A Methodology to Assess the Effectiveness of SUDSs Under Climate Change Scenarios at Urban Scale: Application to Bari (Italy)
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification and Characterisation of Land Use and Catchment Areas
2.2. Precipitation Data
2.3. Hydrology Modelling
- E is the runoff depth (in mm);
- P is the precipitation depth (in mm);
- Ia is the initial abstraction (the portion of precipitation that does not contribute to direct runoff, including interception, infiltration, and evaporation);
- S is the potential maximum retention after runoff starts (in mm);
- CN is the curve number, which is a function of land use, hydrological soil group, and cover type.
2.4. Case Study
3. Results
3.1. Catchment Characterisation
3.2. Preprocessing of the Weather Information
3.3. Results of Hydrological Modelling
4. Discussion
- Empirical models, such as the rational method, the Horton infiltration model [73], the curve number method [74], the Green–Ampt method [75], and ACRU [76], rely on simplified relationships derived from observed data. While these models are easy to implement and interpret, they may lack robustness when transferred to catchments with varying physical characteristics.
- Physically based models, including SHE [77], SWAT [78], and IHDM [79], attempt to simulate hydrological processes through governing equations of mass and momentum conservation. These models allow for fine-resolution process representation, but demand extensive, high-quality input data (e.g., soil hydraulic properties and detailed DEMs) and significant computational resources, which often limits their applicability in small urban catchments or regions with limited data [80].
- Conceptual models, such as the HBV model [81], the GR4J model [82], and the Stanford watershed model [83], conceptualise catchments using simplified storage and flow components. They balance physical realism and operational simplicity, but generally require careful calibration and may be sensitive to input uncertainty.
- Data-driven models, particularly those using machine learning (ML) or deep learning (DL) techniques, are being used more and more in hydrology [84]. These models can learn complex nonlinear relationships from data without requiring explicit physical equations. However, their reliance on long-term historical data and limited interpretability restrict their use in regulatory and planning contexts [85].
5. Conclusions
- In practice: Prioritising the widespread implementation of SUDSs at the catchment scale, especially in areas undergoing intense urban development.
- Policy: Updating regulatory frameworks to assess SUDS performance based on their ability to restore natural hydrological balances, not just reduce peak flows.
- Research: Future land use changes must be integrated and the demand for SUDSs estimated to support decision-making.
- Resilience: Adopting scenario-based methodologies to improve long-term planning in the face of climate uncertainty, such as the one proposed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, M.; Lin, J.; Dai, J.; Zhang, J. Assessing future flood risks in megacity suburbs under shared socioeconomic pathways (SSPs) scenarios: A case study of Beijing. Urban Clim. 2024, 58, 102208. [Google Scholar] [CrossRef]
- Chen, S.S.; Tsang, D.C.; He, M.; Sun, Y.; Lau, L.S.; Leung, R.W.; Lau, E.S.; Hou, D.; Liu, A.; Mohanty, S. Designing sustainable drainage systems in subtropical cities: Challenges and opportunities. J. Clean. Prod. 2021, 280, 124418. [Google Scholar] [CrossRef]
- Kõiv-Vainik, M.; Kill, K.; Espenberg, M.; Uuemaa, E.; Teemusk, A.; Maddison, M.; Palta, M.M.; Török, L.; Mander, Ü.; Scholz, M.; et al. Urban stormwater retention capacity of nature-based solutions at different climatic conditions. Nat.-Based Solut. 2022, 2, 100038. [Google Scholar] [CrossRef]
- Ferrans, P.; Torres, M.N.; Temprano, J.; Sánchez, J.P.R. Sustainable Urban Drainage System (SUDS) modeling supporting decision-making: A systematic quantitative review. Sci. Total Environ. 2022, 806, 150447. [Google Scholar] [CrossRef]
- Monteiro, C.M.; Mendes, A.M.; Santos, C. Green roofs as an urban NbS strategy for rainwater retention: Influencing factors—A review. Water 2023, 15, 2787. [Google Scholar] [CrossRef]
- Monachese, A.P.; Gómez-Villarino, M.T.; López-Santiago, J.; Sanz, E.; Almeida-Ñauñay, A.F.; Zubelzu, S. Challenges and Innovations in Urban Drainage Systems: Sustainable Drainage Systems Focus. Water 2024, 17, 76. [Google Scholar] [CrossRef]
- Alsubih, M.; Arthur, S.; Wright, G.; Allen, D. Experimental study on the hydrological performance of a permeable pavement. Urban Water J. 2017, 14, 427–434. [Google Scholar] [CrossRef]
- Rodríguez-Rojas, M.I.; Huertas-Fernández, F.; Moreno, B.; Martínez, G.; Grindlay, A.L. A study of the application of permeable pavements as a sustainable technique for the mitigation of soil sealing in cities: A case study in the south of Spain. J. Environ. Manag. 2018, 205, 151–162. [Google Scholar] [CrossRef]
- Tota-Maharaj, K.; Hills, C.D.; Staddon, C.; Monrose, J. Enhancing the ecological ability of Permeable Pavements Systems (PPS) as urban stormwater Green infrastructure. J. Assoc. Prof. Eng. Trinidad Tobago 2024, 52, 4–16. [Google Scholar]
- Huang, P.; Zhang, K.; Chui, T.F.M. Hydrologic performance of permeable pavements under extreme and regular rainfall conditions. J. Hydrol. 2025, 652, 132653. [Google Scholar] [CrossRef]
- Cipolla, S.S.; Maglionico, M.; Stojkov, I. A long-term hydrological modelling of an extensive green roof by means of SWMM. Ecol. Eng. 2016, 95, 876–887. [Google Scholar] [CrossRef]
- Andrés-Doménech, I.; Perales-Momparler, S.; Morales-Torres, A.; Escuder-Bueno, I. Hydrological performance of green roofs at building and city scales under Mediterranean conditions. Sustainability 2018, 10, 3105. [Google Scholar] [CrossRef]
- Alim, M.A.; Rahman, A.; Tao, Z.; Garner, B.; Griffith, R.; Liebman, M. Green roof as an effective tool for sustainable urban development: An Australian perspective in relation to stormwater and building energy management. J. Clean. Prod. 2022, 362, 132561. [Google Scholar] [CrossRef]
- Gullotta, A.; Musmeci, F.; Cancelliere, A.; Campisano, A. Comparing potential for storm water control of different full-scale blue roofs by field experiments. Urban Water J. 2025, 22, 200–209. [Google Scholar] [CrossRef]
- Orsi, E.; Crispino, G.; Iervolino, M.; Gisonni, C. Hydraulic and Hydrologic Invariance: Effectiveness of Green Roofs and Permeable Pavements. J. Irrig. Drain. Eng. 2025, 151, 04025001. [Google Scholar] [CrossRef]
- McLeod, M.K.; Mickovski, S.B. The use of end-of-line SUDS for residential development. J. Sustain. Res. 2024, 6, e240031. [Google Scholar]
- Lhamidi, K.; El Khattabi, J.; Nguyen, H.D.; Aljer, A. Hydrological Performance Assessment of Low-Impact Development Practices: A Vegetated Swale Case Study. Water 2024, 16, 2018. [Google Scholar] [CrossRef]
- Wang, M.; Zhuang, J.A.; Sun, C.; Wang, L.; Zhang, M.; Fan, C.; Li, J. The Application of Rain Gardens in Urban Environments: A Bibliometric Review. Land 2024, 13, 1702. [Google Scholar] [CrossRef]
- Tobio, J.A.S.; Maniquiz-Redillas, M.C.; Kim, L.H. Physical design optimization of an urban runoff treatment system using Stormwater Management Model (SWMM). Water Sci. Technol. 2015, 72, 1747–1753. [Google Scholar] [CrossRef]
- Baek, S.-S.; Ligaray, M.; Pyo, J.; Park, J.-P.; Kang, J.-H.; Pachepsky, Y.; Chun, J.A.; Cho, K.H. A novel water quality module of the SWMM model for assessing low impact development (LID) in urban watersheds. J. Hydrol. 2020, 586, 124886. [Google Scholar] [CrossRef]
- Kourtis, I.M.; Bellos, V.; Kopsiaftis, G.; Psiloglou, B.; Tsihrintzis, V.A. Methodology for holistic assessment of grey-green flood mitigation measures for climate change adaptation in urban basins. J. Hydrol. 2021, 603, 126885. [Google Scholar] [CrossRef]
- Rosa, D.J.; Clausen, J.C.; Dietz, M.E. Calibration and verification of SWMM for low impact development. JAWRA J. Am. Water Resour. Assoc. 2015, 51, 746–757. [Google Scholar] [CrossRef]
- Kourtis, I.M.; Tsihrintzis, V.A.; Baltas, E. Simulation of low impact development (LID) practices and comparison with conventional drainage solutions. Proceedings 2018, 2, 640. [Google Scholar] [CrossRef]
- Peker, İ.B.; Gülbaz, S. Impact of rapid anthropogenic land use and land cover change on basin hydrology and sediment loads. Landsc. Ecol. Eng. 2025, 21, 65–79. [Google Scholar] [CrossRef]
- Maftuhah, D.I.; Anityasari, M.; Sholihah, M. Model of urban water management towards water sensitive city: A literature review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 337, 012047. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, N.; Zhang, R.; Zeng, X. Storm water management of low impact development in urban areas based on SWMM. Water 2018, 11, 33. [Google Scholar] [CrossRef]
- Rujner, H.; Leonhardt, G.; Marsalek, J.; Viklander, M. High-resolution modelling of the grass swale response to runoff inflows with Mike SHE. J. Hydrol. 2018, 562, 411–422. [Google Scholar] [CrossRef]
- Garbanzos, S.; Maniquiz-Redillas, M. Modeling the hydrologic performance and cost-effectiveness of LID in a residential park area using a decentralized design approach. Hydrology 2022, 9, 62. [Google Scholar] [CrossRef]
- Arjenaki, M.O.; Sanayei, H.R.Z.; Heidarzadeh, H.; Mahabadi, N.A. Modeling and investigating the effect of the LID methods on collection network of urban runoff using the SWMM model (case study: Shahrekord City). Model. Earth Syst. Environ. 2021, 7, 1–16. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, Z.; Chen, X.; Yu, G. An assessment of the hydrologic effectiveness of low impact development (LID) practices for managing runoff with different objectives. J. Environ. Manag. 2019, 231, 504–514. [Google Scholar] [CrossRef]
- Macro, K.; Matott, L.S.; Rabideau, A.; Ghodsi, S.H.; Zhu, Z. OSTRICH-SWMM: A new multi-objective optimization tool for green infrastructure planning with SWMM. Environ. Model. Softw. 2019, 113, 42–47. [Google Scholar] [CrossRef]
- Ma, Y.; Xia, X.; Liang, Q.; Wan, H. Investigating the Impact of Spatial Distribution of Sustainable Drainage System (SuDS) Components on Their Flood Mitigation Performance in Communities with High Groundwater Levels. Water 2022, 14, 1367. [Google Scholar] [CrossRef]
- Kourtis, I.M.; Tsihrintzis, V.A.; Baltas, E. A robust approach for comparing conventional and sustainable flood mitigation measures in urban basins. J. Environ. Manag. 2020, 269, 110822. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Oppenheimer, M.; Warren, R.; Hallegatte, S.; Kopp, R.E.; Pörtner, H.O.; Scholes, R.; Birkmann, J.; Foden, W.; Licker, R.; et al. IPCC reasons for concern regarding climate change risks. Nat. Clim. Change 2017, 7, 28–37. [Google Scholar] [CrossRef]
- Turnock, S.T.; Allen, R.J.; Andrews, M.; Bauer, S.E.; Deushi, M.; Emmons, L.; Good, P.; Horowitz, L.; John, J.G.; Michou, M.; et al. Historical and future changes in air pollutants from CMIP6 models. Atmos. Chem. Phys. 2020, 20, 14547–14579. [Google Scholar] [CrossRef]
