Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (665)

Search Parameters:
Keywords = urban drainage systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 6730 KiB  
Article
Decentralized Coupled Grey–Green Infrastructure for Resilient and Cost-Effective Stormwater Management in a Historic Chinese District
by Yongqi Liu, Ziheng Xiong, Mo Wang, Menghan Zhang, Rana Muhammad Adnan, Weicong Fu, Chuanhao Sun and Soon Keat Tan
Water 2025, 17(15), 2325; https://doi.org/10.3390/w17152325 - 5 Aug 2025
Viewed by 22
Abstract
Coupled grey and green infrastructure (CGGI) offers a promising pathway toward sustainable stormwater management in historic urban environments. This study compares CGGI and conventional grey infrastructure (GREI)-only strategies across four degrees of layout centralization (0%, 33.3%, 66.7%, and 100%) in the Quanzhou West [...] Read more.
Coupled grey and green infrastructure (CGGI) offers a promising pathway toward sustainable stormwater management in historic urban environments. This study compares CGGI and conventional grey infrastructure (GREI)-only strategies across four degrees of layout centralization (0%, 33.3%, 66.7%, and 100%) in the Quanzhou West Street Historic Reserve, China. Using a multi-objective optimization framework integrating SWMM simulations, life-cycle cost (LCC) modeling, and resilience metrics, we found that the decentralized CGGI layouts reduced the total LCC by up to 29.6% and required 60.7% less green infrastructure (GI) area than centralized schemes. Under nine extreme rainfall scenarios, the GREI-only systems showed slightly higher technical resilience (Tech-R: max 99.6%) than CGGI (Tech-R: max 99.1%). However, the CGGI systems outperformed GREI in operational resilience (Oper-R), reducing overflow volume by up to 22.6% under 50% network failure. These findings demonstrate that decentralized CGGI provides a more resilient and cost-effective drainage solution, well-suited for heritage districts with spatial and cultural constraints. Full article
Show Figures

Figure 1

20 pages, 5967 KiB  
Article
Inundation Modeling and Bottleneck Identification of Pipe–River Systems in a Highly Urbanized Area
by Jie Chen, Fangze Shang, Hao Fu, Yange Yu, Hantao Wang, Huapeng Qin and Yang Ping
Sustainability 2025, 17(15), 7065; https://doi.org/10.3390/su17157065 - 4 Aug 2025
Viewed by 114
Abstract
The compound effects of extreme climate change and intensive urban development have led to more frequent urban inundation, highlighting the urgent need for the fine-scale evaluation of stormwater drainage system performance in high-density urban built-up areas. A typical basin, located in Shenzhen, was [...] Read more.
The compound effects of extreme climate change and intensive urban development have led to more frequent urban inundation, highlighting the urgent need for the fine-scale evaluation of stormwater drainage system performance in high-density urban built-up areas. A typical basin, located in Shenzhen, was selected, and a pipe–river coupled SWMM was developed and calibrated via a genetic algorithm to simulate the storm drainage system. Design storm scenario analyses revealed that regional inundation occurred in the central area of the basin and the enclosed culvert sections of the midstream river, even under a 0.5-year recurrence period, while the downstream open river channels maintained a substantial drainage capacity under a 200-year rainfall event. To systematically identify bottleneck zones, two novel metrics, namely, the node cumulative inundation volume and the conduit cumulative inundation length, were proposed to quantify the local inundation severity and spatial interactions across the drainage network. Two critical bottleneck zones were selected, and strategic improvement via the cross-sectional expansion of pipes and river culverts significantly enhanced the drainage efficiency. This study provides a practical case study and transferable technical framework for integrating hydraulic modeling, spatial analytics, and targeted infrastructure upgrades to enhance the resilience of drainage systems in high-density urban environments, offering an actionable framework for sustainable urban stormwater drainage system management. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

