Assessment of Urban Flood Resilience Under a Novel Framework and Method: A Case Study of the Taihu Lake Basin
Abstract
1. Introduction
2. Data and Methodology
2.1. Study Area
2.2. Evaluation Framework
Category | Indicators | Description | Unit | Effect | References |
---|---|---|---|---|---|
Hazard | N1 Flood-season precipitation | Total rainfall in the region during the flood season. | mm | Negative | [13,15] |
N2 Precipitation concentration degree | The degree of concentration of precipitation throughout the year. | - | Negative | [42] | |
N3 Frequency of heavy rainfall | The number of days with daily rainfall reaching 50 mm or more. | Days | Negative | [23] | |
N4 Coverage of heavy rainfall | The proportion of monitoring stations experiencing heavy rainfall compared to the total number of stations. | % | Negative | [43] | |
Vulnerability | N5 Population age structure | The percentage of vulnerable populations (e.g., 0–14 years old and 65+ years old) relative to the total population. | % | Negative | [44,45] |
N6 Education level | The percentage of the employed population with a junior college degree or higher relative to the total employed population. | % | Positive | [46] | |
N7 Proportion of population affected by disasters | The proportion of people affected by flood disasters annually relative to the total population. | % | Negative | [47,48] | |
N8 Proportion of economic losses caused by disasters | Total direct economic losses caused by flood disasters as a percentage of the region’s GDP. | % | Negative | [48,49] | |
Exposure | N9 Land development intensity | The percentage of urban construction land relative to the total area of the region. | % | Negative | [15] |
N10 Urbanization rate | The proportion of permanent urban residents relative to the total population of the region. | % | Negative | [50] | |
N11 Population density | The number of people per unit of land area. | % | Negative | [23] | |
N12 Building density | The percentage of the region’s total area covered by buildings. | % | Negative | [51] | |
N13 Economic density | The region’s GDP per unit area. | CNY/km2 | Negative | [17] | |
N14 Crop planting area | The total sown area of crops in the region. | km2 | Positive | [17] | |
Defense capacity | N15 Actual flood control capacity | The flood control capacity achievable through the coordination of levees, reservoirs, sluices, and other flood control projects. | - | Positive | [52] |
N16 Actual drainage capacity | The drainage capacity achievable through the coordination of pipelines, pump stations, and other drainage projects. | m3/s | Positive | [10,53] | |
N17 Drainage pipeline density | The length of drainage pipelines per unit urban area. | km/km2 | Positive | [53] | |
N18 Water resource regulation and storage capacity | Represented by river network density. | % | Positive | [15] | |
N19 Meteorological and flood monitoring capabilities | The ability to forecast and monitor key water safety elements such as precipitation, water levels, and flow rates. | Units/m² | Positive | [15,24] | |
N20 Early warning issuance capacity | The ability to quickly issue and release flood warnings. | - | Positive | [54] | |
N21 Lifeline engineering mitigation capability | The redundancy level of utilities such as gas, electricity, water supply, communication, and transportation. | - | Positive | [55,56] | |
N22 Emergency command and control capabilities | The ability to effectively manage and coordinate on-site disaster response activities through unified and structured mechanisms. | - | Positive | [48,51] | |
N23 Smart water conservancy development capacity | The level of digitalization and intelligence in water resource management. | - | Positive | [34,54] | |