- Bauer, N.; Calvin, K.; Emmerling, J.; Fricko, O.; Fujimori, S.; Hilaire, J.; Eom, J.; Krey, V.; Kriegler, E.; Mouratiadou, I.; et al. Shared socio-economic pathways of the energy sector–quantifying the narratives. Glob. Environ. Change 2017, 42, 316–330. [Google Scholar] [CrossRef]
- Popp, A.; Calvin, K.; Fujimori, S.; Havlik, P.; Humpenöder, F.; Stehfest, E.; Bodirsky, B.L.; Dietrich, J.P.; Doelmann, J.C.; Gusti, M.; et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 2017, 42, 331–345. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Change 2011, 109, 33–57. [Google Scholar] [CrossRef]
- Rao, S.; Klimont, Z.; Smith, S.J.; Van Dingenen, R.; Dentener, F.; Bouwman, L.; Riahi, K.; Amann, M.; Bodirsky, B.L.; van Vuuren, D.P.; et al. Future air pollution in the Shared Socio-economic Pathways. Glob. Environ. Change 2017, 42, 346–358. [Google Scholar] [CrossRef]
- Cover, C.L. Copernicus Land Monitoring Service; European Environment Agency (EEA): Copenhagen, Denmark, 2018. [Google Scholar]
- Schwartze, C. Deriving hydrological response units (HRUs) using a web processing service implementation based on GRASS GIS. Geoinform. FCE CTU 2008, 3, 67–78. [Google Scholar] [CrossRef]
- Mishra, S.K.; Pandey, A.; Singh, V.P. Special issue on soil conservation service curve number (SCS-CN) methodology. J. Hydrol. Eng. 2012, 17, 1157. [Google Scholar] [CrossRef]
- Bertoldi, G.; Notarnicola, C.; Brenner, J.; Greifeneder, F.; Castelli, M.; Niedrist, G.; Tappeiner, U. Modelling Feedbacks between Vegetation and Soil Moisture in Mountain Grasslands. In Proceedings of the XXI CMWR Conference, Toronto, ON, Canada, 20–24 June 2016. [Google Scholar]
- Lashford, C.; Rubinato, M.; Cai, Y.; Hou, J.; Abolfathi, S.; Coupe, S.; Charlesworth, S.; Tait, S. SuDS & sponge cities: A comparative analysis of the implementation of pluvial flood management in the UK and China. Sustainability 2019, 11, 213. [Google Scholar] [CrossRef]
- Charlesworth, S.M.; Harkerand, E.; Rickard, S. A Review of Sustainable Drainage Systems (SuDS) A Soft Option for Hard Drainage Questions? Geography 2003, 88, 99–107. [Google Scholar] [CrossRef]
- Ellis, J.B.; Lundy, L. Implementing sustainable drainage systems for urban surface water management within the regulatory framework in England and Wales. J. Environ. Manag. 2016, 183, 630–636. [Google Scholar] [CrossRef]
- Haghighatafshar, S.; Yamanee-Nolin, M.; Larson, M. A physically based model for mesoscale SuDS—An alternative to large-scale urban drainage simulations. J. Environ. Manag. 2019, 240, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Cotterill, S.; Bracken, L.J. Assessing the effectiveness of sustainable drainage systems (SuDS): Interventions, impacts and challenges. Water 2020, 12, 3160. [Google Scholar] [CrossRef]
- Nóblega Carriquiry, A.; Sauri, D.; March, H. Community involvement in the implementation of sustainable urban drainage systems (SUDSs): The case of Bon Pastor, Barcelona. Sustainability 2020, 12, 510. [Google Scholar] [CrossRef]
- Thodesen, B.; Time, B.; Kvande, T. Sustainable Urban Drainage Systems: Themes of Public Perception—A Case Study. Land 2022, 11, 589. [Google Scholar] [CrossRef]
- Guptha, G.C.; Swain, S.; Al-Ansari, N.; Taloor, A.K.; Dayal, D. Assessing the role of SuDS in resilience enhancement of urban drainage system: A case study of Gurugram City, India. Urban Clim. 2022, 41, 101075. [Google Scholar] [CrossRef]
- Jiménez Ariza, S.L.; Martínez, J.A.; Muñoz, A.F.; Quijano, J.P.; Rodríguez, J.P.; Camacho, L.A.; Díaz-Granados, M. A multicriteria planning framework to locate and select sustainable urban drainage systems (SUDS) in consolidated urban areas. Sustainability 2019, 11, 2312. [Google Scholar] [CrossRef]
