Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,015)

Search Parameters:
Keywords = urban plans

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 359 KiB  
Article
Determinants of High-Speed Train Demand: Insights from the Jakarta—Bandung Corridor in Indonesia
by Mohammed Ali Berawi, Samidjan Samidjan, Perdana Miraj, Andyka Kusuma and Mustika Sari
Urban Sci. 2025, 9(8), 308; https://doi.org/10.3390/urbansci9080308 - 7 Aug 2025
Abstract
For the last few decades, the use of High-Speed Trains (HSTs) has been growing rapidly in various parts of the world. Despite rapid global expansion, many HST projects fail due to demand overestimation and cost overruns. This study analyzes factors influencing HST demand [...] Read more.
For the last few decades, the use of High-Speed Trains (HSTs) has been growing rapidly in various parts of the world. Despite rapid global expansion, many HST projects fail due to demand overestimation and cost overruns. This study analyzes factors influencing HST demand in Indonesia, aiming to identify impactful determinants from user perspectives. Employing a quantitative cross-sectional approach, this research utilized questionnaires distributed to users of different modes of transportation in the Jakarta–Bandung area, including trains, buses, travel services, and private cars. Structural Equation Modeling (SEM) via Lisrel software was used to analyze the data. The results indicate that Transit-Oriented Developments (TOD) and new urban areas significantly increase HST demand by facilitating urban growth and development. Additionally, supporting infrastructure and external factors such as road accessibility, parking availability, shuttle services, and environmental integration are pivotal in shaping commuter preferences. Although factors such as safety, comfort, and reliability are important, they alone may not be adequate to persuade consumers to use high-speed trains for their travel. Full article
Show Figures

Figure 1

29 pages, 1751 KiB  
Article
The Structure of the Semantic Network Regarding “East Asian Cultural Capital” on Chinese Social Media Under the Framework of Cultural Development Policy
by Tianyi Tao and Han Woo Park
Information 2025, 16(8), 673; https://doi.org/10.3390/info16080673 - 7 Aug 2025
Abstract
This study focuses on cultural and urban development policies under China’s 14th Five-Year Plan, exploring the content and semantic structure of discussions on the “East Asian Cultural Capital” project on the Weibo platform. It analyzes how national cultural development policies are reflected in [...] Read more.
This study focuses on cultural and urban development policies under China’s 14th Five-Year Plan, exploring the content and semantic structure of discussions on the “East Asian Cultural Capital” project on the Weibo platform. It analyzes how national cultural development policies are reflected in the discourse system related to the “East Asian Cultural Capital” on social media and emphasizes the guiding role of policies in the dissemination of online culture. When China announced the 14th Five-Year Plan in 2021, the strategic direction and policy framework for cultural development over the five-year period from 2021 to 2025 were clearly outlined. This study employs text mining and semantic network analysis methods to analyze user-generated content on Weibo from 2023 to 2024, aiming to understand public perception and discourse trends. Word frequency and TF-IDF analyses identify key terms and issues, while centrality and CONCOR clustering analyses reveal the semantic structure and discourse communities. MR-QAP regression is employed to compare network changes across the two years. Findings highlight that urban cultural development, heritage preservation, and regional exchange are central themes, with digital media, cultural branding, trilateral cooperation, and cultural–economic integration emerging as key factors in regional collaboration. Full article
(This article belongs to the Special Issue Semantic Networks for Social Media and Policy Insights)
Show Figures

