameworks capable of addressing the dynamic, non-linear nature of cities. This study explores how the principles of the circular economy and complexity theory intersect to support systemic transformation in sustainable urban planning. Through a systematic literature review of 71 peer-reviewed articles published between 2015 and 2025, we analyze conceptual, methodological, and practical articulations across multiple thematic axes, including circular governance, urban metabolism, regenerative design, adaptive planning, digital integration, and environmental justice. Bibliometric and content analyses were conducted using Scopus metadata, VOSviewer for thematic clustering, and the StArt software (Version 3.4) to structure article selection. The findings reveal that circular economy provides practical tools for resource efficiency and regeneration, while complexity theory offers an adaptive framework to navigate uncertainty, emergent behaviors, and feedback dynamics. The synthesis suggests that their integration enables a more holistic and resilient approach to urban transformation. However, gaps remain in social inclusivity, long-term assessment, and the operationalization of complexity-informed planning. This study contributes to advancing a transdisciplinary agenda for circular and adaptive urban futures, offering insights for scholars, planners, and policymakers aiming to reconfigure cities within planetary boundaries. Full article
Show Figures

Figure 1

20 pages, 1279 KiB  
Article
A Framework for Quantifying Hyperloop’s Socio-Economic Impact in Smart Cities Using GDP Modeling
by Aleksejs Vesjolijs, Yulia Stukalina and Olga Zervina
Economies 2025, 13(8), 228; https://doi.org/10.3390/economies13080228 - 6 Aug 2025
Abstract
Hyperloop ultra-high-speed transport presents a transformative opportunity for future mobility systems in smart cities. However, assessing its socio-economic impact remains challenging due to Hyperloop’s unique technological, modal, and operational characteristics. As a novel, fifth mode of transportation—distinct from both aviation and rail—Hyperloop requires [...] Read more.
Hyperloop ultra-high-speed transport presents a transformative opportunity for future mobility systems in smart cities. However, assessing its socio-economic impact remains challenging due to Hyperloop’s unique technological, modal, and operational characteristics. As a novel, fifth mode of transportation—distinct from both aviation and rail—Hyperloop requires tailored evaluation tools for policymakers. This study proposes a custom-designed framework to quantify its macroeconomic effects through changes in gross domestic product (GDP) at the city level. Unlike traditional economic models, the proposed approach is specifically adapted to Hyperloop’s multimodality, infrastructure, speed profile, and digital-green footprint. A Poisson pseudo-maximum likelihood (PPML) model is developed and applied at two technology readiness levels (TRL-6 and TRL-9). Case studies of Glasgow, Berlin, and Busan are used to simulate impacts based on geo-spatial features and city-specific trade and accessibility indicators. Results indicate substantial GDP increases driven by factors such as expanded 60 min commute catchment zones, improved trade flows, and connectivity node density. For instance, under TRL-9 conditions, GDP uplift reaches over 260% in certain scenarios. The framework offers a scalable, reproducible tool for policymakers and urban planners to evaluate the economic potential of Hyperloop within the context of sustainable smart city development. Full article
(This article belongs to the Section International, Regional, and Transportation Economics)
Show Figures

Figure 1

19 pages, 3024 KiB  
Article
Evaluating Emissions from Select Urban Parking Garages in Cincinnati, OH, Using Portable Sensors and Their Potentials for Sustainability Improvement
by Alyssa Yerkeson and Mingming Lu
Sustainability 2025, 17(15), 7108; https://doi.org/10.3390/su17157108 - 5 Aug 2025
Abstract
Urban parking around the world faces similar challenges of inadequate space, pollution, and carbon emissions. Although various smart parking technologies have been tested and implemented, they primarily aim to reduce the time spent searching for parking, without considering the impact on air quality. [...] Read more.
Urban parking around the world faces similar challenges of inadequate space, pollution, and carbon emissions. Although various smart parking technologies have been tested and implemented, they primarily aim to reduce the time spent searching for parking, without considering the impact on air quality. In this study, the air quality in three urban garages was investigated with portable instruments at the entrance and exit gates and inside the garages. Garage emissions measured include CO2, PM2.5, PM10, NO2, and total VOCs. The results suggested that the PM2.5 levels in these garages tend to be higher than the ambient levels. The emissions also exhibit seasonal variations, with the highest concentrations occurring in the summer, which are 20.32 µg/m3 in Campus Green, 14.25 µg/m3 in CCM, and 15.23 µg/m3 in Washington Park garages, respectively. PM2.5 measured from these garages is strongly correlated (with an R2 of 0.64) with ambient levels. CO2 emissions are higher than ambient levels but within the indoor air quality limit. This suggests that urban garages in Cincinnati tend to enrich ambient air concentrations, which can affect garage users and garage attendants. Portable sensors are capable of long-term emission monitoring and are compatible with other technologies in smart garage development. With portable air sensors becoming increasingly accessible and affordable, there is an opportunity to integrate these devices with smart garage management systems to enhance the sustainability of parking garages. Full article
(This article belongs to the Special Issue Control of Traffic-Related Emissions to Improve Air Quality)
Show Figures

Figure 1

28 pages, 1145 KiB  
Article
Uncovering Hidden Risks: Non-Targeted Screening and Health Risk Assessment of Aromatic Compounds in Summer Metro Carriages
by Han Wang, Guangming Li, Cuifen Dong, Youyan Chi, Kwok Wai Tham, Mengsi Deng and Chunhui Li
Buildings 2025, 15(15), 2761; https://doi.org/10.3390/buildings15152761 - 5 Aug 2025
Abstract
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, [...] Read more.
Metro carriages, as enclosed transport microenvironments, have been understudied regarding pollution characteristics and health risks from ACs, especially during high-temperature summers that amplify exposure. This study applied NTS techniques for the first time across three major Chengdu metro lines, systematically identifying sixteen ACs, including hazardous species such as acetophenone, benzonitrile, and benzoic acid that are often overlooked in conventional BTEX-focused monitoring. The TAC concentration reached 41.40 ± 5.20 µg/m3, with half of the compounds exhibiting significant increases during peak commuting periods. Source apportionment using diagnostic ratios and PMF identified five major contributors: carriage material emissions (36.62%), human sources (22.50%), traffic exhaust infiltration (16.67%), organic solvents (16.55%), and industrial emissions (7.66%). Although both non-cancer (HI) and cancer (TCR) risks for all population groups were below international thresholds, summer tourists experienced higher exposure than daily commuters. Notably, child tourists showed the greatest vulnerability, with a TCR of 5.83 × 10−7, far exceeding that of commuting children (1.88 × 10−7). Benzene was the dominant contributor, accounting for over 50% of HI and 70% of TCR. This study presents the first integrated NTS and quantitative risk assessment to characterise ACs in summer metro environments, revealing a broader range of hazardous compounds beyond BTEX. It quantifies population-specific risks, highlights children’s heightened vulnerability. The findings fill critical gaps in ACs exposure and provide a scientific basis for improved air quality management and pollution mitigation strategies in urban rail transit systems. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop