Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (62)

Search Parameters:
Keywords = urban decarbonisation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2724 KB  
Article
Towards the EPBD and ETS2 Mandates: Renewable Energy-Driven Retrofit of a Northern Hotel in Italy
by Laura Pompei, Axel Riccardo Massulli, Domiziana Vespasiano and Gianluigi Lo Basso
Energies 2026, 19(3), 707; https://doi.org/10.3390/en19030707 - 29 Jan 2026
Abstract
The revised Energy Performance of Buildings Directive (EPBD) has introduced ambitious targets aimed at accelerating the decarbonization of the building sector. In parallel, the forthcoming implementation of the Emission Trading System for buildings and road transport (ETS2) in January 2027 adds a further [...] Read more.
The revised Energy Performance of Buildings Directive (EPBD) has introduced ambitious targets aimed at accelerating the decarbonization of the building sector. In parallel, the forthcoming implementation of the Emission Trading System for buildings and road transport (ETS2) in January 2027 adds a further dimension to the policy landscape. This study investigates three renewable energy retrofit strategies (Scenarios A, B, and C) for a hotel building in northern Italy, assessing their effectiveness in meeting the decarbonization objectives set by the EPBD and ETS2. Scenario A couples photovoltaic generation with an existing gas boiler, Scenario B integrates PV with an electric heat pump for space heating, and Scenario C implements the full electrification of both heating and domestic hot water. The results of the three scenarios are evaluated using selected metrics, such as renewable primary energy consumption (EPren), non-renewable primary energy consumption (EPnren), CO2 emission (CO2), carbon avoidance cost (CAC), levelized cost of energy (LCOE), net present value (NPV), and Emission Trading System (ETS)2. The results show that PV deployment alone provides economic benefits but yields limited reductions in CO2 emissions and non-renewable primary energy consumption due to continued reliance on natural gas. The introduction of a heat pump significantly enhances environmental performance, with reduced fossil fuel consumption, increased renewable energy use, and improved cost-effectiveness of carbon avoidance. The ETS2 has no impact in the case of full electrification, as fossil fuel consumption is completely eliminated. Full electrification achieves the greatest emission reductions and the lowest non-renewable primary energy demand while offering the strongest long-term economic performance. Overall, the analysis demonstrates that combining PV systems with building electrification is essential to achieving deep decarbonization, and that fully electrified configurations present the most robust pathway for compliance with emerging ETS2 policies. Full article
22 pages, 4007 KB  
Article
Medium-Temperature Heat Pumps for Sustainable Urban Heating: Evidence from a District Network in Italy
by Mosè Rossi, Danilo Salvi and Gabriele Comodi
Energies 2026, 19(2), 560; https://doi.org/10.3390/en19020560 - 22 Jan 2026
Viewed by 58
Abstract
The decarbonisation of urban heating systems represents a key challenge for the transition towards sustainable cities. This study investigates the field integration of a Medium-Temperature Heat Pump (MTHP) within the Osimo District Heating Network (DHN) in Italy, demonstrating how low-grade return flows (30–50 [...] Read more.
The decarbonisation of urban heating systems represents a key challenge for the transition towards sustainable cities. This study investigates the field integration of a Medium-Temperature Heat Pump (MTHP) within the Osimo District Heating Network (DHN) in Italy, demonstrating how low-grade return flows (30–50 °C) can be effectively upgraded to supply temperatures of 65–75 °C, in line with 4th-generation district heating requirements. Specifically, 5256 h of MTHP operation within the DHN were analysed to validate the initial design assumptions, develop surrogate performance models, and assess the system’s techno-economic and environmental performance. The results indicate stable and reliable operation, with a weighted average Coefficient of Performance (COP) of 3.96 and a weighted average thermal output of 134.5 kW. From an economic perspective, the system achieves a payback period of approximately six years and a Levelised Cost of Heat (LCOH) of 0.0245 €/kWh. Environmentally, the MTHP enables CO2 emission reductions of about 120 t compared with conventional gas-fired boilers. Beyond its technical performance, the study highlights the strong replicability of MTHP solutions for small- and medium-scale DHNs across Europe. The proposed approach offers urban utilities a scalable and cost-competitive pathway towards low-carbon heat supply, directly supporting municipal climate strategies and aligning with key EU policy frameworks, including the European Green Deal, REPowerEU, and the “Fit-for-55” package. Full article
(This article belongs to the Special Issue Advances in Waste Heat Utilization Systems)
Show Figures