Figure 1

28 pages, 13851 KiB  
Article
A Spatially Aware Machine Learning Method for Locating Electric Vehicle Charging Stations
by Yanyan Huang, Hangyi Ren, Xudong Jia, Xianyu Yu, Dong Xie, You Zou, Daoyuan Chen and Yi Yang
World Electr. Veh. J. 2025, 16(8), 445; https://doi.org/10.3390/wevj16080445 - 6 Aug 2025
Abstract
The rapid adoption of electric vehicles (EVs) has driven a strong need for optimizing locations of electric vehicle charging stations (EVCSs). Previous methods for locating EVCSs rely on statistical and optimization models, but these methods have limitations in capturing complex nonlinear relationships and [...] Read more.
The rapid adoption of electric vehicles (EVs) has driven a strong need for optimizing locations of electric vehicle charging stations (EVCSs). Previous methods for locating EVCSs rely on statistical and optimization models, but these methods have limitations in capturing complex nonlinear relationships and spatial dependencies among factors influencing EVCS locations. To address this research gap and better understand the spatial impacts of urban activities on EVCS placement, this study presents a spatially aware machine learning (SAML) method that combines a multi-layer perceptron (MLP) model with a spatial loss function to optimize EVCS sites. Additionally, the method uses the Shapley additive explanation (SHAP) technique to investigate nonlinear relationships embedded in EVCS placement. Using the city of Wuhan as a case study, the SAML method reveals that parking site (PS), road density (RD), population density (PD), and commercial residential (CR) areas are key factors in determining optimal EVCS sites. The SAML model classifies these grid cells into no EVCS demand (0 EVCS), low EVCS demand (from 1 to 3 EVCSs), and high EVCS demand (4+ EVCSs) classes. The model performs well in predicting EVCS demand. Findings from ablation tests also indicate that the inclusion of spatial correlations in the model’s loss function significantly enhances the model’s performance. Additionally, results from case studies validate that the model is effective in predicting EVCSs in other metropolitan cities. Full article
(This article belongs to the Special Issue Fast-Charging Station for Electric Vehicles: Challenges and Issues)
20 pages, 741 KiB  
Review
Exploring Design Thinking Methodologies: A Comprehensive Analysis of the Literature, Outstanding Practices, and Their Linkage to Sustainable Development Goals
by Matilde Martínez Casanovas
Sustainability 2025, 17(15), 7142; https://doi.org/10.3390/su17157142 - 6 Aug 2025
Abstract
Design Thinking (DT) has emerged as a relevant methodology for addressing global challenges aligned with the United Nations Sustainable Development Goals (SDGs). This study presents a systematic literature review, conducted following PRISMA 2020 guidelines, which analyzes 42 peer-reviewed publications from 2013 to 2023. [...] Read more.
Design Thinking (DT) has emerged as a relevant methodology for addressing global challenges aligned with the United Nations Sustainable Development Goals (SDGs). This study presents a systematic literature review, conducted following PRISMA 2020 guidelines, which analyzes 42 peer-reviewed publications from 2013 to 2023. Through inductive content analysis, 10 core DT principles—such as empathy, iteration, user-centeredness, and systems thinking—I identified and thematically mapped to specific SDGs, including goals related to health, education, innovation, and climate action. The study also presents five real-world cases from diverse sectors such as technology, healthcare, and urban planning, illustrating how DT has been applied to address practical challenges aligned with the SDGs. However, the review identifies persistent gaps in the field: the lack of standardized evaluation frameworks, limited integration across SDG domains, and weak adaptation of ethical and contextual considerations, particularly in vulnerable communities. As a response, this paper recommends the adoption of structured impact assessment tools (e.g., Cities2030, Responsible Design Thinking), integration of design justice principles, and the development of participatory, iterative ecosystems for innovation. By offering both conceptual synthesis and applied insights, this article positions Design Thinking as a strategic and systemic approach for driving sustainable transformation aligned with the 2030 Agenda. Full article
(This article belongs to the Section Sustainable Education and Approaches)
Show Figures