N24 Network coverage | The proportion of the population with access to mobile phones and broadband internet. | % | Positive | [34] | |
Recovery capacity | N25 Emergency management capability | The ability to formulate emergency management policies, guidelines, and contingency plans. | - | Positive | [10,57] |
N26 Emergency material support capacity | The ability to identify, allocate, store, deploy, mobilize, and transport resources. | - | Positive | [58] | |
N27 Medical capacity | The ability to provide medical assistance during flood disasters. | - | Positive | [17] | |
N28 Social service capacity | Local public budget expenditures. | CNY | Positive | [53] | |
N29 Residents’ economic status | The total of final consumption expenditures and discretionary savings of urban and rural residents. | CNY | Positive | [59] | |
N30 Road network density | The ratio of urban road area to the total regional area. | % | Positive | [17] | |
N31 Coverage rate of basic medical insurance | The percentage of the population covered by basic medical insurance. | % | Positive | [27] | |
N32 Coverage rate of disaster insurance | Premiums for commercial and personal accident insurance as a percentage of the city’s GDP. | % | Positive | [24,60] |
2.3. Data Source
2.4. Methodology
2.4.1. Indicator Independence Testing
2.4.2. Data Standardization
2.4.3. Determination of Weighting Coefficients
2.4.4. TOPSIS
2.4.5. Urban Flood Resilience Index
3. Results
3.1. Selection of Indicators
3.2. Indicator Weighting Results
3.3. The Interannual Variability of UFR
3.3.1. Hazard
3.3.2. Vulnerability and Exposure
3.3.3. Defense Capacity and Recovery Capacity
3.3.4. Urban Flood Resilience
3.4. Spatial Distribution of UFR
4. Discussion
4.1. Further Analysis on the Key Driving Factors
4.2. Implications of UFR Research in the TLB
4.3. Suggestions for Improving UFR
4.4. Limitations and Future Work
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Luo, Z.; Tian, J.; Zeng, J.; Pilla, F. Resilient landscape pattern for reducing coastal flood susceptibility. Sci. Total Environ. 2023, 856, 159087. [Google Scholar] [CrossRef]
- Venkataramanan, V.; Packman, A.I.; Peters, D.R.; Lopez, D.; McCuskey, D.J.; McDonald, R.I.; Miller, W.M.; Young, S.L. A systematic review of the human health and social well-being outcomes of green infrastructure for stormwater and flood management. J. Environ. Manag. 2019, 246, 868–880. [Google Scholar] [CrossRef]
- Wu, W.; Jamali, B.; Zhang, K.; Marshall, L.; Deletic, A. Water Sensitive Urban Design (WSUD) Spatial Prioritisation through Global Sensitivity Analysis for Effective Urban Pluvial Flood Mitigation. Water Res. 2023, 235, 119888. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Feng, Q.; Engel, B.A.; Yu, T.; Zhang, X.; Qian, Y. A probabilistic assessment of urban flood risk and impacts of future climate change. J. Hydrol. 2023, 618, 129267. [Google Scholar] [CrossRef]
- Woodruff, J.D.; Irish, J.L.; Camargo, S.J. Coastal flooding by tropical cyclones and sea-level rise. Nature 2013, 504, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Eggert, A.L.; Löwe, R.; Arnbjerg-Nielsen, K. Identifying barriers and potentials of integrated assessments of sustainable urban development and adaptation to rising sea levels. Ecol. Indic. 2023, 148, 110078. [Google Scholar] [CrossRef]
- Kong, Z.; Shao, Z.; Shen, Y.; Zhang, X.; Chen, M.; Yuan, Y.; Li, G.; Wei, Y.; Hu, X.; Huang, Y.; et al. Comprehensive evaluation of stormwater pollutants characteristics, purification process and environmental impact after low impact development practices. J. Clean. Prod. 2021, 278, 123509. [Google Scholar] [CrossRef]
- Yin, D.; Zhang, X.; Cheng, Y.; Jia, H.; Jia, Q.; Yang, Y. Can flood resilience of green-grey-blue system cope with future uncertainty? Water Res. 2023, 242, 120315. [Google Scholar] [CrossRef]