Figure 1

30 pages, 5886 KB  
Article
Energy Efficiency Through Waste-Heat Recovery: Hybrid Data-Centre Cooling in District Heating Applications
by Damir Požgaj, Boris Delač, Branimir Pavković and Vedran Medica-Viola
Appl. Sci. 2026, 16(1), 323; https://doi.org/10.3390/app16010323 - 28 Dec 2025
Viewed by 667
Abstract
Growing demand for computing resources is increasing electricity use and cooling needs in data centres (DCs). Simultaneously, it creates opportunities for decarbonisation through the integration of waste heat (WH) into district heating (DH) systems. Such integration reduces primary energy (PE) consumption and emissions, [...] Read more.
Growing demand for computing resources is increasing electricity use and cooling needs in data centres (DCs). Simultaneously, it creates opportunities for decarbonisation through the integration of waste heat (WH) into district heating (DH) systems. Such integration reduces primary energy (PE) consumption and emissions, particularly in low-temperature DH networks. In this study, the possibility for utilisation of WH from DC hybrid cooling system into third generation (3G), fourth generation (4G), and fifth generation (5G) DH systems is investigated. The work is based on the dynamic simulations in TRNSYS. The model of the hybrid cooling system consists of a direct liquid cooling (DLC) loop (25–30 °C) and a chilled water rack coolers (CRCC) loop (10–15 °C). For 3G DH, a high-temperature water-to-water heat pump (HP) is applied to ensure the required water temperature in the system. Measured meteorological and equipment data are used to reproduce real DC operating conditions. Relative to the reference system, integrating WH into 5G DH reduces PE consumption and CO2 emissions by 88%. Results indicate that integrating WH into 5G DH and 4G DH minimises global cost and achieves a payback period of less than one year, whereas 3G DH, requiring high-temperature HPs, achieves 14 years. This approach to integrating waste heat from a hybrid DLC+CRCC DC cooling system is technically feasible, economically and environmentally viable for planning future urban integrations of waste heat into DH systems. Full article
Show Figures

Figure 1

15 pages, 2006 KB  
Review
Fast Rail in the Era of Modal Shift: Global High-Speed Networks and Their Environmental and Socio-Economic Impacts
by Dániel Szabó and Viktória Panker
Future Transp. 2025, 5(4), 199; https://doi.org/10.3390/futuretransp5040199 - 14 Dec 2025
Viewed by 544
Abstract
This paper reviews the role of high-speed rail (HSR) and other fast rail technologies in decarbonising inter-urban transport. It first outlines the global deployment of HSR, with particular emphasis on Europe and China, and situates these networks within the wider geography of fast [...] Read more.
This paper reviews the role of high-speed rail (HSR) and other fast rail technologies in decarbonising inter-urban transport. It first outlines the global deployment of HSR, with particular emphasis on Europe and China, and situates these networks within the wider geography of fast rail systems. The paper then compares HSR with competing modes such as air transport and passenger cars along key dimensions including door-to-door travel time, energy use and emissions. Building on a qualitative synthesis of the international literature, it discusses the environmental, economic and social impacts of HSR, highlighting conditions under which HSR can deliver substantial modal shift and life-cycle greenhouse gas savings, as well as situations where benefits are more limited or unevenly distributed. Finally, the review briefly considers emerging fast rail concepts such as Maglev and Hyperloop and argues that they should currently be treated as complementary, long-term options rather than immediate substitutes for conventional HSR. Full article
(This article belongs to the Special Issue Future of Vehicles (FoV2025))
Show Figures