- Vollaers, V.; Nieuwenhuis, E.; van de Ven, F.; Langeveld, J. Root causes of failures in sustainable urban drainage systems (SUDS): An exploratory study in 11 municipalities in The Netherlands. Blue-Green Syst. 2021, 3, 31–48. [Google Scholar] [CrossRef]
- Suárez-Inclán, A.M.; Allende-Prieto, C.; Roces-García, J.; Rodríguez-Sánchez, J.P.; Sañudo-Fontaneda, L.A.; Rey-Mahía, C.; Álvarez-Rabanal, F.P. Development of a Multicriteria Scheme for the Identification of Strategic Areas for SUDS Implementation: A Case Study from Gijón, Spain. Sustainability 2022, 14, 2877. [Google Scholar] [CrossRef]
- Ho, H.L.; Babel, M.S.; Weesakul, S.; Irvine, K.N.; Pham, M.D. Exploratory assessment of SUDS feasibility in Nhieu Loc-Thi Nghe Basin, Ho Chi Minh City, Vietnam. Br. J. Environ. Clim. Change 2015, 5, 91–103. [Google Scholar]
- Jato-Espino, D.; Charlesworth, S.M.; Bayon, J.R.; Warwick, F. Rainfall–runoff simulations to assess the potential of SuDS for mitigating flooding in highly urbanized catchments. Int. J. Environ. Res. Public Health 2016, 13, 149. [Google Scholar] [CrossRef]
- Binesh, N.; Niksokhan, M.H.; Sarang, A.; Rauch, W. Improving sustainability of urban drainage systems for climate change adaptation using best management practices: A case study of Tehran, Iran. Hydrol. Sci. J. 2019, 64, 381–404. [Google Scholar] [CrossRef]
- Zubelzu, S.; Rodríguez-Sinobas, L.; Sordo-Ward, A.; Pérez-Durán, A.; Cisneros-Almazán, R. Multi-objective approach for determining optimal sustainable urban drainage systems combination at city scale. the case of San Luis Potosí (México). Water 2020, 12, 835. [Google Scholar] [CrossRef]
- D’Ambrosio, R.; Longobardi, A.; Schmalz, B. SuDS as a climate change adaptation strategy: Scenario-based analysis for an urban catchment in northern Italy. Urban Clim. 2023, 51, 101596. [Google Scholar] [CrossRef]
- Marko, I.; Wittmanová, R.; Hrudka, J.; Stanko, Š. The effectiveness of SuDS measures in reducing the rainwater runoff from urbanized areas. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1209, 012021. [Google Scholar] [CrossRef]
- Kim, H.W.; Park, Y. Urban green infrastructure and local flooding: The impact of landscape patterns on peak runoff in four Texas MSAs. Appl. Geogr. 2016, 77, 72–81. [Google Scholar] [CrossRef]
- Haghighatafshar, S.; la Cour Jansen, J.; Aspegren, H.; Jönsson, K. Conceptualization and schematization of mesoscale sustainable drainage systems: A full-scale study. Water 2018, 10, 1041. [Google Scholar] [CrossRef]
- Qiu, H.; Wu, K.; Ayasrah, M.M.; Huang, W. Study on Sunlight Temperature Field of Steel Box Arch Ribs in Irregular Arch Bridges. Symmetry 2024, 16, 413. [Google Scholar] [CrossRef]
- Guo, X.; Feng, C.; Gu, E.; Tian, C.; Shen, Z. Spatial distribution, source apportionment and risk assessment of antibiotics in the surface water and sediments of the Yangtze Estuary. Sci. Total Environ. 2019, 671, 548–557. [Google Scholar] [CrossRef]
- Abduljaleel, Y.; Demissie, Y. Identifying cost-effective low-impact development (LID) under climate change: A multi-objective optimization approach. Water 2022, 14, 3017. [Google Scholar] [CrossRef]
- Chen, C.L. An evaluation of the mathematics and physical significance of the soil conservation service curve number procedure for estimating runoff volume. In Proceedings of the International Symposium on Rainfall-Runoff Modeling; Water Resources Publications: Littleton, CO, USA, 1982; pp. 387–418. [Google Scholar]
- Bales, J.; Betson, R.P. The curve number as a hydrologic index. In Rainfall Runoff Relationship; Singh, V.P., Ed.; Water Resources Publication: Littleton, CO, USA, 1981; pp. 371–386. [Google Scholar]