Figure 1

40 pages, 87429 KiB  
Article
Optimizing Urban Mobility Through Complex Network Analysis and Big Data from Smart Cards
by Li Sun, Negin Ashrafi and Maryam Pishgar
IoT 2025, 6(3), 44; https://doi.org/10.3390/iot6030044 - 6 Aug 2025
Abstract
Urban public transportation systems face increasing pressure from shifting travel patterns, rising peak-hour demand, and the need for equitable and resilient service delivery. While complex network theory has been widely applied to analyze transit systems, limited attention has been paid to behavioral segmentation [...] Read more.
Urban public transportation systems face increasing pressure from shifting travel patterns, rising peak-hour demand, and the need for equitable and resilient service delivery. While complex network theory has been widely applied to analyze transit systems, limited attention has been paid to behavioral segmentation within such networks. This study introduces a frequency-based framework that differentiates high-frequency (HF) and low-frequency (LF) passengers to examine how distinct user groups shape network structure, congestion vulnerability, and robustness. Using over 20 million smart-card records from Beijing’s multimodal transit system, we construct and analyze directed weighted networks for HF and LF users, integrating topological metrics, temporal comparisons, and community detection. Results reveal that HF networks are densely connected but structurally fragile, exhibiting lower modularity and significantly greater efficiency loss during peak periods. In contrast, LF networks are more spatially dispersed yet resilient, maintaining stronger intracommunity stability. Peak-hour simulation shows a 70% drop in efficiency and a 99% decrease in clustering, with HF networks experiencing higher vulnerability. Based on these findings, we propose differentiated policy strategies for each user group and outline a future optimization framework constrained by budget and equity considerations. This study contributes a scalable, data-driven approach to integrating passenger behavior with network science, offering actionable insights for resilient and inclusive transit planning. Full article
(This article belongs to the Special Issue IoT-Driven Smart Cities)
20 pages, 2104 KiB  
Article
Landscape Heterogeneity and Transition Drive Wildfire Frequency in the Central Zone of Chile
by Mariam Valladares-Castellanos, Guofan Shao and Douglass F. Jacobs
Remote Sens. 2025, 17(15), 2721; https://doi.org/10.3390/rs17152721 - 6 Aug 2025
Abstract
Wildfire regimes are closely linked to changes in landscape structure, yet the influence of accelerated land use transitions on fire activity remains poorly understood, particularly in rapidly transforming regions like central Chile. Although land use change has been extensively documented in the country, [...] Read more.
Wildfire regimes are closely linked to changes in landscape structure, yet the influence of accelerated land use transitions on fire activity remains poorly understood, particularly in rapidly transforming regions like central Chile. Although land use change has been extensively documented in the country, the specific role of the speed, extent, and spatial configuration of these transitions in shaping fire dynamics requires further investigation. To address this gap, we examined how landscape transitions influence fire frequency in central Chile, a region experiencing rapid land use change and heightened fire activity. Using multi-temporal remote sensing data, we quantified land use transitions, calculated landscape metrics to describe their spatial characteristics, and applied intensity analysis to assess their relationship with fire frequency changes. Our results show that accelerated landscape transitions significantly increased fire frequency, particularly in areas affected by forest plantation rotations, new forest establishment, and urban expansion, with changes exceeding uniform intensity expectations. Regional variations were evident: In the more densely populated northern areas, increased fire frequency was primarily linked to urban development and deforestation, while in the more rural southern regions, forest plantation cycles played a dominant role. Areas with a high number of large forest patches were especially prone to fire frequency increases. These findings demonstrate that both the speed and spatial configuration of landscape transitions are critical drivers of wildfire activity. By identifying the specific land use changes and landscape characteristics that amplify fire risks, this study provides valuable knowledge to inform fire risk reduction, landscape management, and urban planning in Chile and other fire-prone regions undergoing rapid transformation. Full article
Show Figures

Figure 1

22 pages, 7705 KiB  
Article
Implementation of SLAM-Based Online Mapping and Autonomous Trajectory Execution in Software and Hardware on the Research Platform Nimbulus-e
by Thomas Schmitz, Marcel Mayer, Theo Nonnenmacher and Matthias Schmitz
Sensors 2025, 25(15), 4830; https://doi.org/10.3390/s25154830 - 6 Aug 2025
Abstract
This paper presents the design and implementation of a SLAM-based online mapping and autonomous trajectory execution system for the Nimbulus-e, a concept vehicle designed for agile maneuvering in confined spaces. The Nimbulus-e uses individual steer-by-wire corner modules with in-wheel motors at all four [...] Read more.
This paper presents the design and implementation of a SLAM-based online mapping and autonomous trajectory execution system for the Nimbulus-e, a concept vehicle designed for agile maneuvering in confined spaces. The Nimbulus-e uses individual steer-by-wire corner modules with in-wheel motors at all four corners. The associated eight joint variables serve as control inputs, allowing precise trajectory following. These control inputs can be derived from the vehicle’s trajectory using nonholonomic constraints. A LiDAR sensor is used to map the environment and detect obstacles. The system processes LiDAR data in real time, continuously updating the environment map and enabling localization within the environment. The inclusion of vehicle odometry data significantly reduces computation time and improves accuracy compared to a purely visual approach. The A* and Hybrid A* algorithms are used for trajectory planning and optimization, ensuring smooth vehicle movement. The implementation is validated through both full vehicle simulations using an ADAMS Car—MATLABco-simulation and a scaled physical prototype, demonstrating the effectiveness of the system in navigating complex environments. This work contributes to the field of autonomous systems by demonstrating the potential of combining advanced sensor technologies with innovative control algorithms to achieve reliable and efficient navigation. Future developments will focus on improving the robustness of the system by implementing a robust closed-loop controller and exploring additional applications in dense urban traffic and agricultural operations. Full article
Show Figures