Figure 1

14 pages, 458 KB  
Article
Analysis of the Willingness to Shift to Electric Vehicles: Critical Factors and Perspectives
by Antonio Comi, Umberto Crisalli, Olesia Hriekova and Ippolita Idone
Vehicles 2025, 7(4), 159; https://doi.org/10.3390/vehicles7040159 - 10 Dec 2025
Viewed by 441
Abstract
Urbanisation and the increasing concentration of populations in cities present significant challenges for achieving sustainable mobility and advancing the energy transition. Private vehicles, particularly those powered by internal combustion engines, remain the primary contributors to urban air pollution and greenhouse gas emissions. This [...] Read more.
Urbanisation and the increasing concentration of populations in cities present significant challenges for achieving sustainable mobility and advancing the energy transition. Private vehicles, particularly those powered by internal combustion engines, remain the primary contributors to urban air pollution and greenhouse gas emissions. This situation has prompted the European Union to accelerate transport decarbonisation through comprehensive policy frameworks, notably the “Fit for 55” package, which aims to reduce net greenhouse gas emissions by 55% by 2030. These measures underscore the urgency of shifting towards low-emission transport modes. In this context, electric vehicles (EVs) play a key role in supporting Sustainable Development Goal 7 by promoting cleaner and more efficient transport solutions, and Sustainable Development Goal 11, aimed at creating more sustainable and liveable cities. Despite growing policy attention, the adoption of EVs remains constrained by users’ concerns regarding purchase costs, driving range, and the availability of charging infrastructure, as shown by the findings of this study. In this context, this study explores the determinants of EV adoption in Italy by employing a combined methodological approach that integrates a stated preference (SP) survey with discrete choice modelling. The analysis aims to quantify the influence of economic, technical, and infrastructural factors on users’ willingness to switch to EVs, providing insights for policymakers and industry stakeholders to design effective strategies for accelerating the transition toward the sustainable mobility. Full article
Show Figures

Graphical abstract

18 pages, 2193 KB  
Article
Regulatory Enablers and Stakeholders’ Acceptance in Defining Eco-Friendly Vehicle Logistics Solutions for Rome
by Riccardo Erriu, Bhavani Shankar Balla, Edoardo Marcucci, Valerio Gatta, Antonio Comi, Giuseppe Napoli and Antonio Polimeni
Future Transp. 2025, 5(4), 188; https://doi.org/10.3390/futuretransp5040188 - 4 Dec 2025
Viewed by 383
Abstract
Urban freight generates a disproportionate share of urban externalities, yet the large-scale integration of eco-friendly vehicles (EFVs) remains limited. Barriers include high capital costs, inadequate charging/refuelling infrastructure, and fragmented governance frameworks. This article examines how regulatory structures and stakeholder alignment shape EFV adoption [...] Read more.
Urban freight generates a disproportionate share of urban externalities, yet the large-scale integration of eco-friendly vehicles (EFVs) remains limited. Barriers include high capital costs, inadequate charging/refuelling infrastructure, and fragmented governance frameworks. This article examines how regulatory structures and stakeholder alignment shape EFV adoption in Rome, analysing two pilot solutions: (i) a shared hub for electric and hydrogen freight vehicles, and (ii) a cargo-bike programme combining service-trip separation with reverse logistics. The methodological approach integrates a structured review of recent scholarship—organised in line with PRISMA guidance and enriched with bibliometric analysis—with empirical insights from five Living Lab workshops involving logistics providers, energy firms, technology suppliers, and industry associations. The findings highlight that progress depends less on technological capability than on policy mixes matched to stakeholder incentives. For the hub, decisive factors include siting, governance, and scale, while for cargo-bikes, reliability of dispatch, remuneration models, and certified training are critical. The study concludes that Rome’s path to freight decarbonisation requires regulatory and financial packages continuously tailored to actors’ operational priorities and behavioural responses. Full article
Show Figures