- Schelfaut, K.; Pannemans, B.; van der Craats, I.; Krywkow, J.; Mysiak, J.; Cools, J. Bringing flood resilience into practice: The FREEMAN project. Environ. Sci. Policy 2011, 14, 825–833. [Google Scholar] [CrossRef]
- Liao, K.-H. A Theory on Urban Resilience to Floods—A Basis for Alternative Planning Practices. Ecol. Soc. 2012, 17, 48. [Google Scholar] [CrossRef]
- Lazarus, R.S. From Psychological Stress to the Emotions: A History of Changing Outlooks. Annu. Rev. Psychol. 1993, 44, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cai, Y.; Xie, Y.; Chen, L.; Zhang, P. An integrated approach for evaluating dynamics of urban eco-resilience in urban agglomerations of China. Ecol. Indic. 2023, 146, 109859. [Google Scholar] [CrossRef]
- Wang, P.; Li, Y.; Zhang, Y. An urban system perspective on urban flood resilience using SEM: Evidence from Nanjing city, China. Nat. Hazards 2021, 109, 2575–2599. [Google Scholar] [CrossRef]
- Tang, D.; Li, J.; Zhao, Z.; Boamah, V.; Lansana, D.D. The influence of industrial structure transformation on urban resilience based on 110 prefecture-level cities in the Yangtze River. Sustain. Cities Soc. 2023, 96, 104621. [Google Scholar] [CrossRef]
- Ruan, J.; Chen, Y.; Yang, Z. Assessment of temporal and spatial progress of urban resilience in Guangzhou under rainstorm scenarios. Int. J. Disaster Risk Reduct. 2021, 66, 102578. [Google Scholar] [CrossRef]
- Wang, Y.; Meng, F.; Liu, H.; Zhang, C.; Fu, G. Assessing catchment scale flood resilience of urban areas using a grid cell based metric. Water Res. 2019, 163, 114852. [Google Scholar] [CrossRef]
- Sun, R.; Shi, S.; Reheman, Y.; Li, S. Measurement of urban flood resilience using a quantitative model based on the correlation of vulnerability and resilience. Int. J. Disaster Risk Reduct. 2022, 82, 103344. [Google Scholar] [CrossRef]
- Tayyab, M.; Zhang, J.; Hussain, M.; Ullah, S.; Liu, X.; Khan, S.N.; Baig, M.A.; Hassan, W.; Al-Shaibah, B. GIS-Based Urban Flood Resilience Assessment Using Urban Flood Resilience Model: A Case Study of Peshawar City, Khyber Pakhtunkhwa, Pakistan. Remote Sens. 2021, 13, 1864. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, C.; Chen, A.S.; Wang, G.; Fu, G. Exploring the relationship between urban flood risk and resilience at a high-resolution grid cell scale. Sci. Total Environ. 2023, 893, 164852. [Google Scholar] [CrossRef]
- Cao, F.; Xu, X.; Zhang, C.; Kong, W. Evaluation of urban flood resilience and its Space-Time Evolution: A case study of Zhejiang Province, China. Ecol. Indic. 2023, 154, 110643. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, J.; Zhang, Y.; Chen, Y.; Yan, J. Urban Flood Resilience Evaluation Based on GIS and Multi-Source Data: A Case Study of Changchun City. Remote Sens. 2023, 15, 1872. [Google Scholar] [CrossRef]
- Mehryar, S.; Surminski, S. Investigating flood resilience perceptions and supporting collective decision-making through fuzzy cognitive mapping. Sci. Total Environ. 2022, 837, 155854. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Li, D.; Feng, H.; Zhang, N. The influencing factors and mechanisms for urban flood resilience in China: From the perspective of social-economic-natural complex ecosystem. Ecol. Indic. 2023, 147, 109959. [Google Scholar] [CrossRef]
- Zhang, Y.; Shang, K. Cloud model assessment of urban flood resilience based on PSR model and game theory. Int. J. Disaster Risk Reduct. 2023, 97, 104050. [Google Scholar] [CrossRef]