Figure 1

22 pages, 6201 KiB  
Article
SOAM Block: A Scale–Orientation-Aware Module for Efficient Object Detection in Remote Sensing Imagery
by Yi Chen, Zhidong Wang, Zhipeng Xiong, Yufeng Zhang and Xinqi Xu
Symmetry 2025, 17(8), 1251; https://doi.org/10.3390/sym17081251 - 6 Aug 2025
Abstract
Object detection in remote sensing imagery is critical in environmental monitoring, urban planning, and land resource management. However, the task remains challenging due to significant scale variations, arbitrary object orientations, and complex background clutter. To address these issues, we propose a novel orientation [...] Read more.
Object detection in remote sensing imagery is critical in environmental monitoring, urban planning, and land resource management. However, the task remains challenging due to significant scale variations, arbitrary object orientations, and complex background clutter. To address these issues, we propose a novel orientation module (SOAM Block) that jointly models object scale and directional features while exploiting geometric symmetry inherent in many remote sensing targets. The SOAM Block is constructed upon a lightweight and efficient Adaptive Multi-Scale (AMS) Module, which utilizes a symmetric arrangement of parallel depth-wise convolutional branches with varied kernel sizes to extract fine-grained multi-scale features without dilation, thereby preserving local context and enhancing scale adaptability. In addition, a Strip-based Context Attention (SCA) mechanism is introduced to model long-range spatial dependencies, leveraging horizontal and vertical 1D strip convolutions in a directionally symmetric fashion. This design captures spatial correlations between distant regions and reinforces semantic consistency in cluttered scenes. Importantly, this work is the first to explicitly analyze the coupling between object scale and orientation in remote sensing imagery. The proposed method addresses the limitations of fixed receptive fields in capturing symmetric directional cues of large-scale objects. Extensive experiments are conducted on two widely used benchmarks—DOTA and HRSC2016—both of which exhibit significant scale variations and orientation diversity. Results demonstrate that our approach achieves superior detection accuracy with fewer parameters and lower computational overhead compared to state-of-the-art methods. The proposed SOAM Block thus offers a robust, scalable, and symmetry-aware solution for high-precision object detection in complex aerial scenes. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

19 pages, 1976 KiB  
Article
Excess Commuting in Rural Minnesota: Ethnic and Industry Disparities
by Woo Jang, Jose Javier Lopez and Fei Yuan
Sustainability 2025, 17(15), 7122; https://doi.org/10.3390/su17157122 - 6 Aug 2025
Abstract
Research on commuting patterns has mainly focused on urban and metropolitan areas, and such studies are not typically applied to rural and small-town regions, where workers often face longer commutes due to limited job opportunities and inadequate public transportation. By using the Census [...] Read more.
Research on commuting patterns has mainly focused on urban and metropolitan areas, and such studies are not typically applied to rural and small-town regions, where workers often face longer commutes due to limited job opportunities and inadequate public transportation. By using the Census Transportation Planning Package (CTPP) data, this research fills that gap by analyzing commuting behavior by ethnic group and industry in south-central Minnesota, which is a predominantly rural area of 13 counties in the United States. The results show that both white and minority groups in District 7 experienced an increase in excess commuting from 2006 to 2016, with the minority group in Nobles County showing a significantly higher rise. Analysis by industry reveals that excess commuting in the leisure and hospitality sector (including arts, entertainment, and food services) in Nobles County increased five-fold during this time, indicating a severe spatial mismatch between jobs and affordable housing. In contrast, manufacturing experienced a decline of 50%, possibly indicating better commuting efficiency or a loss of manufacturing jobs. These findings can help city and transportation planners conduct an in-depth analysis of rural-to-urban commuting patterns and develop potential solutions to improve rural transportation infrastructure and accessibility, such as promoting telecommuting and hybrid work options, expanding shuttle routes, and adding more on-demand transit services in rural areas. Full article
Show Figures