16 pages, 8879 KiB  
Article
Inland Flood Analysis in Irrigated Agricultural Fields Including Drainage Systems and Pump Stations
by Inhyeok Song, Heesung Lim and Hyunuk An
Water 2025, 17(15), 2299; https://doi.org/10.3390/w17152299 - 2 Aug 2025
Viewed by 148
Abstract
Effective flood management in agricultural fields has become increasingly important due to the rising frequency and intensity of rainfall events driven by climate change. This study investigates the applicability of urban flood analysis models—SWMM (1D) and K-Flood (2D)—to irrigated agricultural fields with artificial [...] Read more.
Effective flood management in agricultural fields has become increasingly important due to the rising frequency and intensity of rainfall events driven by climate change. This study investigates the applicability of urban flood analysis models—SWMM (1D) and K-Flood (2D)—to irrigated agricultural fields with artificial drainage systems. A case study was conducted in a rural area near the Sindae drainage station in Cheongju, South Korea, using rainfall data from an extreme weather event in 2017. The models simulated inland flooding and were validated against flood trace maps provided by the Ministry of the Interior and Safety (MOIS). Receiver Operating Characteristic (ROC) analysis showed a true positive rate of 0.565, a false positive rate of 0.21, and an overall accuracy of 0.731, indicating reasonable agreement with observed inundation. Scenario analyses were also conducted to assess the effectiveness of three improvement strategies: reducing the Manning coefficient, increasing pump station capacity, and widening drainage channels. Among them, increasing pump capacity most effectively reduced flood volume, while channel widening had the greatest impact on reducing flood extent. These findings demonstrate the potential of urban flood models for application in agricultural contexts and support data-driven planning for rural flood mitigation. Full article
Show Figures

Figure 1

26 pages, 3030 KiB  
Article
Predicting Landslide Susceptibility Using Cost Function in Low-Relief Areas: A Case Study of the Urban Municipality of Attecoube (Abidjan, Ivory Coast)
by Frédéric Lorng Gnagne, Serge Schmitz, Hélène Boyossoro Kouadio, Aurélia Hubert-Ferrari, Jean Biémi and Alain Demoulin
Earth 2025, 6(3), 84; https://doi.org/10.3390/earth6030084 - 1 Aug 2025
Viewed by 241
Abstract
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and [...] Read more.
Landslides are among the most hazardous natural phenomena affecting Greater Abidjan, causing significant economic and social damage. Strategic planning supported by geographic information systems (GIS) can help mitigate potential losses and enhance disaster resilience. This study evaluates landslide susceptibility using logistic regression and frequency ratio models. The analysis is based on a dataset comprising 54 mapped landslide scarps collected from June 2015 to July 2023, along with 16 thematic predictor variables, including altitude, slope, aspect, profile curvature, plan curvature, drainage area, distance to the drainage network, normalized difference vegetation index (NDVI), and an urban-related layer. A high-resolution (5-m) digital elevation model (DEM), derived from multiple data sources, supports the spatial analysis. The landslide inventory was randomly divided into two subsets: 80% for model calibration and 20% for validation. After optimization and statistical testing, the selected thematic layers were integrated to produce a susceptibility map. The results indicate that 6.3% (0.7 km2) of the study area is classified as very highly susceptible. The proportion of the sample (61.2%) in this class had a frequency ratio estimated to be 20.2. Among the predictive indicators, altitude, slope, SE, S, NW, and NDVI were found to have a positive impact on landslide occurrence. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), demonstrating strong predictive capability. These findings can support informed land-use planning and risk reduction strategies in urban areas. Furthermore, the prediction model should be communicated to and understood by local authorities to facilitate disaster management. The cost function was adopted as a novel approach to delineate hazardous zones. Considering the landslide inventory period, the increasing hazard due to climate change, and the intensification of human activities, a reasoned choice of sample size was made. This informed decision enabled the production of an updated prediction map. Optimal thresholds were then derived to classify areas into high- and low-susceptibility categories. The prediction map will be useful to planners in helping them make decisions and implement protective measures. Full article
Show Figures