- Xiao, S.; Zou, L.; Xia, J.; Dong, Y.; Yang, Z.; Yao, T. Assessment of the urban waterlogging resilience and identification of its driving factors: A case study of Wuhan City, China. Sci. Total Environ. 2023, 866, 161321. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, C.; Chen, G.; Xie, Z. Evaluation framework ACR-UFDR for urban form disaster resilience under rainstorm and flood scenarios: A case study in Nanjing, China. Sustain. Cities Soc. 2024, 107, 105424. [Google Scholar] [CrossRef]
- Zhu, S.; Li, D.; Huang, G.; Chhipi-Shrestha, G.; Nahiduzzaman, K.M.; Hewage, K.; Sadiq, R. Enhancing urban flood resilience: A holistic framework incorporating historic worst flood to Yangtze River Delta, China. Int. J. Disaster Risk Reduct. 2021, 61, 102355. [Google Scholar] [CrossRef]
- Xu, T.; Xie, Z.; Jiang, F.; Yang, S.; Deng, Z.; Zhao, L.; Wen, G.; Du, Q. Urban flooding resilience evaluation with coupled rainfall and flooding models: A small area in Kunming City, China as an example. Water Sci. Technol. 2023, 87, 2820–2839. [Google Scholar] [CrossRef]
- Razafindrabe, B.H.N.; Cuesta, M.A.; He, B.; Rañola Jr, R.F.; Yaota, K.; Inoue, S.; Saito, S.; Masuda, T.; Concepcion, R.N.; Santos-Borja, A.; et al. Flood risk and resilience assessment for Santa Rosa-Silang subwatershed in the Laguna Lake region, Philippines. Environ. Hazards 2015, 14, 16–35. [Google Scholar] [CrossRef]
- Li, X.; Hui, E.C.M.; Chen, T.; Lang, W.; Guo, Y. From Habitat III to the new urbanization agenda in China: Seeing through the practices of the “three old renewals” in Guangzhou. Land Use Policy 2019, 81, 513–522. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Ma, Y.; Feng, C.; Hajiyev, A. A multi-criteria decision making method for urban flood resilience evaluation with hybrid uncertainties. Int. J. Disaster Risk Reduct. 2019, 36, 101140. [Google Scholar] [CrossRef]
- Javadpoor, M.; Sharifi, A.; Roosta, M. An adaptation of the Baseline Resilience Indicators for Communities (BRIC) for assessing resilience of Iranian provinces. Int. J. Disaster Risk Reduct. 2021, 66, 102609. [Google Scholar] [CrossRef]
- Zhou, R.; Zhou, Y.; Zhu, W.; Feng, L.; Liu, L. Projecting Water Yield Amidst Rapid Urbanization: A Case Study of the Taihu Lake Basin. Land 2025, 14, 149. [Google Scholar] [CrossRef]
- Ji, J.; Fang, L.; Chen, J.; Ding, T. A novel framework for urban flood resilience assessment at the urban agglomeration scale. Int. J. Disaster Risk Reduct. 2024, 108, 104519. [Google Scholar] [CrossRef]
- Abdrabo, K.I.; Kantoush, S.A.; Esmaiel, A.; Saber, M.; Sumi, T.; Almamari, M.; Elboshy, B.; Ghoniem, S. An integrated indicator-based approach for constructing an urban flood vulnerability index as an urban decision-making tool using the PCA and AHP techniques: A case study of Alexandria, Egypt. Urban Clim. 2023, 48, 101426. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, S.; Feng, H.; Zhang, H.; Li, D. Coupling dynamics of urban flood resilience in china from 2012 to 2022: A network-based approach. Sustain. Cities Soc. 2025, 118, 105996. [Google Scholar] [CrossRef]
- Dong, B.; Xia, J.; Li, Q.; Zhou, M. Risk assessment for people and vehicles in an extreme urban flood: Case study of the “7.20” flood event in Zhengzhou, China. Int. J. Disaster Risk Reduct. 2022, 80, 103205. [Google Scholar] [CrossRef]
- DB51/T 2829-2021; Assessment Technical Specification for Rainstorm and Flood Disaster Risk. Administration for Market Regulation of Sichuan Province: Chengdu, China, 2021.
- Jia, H.; Chen, F.; Pan, D.; Du, E.; Wang, L.; Wang, N.; Yang, A. Flood risk management in the Yangtze River basin —Comparison of 1998 and 2020 events. Int. J. Disaster Risk Reduct. 2022, 68, 102724. [Google Scholar] [CrossRef]
- Merz, B.; Blöschl, G.; Vorogushyn, S.; Dottori, F.; Aerts, J.C.J.H.; Bates, P.; Bertola, M.; Kemter, M.; Kreibich, H.; Lall, U.; et al. Causes, impacts and patterns of disastrous river floods. Nat. Rev. Earth Environ. 2021, 2, 592–609. [Google Scholar] [CrossRef]