Figure 1

18 pages, 8682 KiB  
Article
Urban Carbon Metabolism Optimization Based on a Source–Sink–Flow Framework at the Functional Zone Scale
by Cui Wang, Liuchang Xu, Xingyu Xue and Xinyu Zheng
Land 2025, 14(8), 1600; https://doi.org/10.3390/land14081600 - 6 Aug 2025
Abstract
Carbon flow tracking and spatial pattern optimization at the scale of urban functional zones are key scientific challenges in achieving carbon neutrality. However, due to the complexity of carbon metabolism processes within urban functional zones, related studies remain limited. To address these scientific [...] Read more.
Carbon flow tracking and spatial pattern optimization at the scale of urban functional zones are key scientific challenges in achieving carbon neutrality. However, due to the complexity of carbon metabolism processes within urban functional zones, related studies remain limited. To address these scientific challenges, this study, based on the “source–sink–flow” ecosystem services framework, develops an integrated analytical approach at the scale of urban functional zones. The carbon balance is quantified using the CASA model in combination with multi-source data. A network model is employed to trace carbon flow pathways, identify critical nodes and interruption points, and optimize the urban spatial pattern through a low-carbon land use structure model. The research results indicate that the overall carbon balance in Hangzhou exhibits a spatial pattern of “deficit in the center and surplus in the periphery.” The main urban area shows a significant carbon deficit and relatively poor connectivity in the carbon flow network. Carbon sequestration services primarily flow from peripheral areas (such as Fuyang and Yuhang) with green spaces and agricultural functional zones toward high-emission residential–commercial and commercial–public functional zones in the central area. However, due to the interruption of multiple carbon flow paths, the overall carbon flow transmission capacity is significantly constrained. Through spatial optimization, some carbon deficit nodes were successfully converted into carbon surplus nodes, and disrupted carbon flow edges were repaired, particularly in the main urban area, where 369 carbon flow edges were restored, resulting in a significant improvement in the overall transmission efficiency of the carbon flow network. The carbon flow visualization and spatial optimization methods proposed in this paper provide a new perspective for urban carbon metabolism analysis and offer theoretical support for low-carbon city planning practices. Full article
(This article belongs to the Special Issue The Second Edition: Urban Planning Pathways to Carbon Neutrality)
Show Figures

Figure 1

26 pages, 2126 KiB  
Systematic Review
Interlinking Urban Sustainability, Circular Economy and Complexity: A Systematic Literature Review
by Walter Antonio Abujder Ochoa, Angela Gabriela Torrico Arce, Alfredo Iarozinski Neto, Mayara Regina Munaro, Oriana Palma Calabokis and Vladimir A. Ballesteros-Ballesteros
Sustainability 2025, 17(15), 7118; https://doi.org/10.3390/su17157118 - 6 Aug 2025
Abstract
Urban sustainability challenges demand integrated frameworks capable of addressing the dynamic, non-linear nature of cities. This study explores how the principles of the circular economy and complexity theory intersect to support systemic transformation in sustainable urban planning. Through a systematic literature review of [...] Read more.
Urban sustainability challenges demand integrated frameworks capable of addressing the dynamic, non-linear nature of cities. This study explores how the principles of the circular economy and complexity theory intersect to support systemic transformation in sustainable urban planning. Through a systematic literature review of 71 peer-reviewed articles published between 2015 and 2025, we analyze conceptual, methodological, and practical articulations across multiple thematic axes, including circular governance, urban metabolism, regenerative design, adaptive planning, digital integration, and environmental justice. Bibliometric and content analyses were conducted using Scopus metadata, VOSviewer for thematic clustering, and the StArt software (Version 3.4) to structure article selection. The findings reveal that circular economy provides practical tools for resource efficiency and regeneration, while complexity theory offers an adaptive framework to navigate uncertainty, emergent behaviors, and feedback dynamics. The synthesis suggests that their integration enables a more holistic and resilient approach to urban transformation. However, gaps remain in social inclusivity, long-term assessment, and the operationalization of complexity-informed planning. This study contributes to advancing a transdisciplinary agenda for circular and adaptive urban futures, offering insights for scholars, planners, and policymakers aiming to reconfigure cities within planetary boundaries. Full article
Show Figures