Figure 1

23 pages, 2129 KiB  
Article
GIS-Based Flood Susceptibility Mapping Using AHP in the Urban Amazon: A Case Study of Ananindeua, Brazil
by Lianne Pimenta, Lia Duarte, Ana Cláudia Teodoro, Norma Beltrão, Dênis Gomes and Renata Oliveira
Land 2025, 14(8), 1543; https://doi.org/10.3390/land14081543 - 27 Jul 2025
Viewed by 448
Abstract
Flood susceptibility mapping is essential for urban planning and disaster risk management, especially in rapidly urbanizing areas exposed to extreme rainfall events. This study applies an integrated approach combining Geographic Information Systems (GIS), map algebra, and the Analytic Hierarchy Process (AHP) to assess [...] Read more.
Flood susceptibility mapping is essential for urban planning and disaster risk management, especially in rapidly urbanizing areas exposed to extreme rainfall events. This study applies an integrated approach combining Geographic Information Systems (GIS), map algebra, and the Analytic Hierarchy Process (AHP) to assess flood-prone zones in Ananindeua, Pará, Brazil. Five geoenvironmental criteria—rainfall, land use and land cover (LULC), slope, soil type, and drainage density—were selected and weighted using AHP to generate a composite flood susceptibility index. The results identified rainfall and slope as the most influential criteria, with both contributing to over 184 km2 of high-susceptibility area. Spatial patterns showed that flood-prone zones are concentrated in flat urban areas with high drainage density and extensive impermeable surfaces. CHIRPS rainfall data were validated using Pearson’s correlation (r = 0.83) and the Nash–Sutcliffe efficiency (NS = 0.97), confirming the reliability of the precipitation input. The final susceptibility map, categorized into low, medium, and high classes, was validated using flood events derived from Sentinel-1 SAR data (2019–2025), of which 97.2% occurred in medium- or high-susceptibility zones. These findings demonstrate the model’s strong predictive performance and highlight the role of unplanned urban expansion, land cover changes, and inadequate drainage in increasing flood risk. Although specific to Ananindeua, the proposed methodology can be adapted to other urban areas in Brazil, provided local conditions and data availability are considered. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

17 pages, 2008 KiB  
Article
The Comprehensive Benefit Evaluation of Urban Drainage Culverts and Pipes Based on Combination Weighting
by Weimin Geng and Zhixuan Cheng
Water 2025, 17(15), 2233; https://doi.org/10.3390/w17152233 - 26 Jul 2025
Viewed by 299
Abstract
The urban drainage system is a significant lifeline for ensuring the safe operation of a city. In recent years, defects and diseases in drainage pipes and their ancillary facilities have occurred frequently. Aiming to provide decision-makers with comprehensive benefit evaluation support, we chose [...] Read more.
The urban drainage system is a significant lifeline for ensuring the safe operation of a city. In recent years, defects and diseases in drainage pipes and their ancillary facilities have occurred frequently. Aiming to provide decision-makers with comprehensive benefit evaluation support, we chose to evaluate the security, environmental, social, and economic benefits of urban drainage culverts and pipes (UDCPs). An index system of 14 first-level indicators in four dimensions was established, and the indicators contain 28 influencing factors. The index weight was obtained by combining the analytical hierarchy process and entropy weight method, and the weights assigned to the security, environmental, social, and economic benefits were 0.448, 0.222, 0.202, and 0.128, respectively. The evaluation system was developed on the basis of a geographic information system (GIS), and the topological analysis of the GIS was applied in the calculation. To process the questionnaire results, this study adopted the automatic questionnaire analysis and scoring method combining natural language processing and optical character recognition technology. The method was applied in the study area in southern China, which contains 9 catchment areas and 1356 pipes. The results show that about 5% of the pipelines need to be included in the renewal plan. For UDCP renewal, the findings provide a decision-making tool of the comprehensive analysis for the selection of engineering technologies and the evaluation of the implementation effects. Full article
(This article belongs to the Special Issue Urban Drainage Systems and Stormwater Management)
Show Figures

Figure 1

13 pages, 6786 KiB  
Article
Hydropower Microgeneration in Detention Basins: A Case Study of Santa Lúcia Basin in Brazil
by Azuri Sofia Gally Koroll, Rodrigo Perdigão Gomes Bezerra, André Ferreira Rodrigues, Bruno Melo Brentan, Joaquín Izquierdo and Gustavo Meirelles
Water 2025, 17(15), 2219; https://doi.org/10.3390/w17152219 - 24 Jul 2025
Viewed by 448
Abstract
Flood control infrastructure is essential for the development of cities and the population’s well-being. The goal is to protect human and economic resources by reducing the inundation area and controlling the flood level and peak discharges. Detention basins can do this by storing [...] Read more.
Flood control infrastructure is essential for the development of cities and the population’s well-being. The goal is to protect human and economic resources by reducing the inundation area and controlling the flood level and peak discharges. Detention basins can do this by storing a large volume of water to be released after the peak discharge. By doing this, a large amount of energy is stored, which can be recovered via micro-hydropower. In addition, as the release flow is controlled and almost constant, Pumps as Turbines (PAT) could be a feasible and economic option in these cases. Thus, this study investigates the feasibility of micro-hydropower (MHP) in urban detention basins, using the Santa Lúcia detention basin in Belo Horizonte as a case study. The methodology involved hydrological modeling, hydraulic analysis, and economic and environmental assessment. The results demonstrated that PAT selection has a crucial role in the feasibility of the MHP, and exploiting rainfall with lower intensities but higher frequencies is more attractive. Using multiple PATs with different operating points also showed promising results in improving energy production. In addition to the economic benefits, the MHP in the detention basin produces minimal environmental impact and, as it exploits a wasted energy source, it also reduces the carbon footprint in the urban water cycle. Full article
(This article belongs to the Special Issue Research Status of Operation and Management of Hydropower Station)
Show Figures