- Rus, K.; Kilar, V.; Koren, D. Resilience assessment of complex urban systems to natural disasters: A new literature review. Int. J. Disaster Risk Reduct. 2018, 31, 311–330. [Google Scholar] [CrossRef]
- Liu, Y.; Yan, J.; Cen, M.; Fang, Q.; Liu, Z.; Li, Y. A graded index for evaluating precipitation heterogeneity in China. J. Geogr. Sci. 2016, 26, 673–693. [Google Scholar] [CrossRef]
- Zhou, S.; Zhang, D.; Wang, M.; Liu, Z.; Gan, W.; Zhao, Z.; Xue, S.; Müller, B.; Zhou, M.; Ni, X.; et al. Risk-driven composition decoupling analysis for urban flooding prediction in high-density urban areas using Bayesian-Optimized LightGBM. J. Clean. Prod. 2024, 457, 142286. [Google Scholar] [CrossRef]
- Chakraborty, L.; Rus, H.; Henstra, D.; Thistlethwaite, J.; Minano, A.; Scott, D. Exploring spatial heterogeneity and environmental injustices in exposure to flood hazards using geographically weighted regression. Environ. Res. 2022, 210, 112982. [Google Scholar] [CrossRef]
- Hopkins, K.D.; Taylor, C.L.; Zubrick, S.R. Psychosocial resilience and vulnerability in Western Australian Aboriginal youth. Child Abus. Negl. 2018, 78, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Forrest, S.A.; Trell, E.-M.; Woltjer, J. Socio-spatial inequalities in flood resilience: Rainfall flooding in the city of Arnhem. Cities 2020, 105, 102843. [Google Scholar] [CrossRef]
- Tellman, B.; Sullivan, J.A.; Kuhn, C.; Kettner, A.J.; Doyle, C.S.; Brakenridge, G.R.; Erickson, T.A.; Slayback, D.A. Satellite imaging reveals increased proportion of population exposed to floods. Nature 2021, 596, 80–86. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Li, Q.; Wang, H.; Deng, M. A Machine Learning Ensemble Approach Based on Random Forest and Radial Basis Function Neural Network for Risk Evaluation of Regional Flood Disaster: A Case Study of the Yangtze River Delta, China. Int. J. Environ. Res. Public Health 2020, 17, 49. [Google Scholar] [CrossRef]
- Liu, D.; Feng, J.; Li, H.; Fu, Q.; Li, M.; Faiz, M.A.; Ali, S.; Li, T.; Khan, M.I. Spatiotemporal variation analysis of regional flood disaster resilience capability using an improved projection pursuit model based on the wind-driven optimization algorithm. J. Clean. Prod. 2019, 241, 118406. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Gao, G. Spatiotemporal Evolution and Determinants of Urban Flood Resilience: A Case Study of Yellow River Basin. Sustainability 2025, 17, 1433. [Google Scholar] [CrossRef]
- Geng, Y.; Huang, X.; Zhong, Y.; Wang, Z. The impact of complex terrain on urban flood resilience under extreme rainfall events. J. Hydrol. 2025, 651, 132597. [Google Scholar] [CrossRef]
- Zhu, D.; Chen, H.; Mei, Y.D.; Xu, X.F.; Guo, S. Exploration of Relationships between Flood Control Capacity and Peak Flow Reduction in a Multireservoir System Using an Optimization-Clustering-Fitting Framework. J. Water Resour. Plan. Manag. 2022, 148, 05022002. [Google Scholar] [CrossRef]
- Lu, H.; Lu, X.; Jiao, L.; Zhang, Y. Evaluating urban agglomeration resilience to disaster in the Yangtze Delta city group in China. Sustain. Cities Soc. 2022, 76, 103464. [Google Scholar] [CrossRef]
- Dąbrowska, J.; Menéndez Orellana, A.E.; Kilian, W.; Moryl, A.; Cielecka, N.; Michałowska, K.; Policht-Latawiec, A.; Michalski, A.; Bednarek, A.; Włóka, A. Between flood and drought: How cities are facing water surplus and scarcity. J. Environ. Manag. 2023, 345, 118557. [Google Scholar] [CrossRef]
- Bukvic, A.; Smith, A.; Zhang, A. Evaluating drivers of coastal relocation in Hurricane Sandy affected communities. Int. J. Disaster Risk Reduct. 2015, 13, 215–228. [Google Scholar] [CrossRef]