Figure 1

27 pages, 4620 KB  
Article
Simulating the Electrification of Cape Town’s Last-Mile Motorcycle Fleet: Grid Impact and Resource Requirements
by Halloran Stratford and Marthinus Johannes Booysen
World Electr. Veh. J. 2025, 16(12), 641; https://doi.org/10.3390/wevj16120641 - 22 Nov 2025
Viewed by 547
Abstract
The rapid growth of on-demand services in Sub-Saharan Africa has intensified reliance on internal combustion engine (ICE) motorcycles for last-mile delivery, with Cape Town exemplifying both the opportunities and challenges of this trend. While motorcycles provide affordable and flexible mobility, their disproportionate emissions, [...] Read more.
The rapid growth of on-demand services in Sub-Saharan Africa has intensified reliance on internal combustion engine (ICE) motorcycles for last-mile delivery, with Cape Town exemplifying both the opportunities and challenges of this trend. While motorcycles provide affordable and flexible mobility, their disproportionate emissions, high operating costs, and exposure to volatile fuel prices create pressing economic and environmental concerns. This paper investigates the implications of electrifying Cape Town’s last-mile delivery fleet by modelling the operational dynamics of 39,005 delivery trips performed by 385 motorcycles. Using empirical data, the study simulates fleet electrification under two battery-swapping scenarios—daytime swapping only and a hybrid swapping plus overnight charging model—while testing unmanaged and managed charging strategies. Results show that downsizing the fleet could reduce system resources by more than 50%, lowering capital and grid burdens, with managed charging offering long-term operational savings. Managed charging approaches, particularly off-peak balancing and solar-following, successfully mitigate grid strain and enhance solar utilisation, though they demand larger battery pools, a trade-off quantified by a techno-economic analysis. Crucially, pairing electrification with decentralised solar generation demonstrates the potential for a resilient, net-zero system insulated from load shedding. The findings provide a transferable framework for African cities to decarbonise urban logistics while safeguarding rider livelihoods and grid stability. Full article
Show Figures

Figure 1

20 pages, 280 KB  
Article
Urban Policymakers’ Perspectives on the Equity Impacts and Risks of Local Energy and Mobility Decarbonisation Policies: A Case Study of Dutch Cities
by Peerawat Payakkamas, Joop de Kraker and Marijn Vodegel
Urban Sci. 2025, 9(10), 405; https://doi.org/10.3390/urbansci9100405 - 1 Oct 2025
Cited by 1 | Viewed by 1175
Abstract
Decarbonisation of urban energy and transportation systems has become a priority for cities worldwide, with policies primarily aiming to promote rooftop solar electricity generation and a shift to private electric vehicles (EVs). However, these policies may also increase inequalities in access to affordable, [...] Read more.
Decarbonisation of urban energy and transportation systems has become a priority for cities worldwide, with policies primarily aiming to promote rooftop solar electricity generation and a shift to private electric vehicles (EVs). However, these policies may also increase inequalities in access to affordable, low-carbon mobility and the associated benefits. While academic literature shows increasing awareness of these equity impacts and risks, the extent to which this applies to policy practice remains unclear. We therefore conducted a case study of seven Dutch cities, analysing local policy documents and conducting interviews with policymakers. The study provided insight into the current policy landscape and revealed a general sensitivity among interviewed policymakers to possible equity impacts of the current decarbonisation policies. Only a few measures to address these impacts are currently in place, but policymakers have proposed a range of novel and more inclusive measures, which can be tested for their impacts and scaling potential in real-life experiments. Another priority for future research is exploring the potential of shared electric mobility to provide equitable access to low-carbon transportation. Full article
22 pages, 2254 KB  
Article
Future Energy Consumption and Economic Implications of Transport Policies: A Scenario-Based Analysis for 2030 and 2050
by Ammar Al-lami, Adám Török, Anas Alatawneh and Mohammed Alrubaye
Energies 2025, 18(12), 3012; https://doi.org/10.3390/en18123012 - 6 Jun 2025
Cited by 5 | Viewed by 2887
Abstract
The transition to sustainable transport poses significant challenges for urban mobility, requiring shifts in fuel consumption, emissions reductions, and economic adjustments. This study conducts a scenario-based analysis of Budapest’s transport energy consumption, emissions, and monetary implications for 2020, 2030, and 2050 using the [...] Read more.
The transition to sustainable transport poses significant challenges for urban mobility, requiring shifts in fuel consumption, emissions reductions, and economic adjustments. This study conducts a scenario-based analysis of Budapest’s transport energy consumption, emissions, and monetary implications for 2020, 2030, and 2050 using the Budapest Transport Model (EFM), which integrates COPERT and HBEFA within PTV VISUM. This research examines the evolution of diesel, gasoline, and electric vehicle (EV) energy use alongside forecasted fuel prices, using the ARIMA model to assess the economic impact of transport decarbonisation. The findings reveal a 32.8% decline in diesel consumption and a 64.7% drop in gasoline usage by 2050, despite increasing vehicle kilometres travelled (VKT). Electricity consumption surged 97-fold, highlighting fleet electrification trends, while CO2 emissions decreased by 48%, demonstrating the effectiveness of policies, improved vehicle efficiency, and alternative energy adoption. However, fuel price forecasts indicate significant cost escalations, with diesel and gasoline prices doubling and CO2 pricing increasing sevenfold by 2050, presenting financial challenges in the transition. This study highlights the need for EV incentives, electricity price regulation, public transport investments, and carbon pricing adjustments. Future research should explore energy grid resilience, mobility trends, and alternative fuel adoption to support Budapest’s sustainable transport goals. Full article
(This article belongs to the Special Issue New Challenges in Economic Development and Energy Policy)
Show Figures