Figure 1

24 pages, 3066 KiB  
Article
Urban Flood Susceptibility Mapping Using GIS and Analytical Hierarchy Process: Case of City of Uvira, Democratic Republic of Congo
by Isaac Bishikwabo, Hwaba Mambo, John Kowa Kamanda, Chérifa Abdelbaki, Modester Alfred Nanyunga and Navneet Kumar
GeoHazards 2025, 6(3), 38; https://doi.org/10.3390/geohazards6030038 - 21 Jul 2025
Viewed by 399
Abstract
The city of Uvira, located in the eastern Democratic Republic of Congo (DRC), is increasingly experiencing flood events with devastating impacts on human life, infrastructure, and livelihoods. This study evaluates flood susceptibility in Uvira using Geographic Information Systems (GISs), and an Analytical Hierarchy [...] Read more.
The city of Uvira, located in the eastern Democratic Republic of Congo (DRC), is increasingly experiencing flood events with devastating impacts on human life, infrastructure, and livelihoods. This study evaluates flood susceptibility in Uvira using Geographic Information Systems (GISs), and an Analytical Hierarchy Process (AHP)-based Multi-Criteria Decision Making approach. It integrates eight factors contributing to flood occurrence: distance from water bodies, elevation, slope, rainfall intensity, drainage density, soil type, topographic wetness index, and land use/land cover. The results indicate that proximity to water bodies, drainage density and slope are the most influential factors driving flood susceptibility in Uvira. Approximately 87.3% of the city’s land area is classified as having high to very high flood susceptibility, with the most affected zones concentrated along major rivers and the shoreline of Lake Tanganyika. The reliability of the AHP-derived weights is validated by a consistency ratio of 0.008, which falls below the acceptable threshold of 0.1. This research provides valuable insights to support urban planning and inform flood management strategies. Full article
Show Figures

Figure 1

16 pages, 1889 KiB  
Article
Experimental Evaluation of the Sustainable Performance of Filtering Geotextiles in Green Roof Systems: Tensile Properties and Surface Morphology After Long-Term Use
by Olga Szlachetka, Joanna Witkowska-Dobrev, Anna Baryła and Marek Dohojda
Sustainability 2025, 17(14), 6242; https://doi.org/10.3390/su17146242 - 8 Jul 2025
Viewed by 328
Abstract
Green roofs are increasingly being adopted as sustainable, nature-based solutions for managing urban stormwater, mitigating the urban heat island effect, and saving energy in buildings. However, the long-term performance of their individual components—particularly filter geotextiles—remains understudied, despite their critical role in maintaining system [...] Read more.
Green roofs are increasingly being adopted as sustainable, nature-based solutions for managing urban stormwater, mitigating the urban heat island effect, and saving energy in buildings. However, the long-term performance of their individual components—particularly filter geotextiles—remains understudied, despite their critical role in maintaining system functionality. The filter layer, responsible for preventing clogging of the drainage layer with fine substrate particles, directly affects the hydrological performance and service life of green roofs. While most existing studies focus on the initial material properties, there is a clear gap in understanding how geotextile filters behave after prolonged exposure to real-world environmental conditions. This study addresses this gap by assessing the mechanical and structural integrity of geotextile filters after five years of use in both extensive and intensive green roof systems. By analyzing changes in surface morphology, microstructure, and porosity through tensile strength tests, digital imaging, and scanning electron microscopy, this research offers new insights into the long-term performance of geotextiles. Results showed significant retention of tensile strength, particularly in the machine direction (MD), and a 56% reduction in porosity, which may affect filtration efficiency. Although material degradation occurs, some geotextiles retain their structural integrity over time, highlighting their potential for long-term use in green infrastructure applications. This research emphasizes the importance of material selection, long-term monitoring, and standardized evaluation techniques to ensure the ecological and functional resilience of green roofs. Furthermore, the findings contribute to advancing knowledge on the durability and life-cycle performance of filter materials, promoting sustainability and longevity in urban green infrastructure. Full article
Show Figures