- Lu, X.; Liao, W.; Fang, D.; Lin, K.; Tian, Y.; Zhang, C.; Zheng, Z.; Zhao, P. Quantification of disaster resilience in civil engineering: A review. J. Saf. Sci. Resil. 2020, 1, 19–30. [Google Scholar] [CrossRef]
- Huang, G.; Li, D.; Zhu, X.; Zhu, J. Influencing factors and their influencing mechanisms on urban resilience in China. Sustain. Cities Soc. 2021, 74, 103210. [Google Scholar] [CrossRef]
- Zhang, Q.; Junyan, H.; Xuping, S.; Zhihong, L.; Kehu, Y.; and Sha, Y. How does social learning facilitate urban disaster resilience? A systematic review. Environ. Hazards 2020, 19, 107–129. [Google Scholar] [CrossRef]
- Leandro, J.; Chen, K.-F.; Wood, R.R.; Ludwig, R. A scalable flood-resilience-index for measuring climate change adaptation: Munich city. Water Res. 2020, 173, 115502. [Google Scholar] [CrossRef]
- Gall, M.; Borden, K.A.; Emrich, C.T.; Cutter, S.L. The Unsustainable Trend of Natural Hazard Losses in the United States. Sustainability 2011, 3, 2157–2181. [Google Scholar] [CrossRef]
- Rana, I.A.; Bhatti, S.S.; Jamshed, A.; Ahmad, S. An approach to understanding the intrinsic complexity of resilience against floods: Evidences from three urban communities of Pakistan. Int. J. Disaster Risk Reduct. 2021, 63, 102442. [Google Scholar] [CrossRef]
- Machado, C.G.; Pinheiro de Lima, E.; Gouvea da Costa, S.E.; Angelis, J.J.; Mattioda, R.A. Framing maturity based on sustainable operations management principles. Int. J. Prod. Econ. 2017, 190, 3–21. [Google Scholar] [CrossRef]
- Tutak, M.; Brodny, J. Renewable energy consumption in economic sectors in the EU-27. The impact on economics, environment and conventional energy sources. A 20-year perspective. J. Clean. Prod. 2022, 345, 131076. [Google Scholar] [CrossRef]
- Usman, M.; Hammar, N. Dynamic relationship between technological innovations, financial development, renewable energy, and ecological footprint: Fresh insights based on the STIRPAT model for Asia Pacific Economic Cooperation countries. Environ. Sci. Pollut. Res. 2021, 28, 15519–15536. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M. Do population density, economic growth, energy use and exports adversely affect environmental quality in Asian populous countries? Renew. Sustain. Energy Rev. 2017, 77, 506–514. [Google Scholar] [CrossRef]
- Bertilsson, L.; Wiklund, K.; de Moura Tebaldi, I.; Rezende, O.M.; Veról, A.P.; Miguez, M.G. Urban flood resilience—A multi-criteria index to integrate flood resilience into urban planning. J. Hydrol. 2019, 573, 970–982. [Google Scholar] [CrossRef]
- Khare, N.; Devan, P.; Chowdhary, C.L.; Bhattacharya, S.; Singh, G.; Singh, S.; Yoon, B. SMO-DNN: Spider Monkey Optimization and Deep Neural Network Hybrid Classifier Model for Intrusion Detection. Electronics 2020, 9, 692. [Google Scholar] [CrossRef]
- Zhu, Y.; Tian, D.; Yan, F. Effectiveness of Entropy Weight Method in Decision-Making. Math. Probl. Eng. 2020, 2020, 3564835. [Google Scholar] [CrossRef]
- Wang, M.; Wang, Y.; Shen, F.; Jin, J. A novel classification approach based on integrated connection cloud model and game theory. Commun. Nonlinear Sci. Numer. Simul. 2021, 93, 105540. [Google Scholar] [CrossRef]
- Ma, M.; Zhang, Y.; Zhang, J.; Li, M.; Zhu, J.; Wang, Y. Assessment of urban seismic social vulnerability based on game theory combination and TOPSIS model: A case study of Changchun City. Sci. Rep. 2025, 15, 8189. [Google Scholar] [CrossRef]
- Rafiei-Sardooi, E.; Azareh, A.; Choubin, B.; Mosavi, A.H.; Clague, J.J. Evaluating urban flood risk using hybrid method of TOPSIS and machine learning. Int. J. Disaster Risk Reduct. 2021, 66, 102614. [Google Scholar] [CrossRef]
- Zheng, J.; Huang, G. A novel grid cell–based urban flood resilience metric considering water velocity and duration of system performance being impacted. J. Hydrol. 2023, 617, 128911. [Google Scholar] [CrossRef]