Figure 1

22 pages, 518 KiB  
Article
Staying or Leaving a Shrinking City: Migration Intentions of Creative Youth in Erzurum, Eastern Türkiye
by Defne Dursun and Doğan Dursun
Sustainability 2025, 17(15), 7109; https://doi.org/10.3390/su17157109 - 6 Aug 2025
Abstract
This study explores the migration intentions of university students—representing the potential creative class—in Erzurum, a medium-sized city in eastern Turkey experiencing shrinkage. Within the theoretical framework of shrinking cities, it investigates how economic, social, physical, and personal factors influence students’ post-graduation stay or [...] Read more.
This study explores the migration intentions of university students—representing the potential creative class—in Erzurum, a medium-sized city in eastern Turkey experiencing shrinkage. Within the theoretical framework of shrinking cities, it investigates how economic, social, physical, and personal factors influence students’ post-graduation stay or leave decisions. Survey data from 742 Architecture and Fine Arts students at Atatürk University were analyzed using factor analysis, logistic regression, and correlation to identify key migration drivers. Findings reveal that, in addition to economic concerns such as limited job opportunities and low income, personal development opportunities and social engagement also play a decisive role. In particular, the perception of limited chances for skill enhancement and the belief that Erzurum is not a good place to meet people emerged as the strongest predictors of migration intentions. These results suggest that members of the creative class are influenced not only by economic incentives but also by broader urban experiences related to self-growth and social connectivity. This study highlights spatial inequalities in access to cultural, educational, and social infrastructure, raising important questions about spatial justice in shrinking urban contexts. This paper contributes to the literature on shrinking cities by highlighting creative youth in mid-sized Global South cities. It suggests smart shrinkage strategies focused on creative sector development, improved quality of life, and inclusive planning to retain young talent and support sustainable urban revitalization. Full article
Show Figures

Graphical abstract

28 pages, 10144 KiB  
Article
Decoding the Spatial–Temporal Coupling Dynamics of Land Use Intensity and Balance in China’s Chengdu–Chongqing Economic Circle: A 1 km Grid-Based Analysis
by Zijia Yan, Chenxi Zhou, Ziyi Tang, Hanfei Wang and Hao Li
Land 2025, 14(8), 1597; https://doi.org/10.3390/land14081597 - 5 Aug 2025
Abstract
Amid China’s national strategic prioritization of the Chengdu–Chongqing Economic Circle and accelerated territorial spatial planning, this study deciphered the synergistic evolution of Land Use Intensity (LUI) and Balance Degree of Land Use Structure (BDLUS) during rapid urbanization. Leveraging 1 km grid units and [...] Read more.
Amid China’s national strategic prioritization of the Chengdu–Chongqing Economic Circle and accelerated territorial spatial planning, this study deciphered the synergistic evolution of Land Use Intensity (LUI) and Balance Degree of Land Use Structure (BDLUS) during rapid urbanization. Leveraging 1 km grid units and integrating emerging spatiotemporal hotspot analysis, BFAST, and geographic detectors, we systematically analyzed spatiotemporal patterns and drivers of LUI, BDLUS, and their Coupling Coordination Degree (CCD) from 2000 to 2022. Key findings: (1) LUI strongly correlated with economic growth, with core areas reaching high-intensity development (average > 2.96) versus ecologically constrained marginal zones (<2.42), marked by abrupt changes during 2011–2014; (2) BDLUS improvements covered 82.22% of the study area, driven by the Yangtze River Economic Belt strategy (21.96% hotspot concentration), yet structural imbalance persisted in transitional zones (18.81% cold spots); (3) CCD exhibited center-edge dichotomy, contrasting high-value cores (CCD > 0.68) with ecologically sensitive edges (9.80% cold spots), peaking in regulatory shifts around 2010; (4) terrain constraints and intensified human activities (the interaction effect between nighttime lighting and population density increased by 219.49% after 2020) jointly governed coupling mechanisms, with urbanization and industrial transition becoming dominant drivers. This research advances an “intensity–structure–coordination” framework and elucidates “dual-core resonance” dynamics, offering theoretical foundations for spatial optimization and ecological civilization. Full article
(This article belongs to the Special Issue Integration of Remote Sensing and GIS for Land Use Change Assessment)
Show Figures