Figure 1

27 pages, 21821 KiB  
Article
A Methodology to Assess the Effectiveness of SUDSs Under Climate Change Scenarios at Urban Scale: Application to Bari (Italy)
by Anna Pia Monachese, Riccardo Samuele Vorrasio, María Teresa Gómez-Villarino and Sergio Zubelzu
Appl. Sci. 2025, 15(13), 7400; https://doi.org/10.3390/app15137400 - 1 Jul 2025
Viewed by 469
Abstract
The effects of climate change and urbanisation, such as more intense rainfall and changing land use patterns, are putting increasing pressure on urban drainage systems. This study proposes a comprehensive methodology for evaluating the effectiveness of sustainable urban drainage systems (SUDSs) in mitigating [...] Read more.
The effects of climate change and urbanisation, such as more intense rainfall and changing land use patterns, are putting increasing pressure on urban drainage systems. This study proposes a comprehensive methodology for evaluating the effectiveness of sustainable urban drainage systems (SUDSs) in mitigating flooding and managing stormwater in both current and future scenarios. The approach integrates geospatial data, including digital elevation models (DEMs) and land use information, to delineate catchments and characterise hydrological parameters. Historical rainfall records and hydrological modelling were employed to define two baseline storm events: an extreme storm involving 422 mm of rainfall over 2 h, and an average storm involving 2.84 mm of rainfall over 1 h and 18 min. Future scenarios were developed by updating these baseline events using annual rates of change in maximum and average precipitation derived from climate projections between 2025 and 2100. The analysis incorporates seven CMIP6 climate scenarios: SSP1-1.9, SSP1-2.6, SSP4-3.4, SSP4-2.5, SSP4-6.0, SSP3-7.0, and SSP5-8.5. A stochastic simulation of 1000 storms per year was carried out using a custom-built conceptual hydrological model based on CN and developed in Python, which reflects interannual variability. The results show that extreme storm volumes could increase by up to seven times and average storm volumes by up to two and a half times. Additionally, discharge peaks could exceed baseline values by up to 20% in some years, suggesting an increased occurrence of extreme runoff events. The methodology assesses SUDS performance by comparing runoff and hydrological responses between baseline and future estimates. This framework enables vulnerabilities and adaptation needs to be identified, ensuring the long-term effectiveness of SUDSs in managing urban flood risk. Addressing uncertainties in climate and land use projections emphasises the importance of integrating SUDS assessments into wider urban resilience strategies. Full article
(This article belongs to the Special Issue Sustainable Urban Green Infrastructure and Its Effects)
Show Figures

Figure 1

19 pages, 6342 KiB  
Article
Innovative Use of UHPC and Topology Optimization in Permeable Interlocking Pavers: Advancing Sustainable Pavement Solutions
by Fernanda Gadler, José Augusto Ferreira Sales de Mesquita, Francisco Helio Alencar Oliveira, Liedi Legi Bariani Bernucci, Rafael Giuliano Pileggi, Emilio Carlos Nelli Silva and Diego Silva Prado
Sustainability 2025, 17(13), 6039; https://doi.org/10.3390/su17136039 - 1 Jul 2025
Viewed by 402
Abstract
The rapid expansion of urban areas has increased the prevalence of impermeable surfaces, intensifying flooding risks by disrupting natural water infiltration. Permeable pavements have emerged as a sustainable alternative, capable of reducing stormwater runoff, improving surface friction, and mitigating urban heat island effects. [...] Read more.
The rapid expansion of urban areas has increased the prevalence of impermeable surfaces, intensifying flooding risks by disrupting natural water infiltration. Permeable pavements have emerged as a sustainable alternative, capable of reducing stormwater runoff, improving surface friction, and mitigating urban heat island effects. Nevertheless, their broader implementation is often hindered by issues such as clogging and limited mechanical strength resulting from high porosity. This study examines the design of interlocking permeable blocks utilizing ultra-high-performance concrete (UHPC) to strike a balance between enhanced drainage capacity and high structural performance. A topology optimization (TO) strategy was applied to numerically model the ideal block geometry, incorporating 105 drainage channels with a diameter of 6 mm—chosen to ensure manufacturability and structural integrity. The UHPC formulation was developed using particle packing optimization with ordinary Portland cement (OPC), silica fume, and limestone filler to reduce binder content while achieving superior strength and workability, guided by rheological assessments. Experimental tests revealed that the perforated UHPC blocks reached compressive strengths of 87.8 MPa at 7 days and 101.0 MPa at 28 days, whereas the solid UHPC blocks achieved compressive strengths of 125.8 MPa and 146.2 MPa, respectively. In contrast, commercial permeable concrete blocks reached only 28.9 MPa at 28 days. Despite a reduction of approximately 30.9% in strength due to perforations, the UHPC-105holes blocks still far exceed the 41 MPa threshold required for certain structural applications. These results highlight the mechanical superiority of the UHPC blocks and confirm their viability for structural use even with enhanced permeability features. The present research emphasizes mechanical and structural performance, while future work will address hydraulic conductivity and anticlogging behavior. Overall, the findings support the use of topology-optimized UHPC permeable blocks as a resilient solution for sustainable urban drainage systems, combining durability, strength, and environmental performance. Full article
(This article belongs to the Special Issue Green Infrastructure and Sustainable Stormwater Management)
Show Figures