- Park, S.; Kim, J.; Yun, H.; Kang, J. Exploring the network structure of coupled green-grey infrastructure to enhance urban pluvial flood resilience: A scenario-based approach focusing on ‘centralized’ and ‘decentralized’ structures. J. Environ. Manag. 2024, 370, 122344. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Xu, C.; He, J.; Chi, Z.; Bai, W.; Liu, R. Resilience-Vulnerability Balance and Obstacle Factor Analysis in Urban Flooding: A Case Study in the Qinghai–Tibetan Plateau. Buildings 2024, 14, 1274. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, W. Monitoring and Evaluation of Eco-Environment Quality Based on Remote Sensing-Based Ecological Index (RSEI) in Taihu Lake Basin, China. Sustainability 2022, 14, 5642. [Google Scholar] [CrossRef]
- Cheng, X.T.; Evans, E.P.; Wu, H.Y.; Thorne, C.R.; Han, S.; Simm, J.D.; Hall, J.W. A framework for long-term scenario analysis in the Taihu Basin, China. J. Flood Risk Manag. 2013, 6, 3–13. [Google Scholar] [CrossRef]
Level | UFR | Hazard | VAE | DAR |
---|---|---|---|---|
very high | ||||
high | ||||
medium | ||||
low | ||||
very low |
Category | Indicators | Category Weight | |||
---|---|---|---|---|---|
Hazard | C1 Flood-season precipitation | 0.088 | 0.054 | 0.087 | 0.224 |
C2 Precipitation concentration degree | 0.062 | 0.054 | 0.062 | ||
C3 Frequency of heavy rainfall | 0.044 | 0.054 | 0.045 | ||
C4 Coverage of heavy rainfall | 0.031 | 0.015 | 0.030 | ||
Vulnerability | C5 Population age structure | 0.071 | 0.053 | 0.070 | 0.170 |
C6 Education level | 0.056 | 0.049 | 0.056 | ||
C7 Proportion of economic losses caused by disasters | 0.044 | 0.054 | 0.045 | ||
Exposure | C8 Land development intensity | 0.074 | 0.052 | 0.073 | 0.179 |
C9 Economic density | 0.047 | 0.055 | 0.047 | ||
C10 Crop planting area | 0.059 | 0.050 | 0.059 | ||
Defense capacity | C11 Actual drainage capacity | 0.020 | 0.038 | 0.020 | 0.224 |
C12 Drainage pipeline density | 0.094 | 0.033 | 0.091 | ||
C13 Water resource regulation and storage capacity | 0.050 | 0.046 | 0.050 | ||
C14 Early warning issuance capacity | 0.021 | 0.047 | 0.022 | ||
C15 Lifeline engineering mitigation capability | 0.016 | 0.049 | 0.018 | ||
C16 Emergency command and control capabilities | 0.013 | 0.027 | 0.014 | ||
C17 Smart water conservancy development capacity | 0.008 | 0.039 | 0.009 | ||
Recovery capacity | C18 Emergency management capability | 0.030 | 0.042 | 0.031 | 0.202 |
C19 Medical capacity | 0.086 | 0.048 | 0.085 | ||
C20 Residents’ economic status | 0.040 | 0.046 | 0.040 | ||
C21 Road network density | 0.026 | 0.043 | 0.027 | ||
C22 Coverage rate of disaster insurance | 0.018 | 0.053 | 0.020 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, K.; Liu, Y.; Wang, Y.; Cui, T.; Zhong, J.; Zhou, Z.; Gao, X. Assessment of Urban Flood Resilience Under a Novel Framework and Method: A Case Study of the Taihu Lake Basin. Land 2025, 14, 1328. https://doi.org/10.3390/land14071328
Lu K, Liu Y, Wang Y, Cui T, Zhong J, Zhou Z, Gao X. Assessment of Urban Flood Resilience Under a Novel Framework and Method: A Case Study of the Taihu Lake Basin. Land. 2025; 14(7):1328. https://doi.org/10.3390/land14071328
Chicago/Turabian StyleLu, Kaidong, Yong Liu, Yintang Wang, Tingting Cui, Jiaxing Zhong, Zijiang Zhou, and Xiaoping Gao. 2025. "Assessment of Urban Flood Resilience Under a Novel Framework and Method: A Case Study of the Taihu Lake Basin" Land 14, no. 7: 1328. https://doi.org/10.3390/land14071328
APA StyleLu, K., Liu, Y., Wang, Y., Cui, T., Zhong, J., Zhou, Z., & Gao, X. (2025). Assessment of Urban Flood Resilience Under a Novel Framework and Method: A Case Study of the Taihu Lake Basin. Land, 14(7), 1328. https://doi.org/10.3390/land14071328