Figure 1

25 pages, 2726 KB  
Article
Breaking Silos: A Systemic Portfolio Approach and Digital Tool for Collaborative Urban Decarbonisation
by Manuel Alméstar, Sara Romero-Muñoz and Nieves Mestre
Sustainability 2025, 17(11), 5145; https://doi.org/10.3390/su17115145 - 3 Jun 2025
Cited by 3 | Viewed by 2116
Abstract
Urban decarbonisation requires governance models that overcome the fragmentation and rigidity of traditional urban planning. This article presents a systemic and digital framework for managing urban decarbonisation portfolios aligned with the EU Mission for Climate-Neutral and Smart Cities. Grounded in systems thinking and [...] Read more.
Urban decarbonisation requires governance models that overcome the fragmentation and rigidity of traditional urban planning. This article presents a systemic and digital framework for managing urban decarbonisation portfolios aligned with the EU Mission for Climate-Neutral and Smart Cities. Grounded in systems thinking and portfolio theory, this study develops an analytical taxonomy and an interactive digital tool to support strategic coordination, multistakeholder collaboration, and adaptive decision-making. The framework is empirically validated through the case of Madrid’s Climate City Contract, demonstrating its functionality and transferability. Using a mixed-method approach—combining co-creation workshops, interviews, document analysis, and iterative prototyping—this research maps interdependencies among projects, actors, and levers of change. The digital tool enables real-time visualisation of collaboration patterns, gaps, and synergies, enhancing strategic foresight and coordination capacity. Findings reveal that 75% of initiatives in Madrid’s CCC address climate adaptation, 80.36% are linked to knowledge generation, and key anchor projects serve as integrative hubs within the portfolio. This study concludes that the portfolio approach strengthens systemic innovation and reflexive governance by integrating digital infrastructures with collaborative planning processes. While challenges persist—including data integration, institutional capacity, and political dynamics—this research offers a replicable methodology for embedding mission-oriented strategies into urban governance. The digital portfolio emerges as a complementary governance tool that enhances transparency, organisational learning, and alignment across governance levels. Full article
Show Figures