Figure 1

16 pages, 7027 KiB  
Article
Quantitative Assessment of Seasonal and Land-Use Impacts on Coastal Urban Sewage Systems with Seawater Intrusion Vulnerability Analysis
by Yanhong Ge, Jiachong Lin, Qidong Yin, Sheng Huang, Yingchao Lin and Kai He
Water 2025, 17(13), 1939; https://doi.org/10.3390/w17131939 - 28 Jun 2025
Viewed by 352
Abstract
Based on the sewage pipe network system in the service area of Qianshan-Gongbei Plant in Zhuhai City, the characteristics of water quality and quantity were analyzed, and the common problems were diagnosed. Through the establishment of a hydraulic-water quality model, the flow state [...] Read more.
Based on the sewage pipe network system in the service area of Qianshan-Gongbei Plant in Zhuhai City, the characteristics of water quality and quantity were analyzed, and the common problems were diagnosed. Through the establishment of a hydraulic-water quality model, the flow state of sewage in the pipe network is simulated, and the actual data is checked. It is found that there are significant differences in the quantity and quality of sewage pipe network systems in different seasons and land use types, and there is an obvious seawater backflow phenomenon in coastal areas. To solve these problems, this paper puts forward a series of optimization suggestions to improve the operation efficiency of sewage treatment plants and the reliability of urban drainage systems. Full article
Show Figures

Figure 1

16 pages, 1563 KiB  
Article
Hydrological Benefits of Green Roof Retrofitting Policies: A Case Study of an Urban Watershed in Brazil
by Thiago Masaharu Osawa, Fábio Ferreira Nogueira, Stephanie Caroline Machado Gonzaga, Fernando Garcia Silva, Sabrina Domingues Miranda, Brenda Chaves Coelho Leite and José Rodolfo Scarati Martins
Water 2025, 17(13), 1936; https://doi.org/10.3390/w17131936 - 28 Jun 2025
Viewed by 422
Abstract
Green roofs (GRs) are emerging as effective tools for mitigating urban runoff, particularly in cities facing challenges related to increased impervious surfaces and flooding risks. This study evaluates the potential hydrological performance of GR retrofitting in São José dos Campos, Brazil, based on [...] Read more.
Green roofs (GRs) are emerging as effective tools for mitigating urban runoff, particularly in cities facing challenges related to increased impervious surfaces and flooding risks. This study evaluates the potential hydrological performance of GR retrofitting in São José dos Campos, Brazil, based on municipal legislation, focusing on the effects of reducing the Effective Impervious Area (EIA) in urban watersheds. Using a range of projected EIA reduction scenarios (Mandatory, Incentivized, and Ideal), this study compares key hydrological indicators such as peak flow attenuation, runoff volume reduction, and hydrograph delay during rainfall events with different return periods. The results show that retrofitting with GRs significantly attenuates peak flows and delays runoff, with the ‘Ideal’ scenario (EIA = 16%) achieving peak flow reductions of up to 41% and runoff volume reductions of 35%. However, the effectiveness of GRs diminishes for high-intensity rainfall events, suggesting that GRs are most effective for frequent, low-intensity storms. These findings demonstrate the potential of GRs in reducing flooding risks in urban environments, highlighting the importance of integrating GRs into broader sustainable drainage systems. This study further emphasizes that while financial support is crucial for promoting GR adoption, it alone is not sufficient. Policies should be complemented by educational efforts and urban regulatory measures to ensure widespread adoption and long-term impact. This research provides urban planners and stakeholders with evidence to enhance urban resilience, sustainability, and effective flood risk management. Full article
Show Figures