- Ponce, V.M.; Hawkins, R.H. Runoff curve number: Has it reached maturity? J. Hydrol. Eng. 1996, 1, 11–19. [Google Scholar] [CrossRef]
- Mishra, S.K.; Suresh Babu, P.; Singh, V.P. SCS-CN method revisited. In Advances in Hydraulics and Hydrology; Water Resources Publications: Littleton, CO, USA, 2007. [Google Scholar]
- Jehanzaib, M.; Ajmal, M.; Achite, M.; Kim, T.W. Comprehensive review: Advancements in rainfall-runoff modelling for flood mitigation. Climate 2022, 10, 147. [Google Scholar] [CrossRef]
- Pandi, D.; Kothandaraman, S.; Kuppusamy, M. Hydrological models: A review. Int. J. Hydrol. Sci. Technol. 2021, 12, 223–242. [Google Scholar] [CrossRef]
- Devia, G.K.; Ganasri, B.P.; Dwarakish, G.S. A review on hydrological models. Aquat. Procedia 2015, 4, 1001–1007. [Google Scholar] [CrossRef]
- Thompson, D.B. The Rational Method, Regional Regression Equations, and Site-Specific Flood-Frequency Relations; No. FHWA/TX–06/0-4405-1; Texas Tech University, Center for Multidisciplinary Research in Transportation: Broadway Lubbock, TX, USA, 2006. [Google Scholar]
- Beven, K.; Robert, E. Horton’s perceptual model of infiltration processes. Hydrol. Process. 2004, 18, 3447–3460. [Google Scholar] [CrossRef]
- Ali, S.; Islam, A.; Mishra, P.K.; Sikka, A.K. Green-Ampt approximations: A comprehensive analysis. J. Hydrol. 2016, 535, 340–355. [Google Scholar] [CrossRef]
- Warburton, M.L.; Schulze, R.E.; Jewitt, G.P. Confirmation of ACRU model results for applications in land use and climate change studies. Hydrol. Earth Syst. Sci. 2010, 14, 2399–2414. [Google Scholar] [CrossRef]
- Im, S.; Kim, H.; Kim, C.; Jang, C. Assessing the impacts of land use changes on watershed hydrology using MIKE SHE. Environ. Geol. 2009, 57, 231–239. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Calver, A.; Wood, W.L. The Institute of Hydrology Distributed Model; Institute of Hydrology: Wallingford, UK, 1995; pp. 595–626. [Google Scholar]
- Paniconi, C.; Putti, M. Physically based modeling in catchment hydrology at 50: Survey and outlook. Water Resour. Res. 2015, 51, 7090–7129. [Google Scholar] [CrossRef]
- Seibert, J.; Bergström, S. A retrospective on hydrological catchment modelling based on half a century with the HBV model. Hydrol. Earth Syst. Sci. 2022, 26, 1371–1388. [Google Scholar] [CrossRef]
- Hublart, P.; Ruelland, D.; Garcĺa De Cortázar Atauri, I.; Ibacache, A. Reliability of a conceptual hydrological model in a semi-arid Andean catchment facing water-use changes. Proc. Int. Assoc. Hydrol. Sci. 2015, 371, 203–209. [Google Scholar] [CrossRef]
- Donigian, A.S.; Imhoff, J. History and evolution of watershed modeling derived from the Stanford Watershed Model. In Watershed Models; CRC Press: Boca Raton, FL, USA, 2006; pp. 21–45. [Google Scholar]
- Remesan, R.; Mathew, J. Hydrological data driven modelling. In Earth System Data and Models; Springer: New York, NY, USA, 2015; p. 1. [Google Scholar]
- Oyebode, O.K.; Otieno, F.A.O.; Adeyemo, J. Review of three data-driven modelling techniques for hydrological modelling and forecasting. Fresenius Environ. Bull. 2014, 23, 1443–1454. [Google Scholar]
- Lal, M.; Mishra, S.K.; Pandey, A. Physical verification of the effect of land features and antecedent moisture on runoff curve number. Catena 2015, 133, 318–327. [Google Scholar] [CrossRef]
- Mishra, S.K.; Singh, V.P. Soil Conservation Service Curve Number (SCS-CN) Methodology; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; Volume 42. [Google Scholar]
- Moradkhani, H.; Sorooshian, S. General Review of Rainfall-Runoff Modeling: Model Calibration, Data Assimilation, and Uncertainty Analysi; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–24. [Google Scholar]