Figure 1

28 pages, 11018 KB  
Article
Evaluating Urban Bikeability: A Comprehensive Assessment of Póvoa de Varzim’s Network
by Ugo N. Castañon, Paulo J. G. Ribeiro and José F. G. Mendes
Sustainability 2024, 16(21), 9472; https://doi.org/10.3390/su16219472 - 31 Oct 2024
Cited by 7 | Viewed by 2133
Abstract
In urban areas, bicycles promote sustainable, efficient, and healthy mobility while reducing carbon emissions. Bicycle trips, especially those replacing car journeys, help reduce traffic congestion and lower emissions, contributing to decarbonising the transport sector. This study introduces a method for evaluating the bikeability [...] Read more.
In urban areas, bicycles promote sustainable, efficient, and healthy mobility while reducing carbon emissions. Bicycle trips, especially those replacing car journeys, help reduce traffic congestion and lower emissions, contributing to decarbonising the transport sector. This study introduces a method for evaluating the bikeability of urban road networks through a multi-criteria analysis using Geographic Information Systems (GIS). Five key criteria are considered: accessibility, infrastructure, road features, environmental surroundings, and safety factors. A case study in a Portuguese city revealed that over 95% of the urban network has a low to moderate bikeability index (0.3–0.5), with no segments exceeding 0.7, indicating a need for significant infrastructure improvements. The analysis revealed that safety strongly influences bikeability, while road features and the surrounding environment also show positive associations. In contrast, infrastructure and accessibility displayed weaker correlations due to limited infrastructure and integration with public transport. Despite the differences, all criteria can identify distinct bikeability levels. The findings underscore the urgent need for a comprehensive cycling infrastructure, including cycle paths and improved bicycle parking. Additionally, the study highlights the need for a more robust model with stakeholder participation in future evaluations. This adaptable methodology provides a robust tool for assessing and enhancing urban bikeability, contributing to more sustainable and cyclist-friendly cities. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

25 pages, 3486 KB  
Systematic Review
Planning of Urban Freight Innovation Ecosystems: A Systematic Literature Review from a Public Authority Perspective
by Luciano Agustin Pana Tronca and Lucia Rotaris
Future Transp. 2024, 4(3), 795-819; https://doi.org/10.3390/futuretransp4030038 - 16 Jul 2024
Cited by 2 | Viewed by 3303
Abstract
This study explores the role of local authorities in achieving net zero emissions in the context of the climate crisis, with a particular focus on the freight transport sector. The study identifies the challenges of decarbonising urban freight transport and highlights the need [...] Read more.
This study explores the role of local authorities in achieving net zero emissions in the context of the climate crisis, with a particular focus on the freight transport sector. The study identifies the challenges of decarbonising urban freight transport and highlights the need for planning frameworks to facilitate this transition. The authors examine freight innovation ecosystems and the various actors involved in designing public policies that incentivise the creation or enhancement of these ecosystems. Through a systematic literature review, bibliometric analysis, and content analysis, this study identifies a lack of connection between the literature on these topics. However, it also highlights the potential for lessons to be learned from successful incentive frameworks in the four clusters identified. The authors propose a comprehensive incentives framework that includes both direct and indirect incentives aimed at the ecosystem and the public sector, respectively, as well as city conditions that can facilitate systemic change. Overall, this study provides valuable insights for policymakers and stakeholders seeking to promote sustainable transport and achieve net zero emissions. Full article
Show Figures