Figure 1

36 pages, 21951 KiB  
Article
The Collective Dwelling of Cooperative Promotion in Caselas
by Vanda Pereira de Matos and Carlos Alberto Assunção Alho
Buildings 2025, 15(15), 2756; https://doi.org/10.3390/buildings15152756 - 5 Aug 2025
Abstract
To solve the present housing crisis, the Support for Access to Housing Program, in the context of PRR, mainly focuses on social housing to be built or on housing of social interest to be regenerated. To approach this problem, a research question was [...] Read more.
To solve the present housing crisis, the Support for Access to Housing Program, in the context of PRR, mainly focuses on social housing to be built or on housing of social interest to be regenerated. To approach this problem, a research question was raised: “What is the significance of the existing cooperative housing in solving the current housing crisis?” To analyze this issue, a multiple case study was adopted, comparing a collective dwelling of cooperative promotion at controlled costs in Caselas (1980s–1990s) with Expo Urbe (2000–2007) in Parque das Nações, a symbol of the new sustainable cooperative housing, which targets a population with a higher standard of living and thus is excluded from the PRR plan. These cases revealed the discrepancy created by the Cooperative Code of 1998 and its consequences for the urban regeneration of this heritage. They show that Caselas, built in a residential urban neighborhood, is strongly attached to a community, provides good social inclusion for vulnerable groups at more affordable prices, and it is eligible for urban regeneration and reuse (for renting or buying). However, the reuse of Caselcoop’s edifices cannot compromise their cultural and residential values or threaten the individual integrity. Full article
Show Figures

Figure 1

20 pages, 10605 KiB  
Article
Network Analysis of Outcome-Based Education Curriculum System: A Case Study of Environmental Design Programs in Medium-Sized Cities
by Yang Wang, Zixiao Zhan and Honglin Wang
Sustainability 2025, 17(15), 7091; https://doi.org/10.3390/su17157091 - 5 Aug 2025
Abstract
With deepening global higher education reforms, outcome-based education has emerged as the core paradigm for teaching model innovation. This study investigates the structural dependencies and teaching effectiveness of the Environmental Design curriculum at Hubei Engineering University in medium-sized cities, China, addressing challenges of [...] Read more.
With deepening global higher education reforms, outcome-based education has emerged as the core paradigm for teaching model innovation. This study investigates the structural dependencies and teaching effectiveness of the Environmental Design curriculum at Hubei Engineering University in medium-sized cities, China, addressing challenges of enrollment decline and market contraction critical for urban sustainability. Using network analysis, we construct curriculum support and contribution networks and course temporal networks to assess structural dependencies and teaching effectiveness, revealing structural patterns and optimizing the OBE-based Environmental Design curriculum to enhance educational quality and student competencies. Analysis reveals computer basic courses as knowledge transmission hubs, creating a course network with a distinct core–periphery structure. Technical course reforms significantly outperform theoretical course reforms in improving student performance metrics, such as higher average scores, better grade distributions, and reduced performance gaps, while innovative practice courses show peripheral isolation patterns, indicating limited connectivity with core curriculum modules, which reduces their educational impact. These findings provide empirical insights for curriculum optimization, supporting urban sustainable development through enhanced professional talent cultivation equipped to address environmental challenges like sustainable design practices and resource-efficient urban planning. Network analysis applications introduce innovative frameworks for curriculum reform strategies. Future research expansion through larger sample validation will support urban sustainable development goals and enhance professional talent cultivation outcomes. Full article
Show Figures

Figure 1

Back to TopTop