- Soulis, K.X. Soil conservation service curve number (SCS-CN) Method: Current applications, remaining challenges, and future perspectives. Water 2021, 13, 192. [Google Scholar] [CrossRef]
- Rohman, A.; Comber, A.; Mitchell, G. Evaluation of natural flood management using curve number in the Ciliwung Basin, West Java. Methodology 2019, 78, 23-18. [Google Scholar]
- D’Ambrosio, R.; Balbo, A.; Longobardi, A.; Rizzo, A. Re-think urban drainage following a SuDS retrofitting approach against urban flooding: A modelling investigation for an Italian case study. Urban For. Urban Green. 2022, 70, 127518. [Google Scholar] [CrossRef]
- Chapman, C.; Hall, J.W. Designing green infrastructure and sustainable drainage systems in urban development to achieve multiple ecosystem benefits. Sustain. Cities Soc. 2022, 85, 104078. [Google Scholar] [CrossRef]
- Huq, M.H.; Rahman, M.M.; Hasan, G.J. Climate-resilient urban drainage planning: An approach using a GIS-based SCS-CN model. J. Water Clim. Chang. 2024, 15, 2978–2991. [Google Scholar] [CrossRef]
- Beltrán, D.; Mancipe, N.A.; Rodríguez, J.P. SUDS treatment train modeling using SWMM. In Proceedings of the E-proceedings of the 38th IAHR World Congress, Panama City, Panama, 1–6 September 2019; pp. 1–10. [Google Scholar]
Category | Class 3 |
---|---|
Urban (fully developed urban areas) (CN = 95–98) | 1.1.1, 1.1.2, 1.2.1, 1.2.2, 1.2.4 |
Protected (environmentally protected) (CN = 80–85) | 2.4.3, 3.1.1, 3.1.2, 3.1.3, 3.2.1, 3.2.3, 3.2.4 |
Other (agricultural, unused or similar) (CN = 80–90) | 1.3.1, 1.3.3, 2.1.1, 2.2.1, 2.2.2, 2.2.3, 2.3.1, 2.4.1, 2.4.2 |
Catchment Name | Calculated CN Average Number |
---|---|
West | 84.53 |
Midwest 1 | 82.60 |
Midwest 1 tributary 1 | 85.78 |
Midwest 1 tributary 2 | 82.86 |
Mideast 1 | 86.05 |
Mideast 1 Tributary 1 | 85.37 |
Mideast 2 | 85.21 |
East | 82.68 |
Index | Duration (h) | Volume (mm) | Maximum Intensity (mm/h) | Average Intensity (mm/h) |
---|---|---|---|---|
Maximum | 12 | 422 | 312.8 | 76.73 |
Median | 0.5 | 0.4 | 0.8 | 0.64 |
Mean | 1.18 | 2.84 | 2.78 | 1.6 |
Standard Deviation | 1.21 | 13.22 | 9.47 | 3.81 |
Quantile (85) | 2 | 3.8 | 4 | 2.26 |
Skewness | 3.28 | 20.6 | 18.81 | 10.5 |
Kurtosis | 14.85 | 548.05 | 532.72 | 153.79 |
Scenario | Yearly distribution |
(from t = 0 in 2025 to t = 76 in 2100) | |
Volume average | N (n = 2.84 × rateMedt, σ = σ t) |
Storm duration = 1.18 h | |
Volume maximum storm | N (n = 422 × rateMaxt, σ = σ t) |
Storm duration = 5.5 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monachese, A.P.; Vorrasio, R.S.; Gómez-Villarino, M.T.; Zubelzu, S. A Methodology to Assess the Effectiveness of SUDSs Under Climate Change Scenarios at Urban Scale: Application to Bari (Italy). Appl. Sci. 2025, 15, 7400. https://doi.org/10.3390/app15137400
Monachese AP, Vorrasio RS, Gómez-Villarino MT, Zubelzu S. A Methodology to Assess the Effectiveness of SUDSs Under Climate Change Scenarios at Urban Scale: Application to Bari (Italy). Applied Sciences. 2025; 15(13):7400. https://doi.org/10.3390/app15137400
Chicago/Turabian StyleMonachese, Anna Pia, Riccardo Samuele Vorrasio, María Teresa Gómez-Villarino, and Sergio Zubelzu. 2025. "A Methodology to Assess the Effectiveness of SUDSs Under Climate Change Scenarios at Urban Scale: Application to Bari (Italy)" Applied Sciences 15, no. 13: 7400. https://doi.org/10.3390/app15137400
APA StyleMonachese, A. P., Vorrasio, R. S., Gómez-Villarino, M. T., & Zubelzu, S. (2025). A Methodology to Assess the Effectiveness of SUDSs Under Climate Change Scenarios at Urban Scale: Application to Bari (Italy). Applied Sciences, 15(13), 7400. https://doi.org/10.3390/app15137400