Figure 1

21 pages, 4634 KiB  
Article
Incorporating Uncertainty and Failure Probability in the Design of Urban Stormwater Channels for Resilient Cities
by Stefany Anaya-Pallares, Humberto Avila-Rangel, Oscar E. Coronado-Hernández, Augusto H. Sisa-Camargo and Modesto Pérez-Sánchez
Water 2025, 17(13), 1918; https://doi.org/10.3390/w17131918 - 27 Jun 2025
Viewed by 319
Abstract
The conventional practice in the design of storm drainage systems is based on statistically stationary load and resistance conditions that remain invariant over time. However, uncertainties in the variables affect the design accuracy and the satisfactory performance of these hydrosystems during their operation [...] Read more.
The conventional practice in the design of storm drainage systems is based on statistically stationary load and resistance conditions that remain invariant over time. However, uncertainties in the variables affect the design accuracy and the satisfactory performance of these hydrosystems during their operation and service. To overcome this limitation, a design methodology for a storm drainage channel was proposed using a probabilistic framework that incorporates uncertainty analysis of random variables and estimates the system’s probability of failure in terms of design depth and maximum allowable velocity. This methodology employs the Monte Carlo simulation technique and offers an alternative design and analysis approach to strengthen the conventional sizing method for drainage channels in urban watersheds. Based on uncertainty criteria associated with hydraulic design, operation, and prospective changes in the watershed and the channel, appropriate dimensions were estimated regarding design depth and freeboard. The results of this study demonstrate that the annual probability of failure of a channel, when considering uncertainty, is significantly higher than the yearly exceedance probability associated with the hydrological design return period event. Therefore, the proposed methodology is appropriate for estimating the system’s capacity and potential failure risk. This methodology may also be applied to sizing other stormwater drainage structures. Full article
Show Figures

Figure 1

24 pages, 3624 KiB  
Article
Assessment of Urban Flood Resilience Under a Novel Framework and Method: A Case Study of the Taihu Lake Basin
by Kaidong Lu, Yong Liu, Yintang Wang, Tingting Cui, Jiaxing Zhong, Zijiang Zhou and Xiaoping Gao
Land 2025, 14(7), 1328; https://doi.org/10.3390/land14071328 - 22 Jun 2025
Viewed by 576
Abstract
Urban flooding poses escalating threats to socioeconomic stability and human safety, exacerbated by urbanization and climate change. While urban flood resilience (UFR) has emerged as a critical framework for flood risk management, existing studies often overlook the systemic integration of post-disaster recovery capacity [...] Read more.
Urban flooding poses escalating threats to socioeconomic stability and human safety, exacerbated by urbanization and climate change. While urban flood resilience (UFR) has emerged as a critical framework for flood risk management, existing studies often overlook the systemic integration of post-disaster recovery capacity and multidimensional interactions in UFR assessment. This study develops a novel hazard–vulnerability–exposure–defense capacity–recovery capacity (HVEDR) framework to address research gaps. We employ a hybrid game theory combined weight method (GTCWM)-TOPSIS approach to evaluate UFR in China’s Taihu Lake Basin (TLB), a region highly vulnerable to monsoon- and typhoon-driven floods. Spanning 1999–2020, the analysis reveals three key insights: (1) weight allocation via GTCWM identifies defense capacity (0.224) and hazard (0.224) as dominant dimensions, with drainage pipeline density (0.091), flood-season precipitation (0.087), and medical capacity (0.085) ranking as the top three weighted indicators; (2) temporal trends show an overall upward trajectory in UFR, interrupted by a sharp decline in 2011 due to extreme hazard events, with Shanghai and Hangzhou exhibiting the highest UFR levels, contrasting Zhenjiang’s persistently low UFR; (3) spatial patterns reveal stronger UFR in southern and eastern areas and weaker resilience in northern and western regions. The proposed HVEDR framework and findings provide valuable insights for UFR assessments in other flood-prone basins and regions globally. Full article
(This article belongs to the Special Issue Building Resilient and Sustainable Urban Futures)
Show Figures

Figure 1

Back to TopTop