Figure 1

25 pages, 5835 KB  
Review
Multiple Roles of Green Space in the Resilience, Sustainability and Equity of Aotearoa New Zealand’s Cities
by Paul Blaschke, Maibritt Pedersen Zari, Ralph Chapman, Edward Randal, Meredith Perry, Philippa Howden-Chapman and Elaine Gyde
Land 2024, 13(7), 1022; https://doi.org/10.3390/land13071022 - 8 Jul 2024
Cited by 10 | Viewed by 4353
Abstract
Green space is needed in urban areas to increase resilience to climate change and other shocks, as well as for human health and wellbeing. Urban green space (UGS) is increasingly considered as green infrastructure and highly complementary to engineered urban infrastructure, such as [...] Read more.
Green space is needed in urban areas to increase resilience to climate change and other shocks, as well as for human health and wellbeing. Urban green space (UGS) is increasingly considered as green infrastructure and highly complementary to engineered urban infrastructure, such as water and transport networks. The needs for resilient, sustainable and equitable future wellbeing require strategic planning, designing and upgrading of UGS, especially in areas where it has been underprovided. We explore the implications of these needs for urban development through a detailed review of cited UGS analyses conducted on the larger cities in Aotearoa New Zealand (AoNZ). There are important differences in UGS availability (i.e., quantity), accessibility and quality within and between cities. Some of these differences stem from ad hoc patterns of development, as well as topography. They contribute to apparently growing inequities in the availability and accessibility of UGS. Broader health and wellbeing considerations, encompassing Indigenous and community values, should be at the heart of UGS design and decisionmaking. Most of AoNZ’s cities aim (at least to some extent) at densification and decarbonisation to accommodate a growing population without costly sprawl; however, to date, sprawl continues. Our findings indicate a clear need for the design and provision of high-quality, well-integrated UGS within and servicing areas of denser housing, which are typically areas in cities with a demonstrable UGS deficiency. Full article
Show Figures

Figure 1

21 pages, 5389 KB  
Article
PEMFC Electrochemical Degradation Analysis of a Fuel Cell Range-Extender (FCREx) Heavy Goods Vehicle after a Break-In Period
by Jia-Di Yang, Theo Suter, Jason Millichamp, Rhodri E. Owen, Wenjia Du, Paul R. Shearing, Dan J. L. Brett and James B. Robinson
Energies 2024, 17(12), 2980; https://doi.org/10.3390/en17122980 - 17 Jun 2024
Cited by 3 | Viewed by 2634
Abstract
With the increasing focus on decarbonisation of the transport sector, it is imperative to consider routes to electrify vehicles beyond those achievable using lithium-ion battery technology. These include heavy goods vehicles and aerospace applications that require propulsion systems that can provide gravimetric energy [...] Read more.
With the increasing focus on decarbonisation of the transport sector, it is imperative to consider routes to electrify vehicles beyond those achievable using lithium-ion battery technology. These include heavy goods vehicles and aerospace applications that require propulsion systems that can provide gravimetric energy densities, which are more likely to be delivered by fuel cell systems. While the discussion of light-duty vehicles is abundant in the literature, heavy goods vehicles are under-represented. This paper presents an overview of the electrochemical degradation of a proton exchange membrane fuel cell integrated into a simulated Class 8 heavy goods range-extender fuel cell hybrid electric vehicle operating in urban driving conditions. Electrochemical degradation data such as polarisation curves, cyclic voltammetry values, linear sweep voltammetry values, and electrochemical impedance spectroscopy values were collected and analysed to understand the expected degradation modes in this application. In this application, the proton exchange membrane fuel cell stack power was designed to remain constant to fulfil the mission requirements, with dynamic and peak power demands managed by lithium-ion batteries, which were incorporated into the hybridised powertrain. A single fuel cell or battery cell can either be operated at maximum or nominal power demand, allowing four operational scenarios: maximum fuel cell maximum battery, maximum fuel cell nominal battery, nominal fuel cell maximum battery, and nominal fuel cell nominal battery. Operating scenarios with maximum fuel cell operating power experienced more severe degradation after endurance testing than nominal operating power. A comparison of electrochemical degradation between these operating scenarios was analysed and discussed. By exploring the degradation effects in proton exchange membrane fuel cells, this paper offers insights that will be useful in improving the long-term performance and durability of proton exchange membrane fuel cells in heavy-duty vehicle applications and the design of hybridised powertrains. Full article
(This article belongs to the Special Issue Advances in Proton Exchange Membrane Fuel Cell)
Show Figures

Figure 1

24 pages, 3824 KB  
Article
Safety of Cyclists in Poland in the Context of European Road Traffic
by Mariusz Pyra
Sustainability 2024, 16(9), 3682; https://doi.org/10.3390/su16093682 - 28 Apr 2024
Cited by 2 | Viewed by 2872
Abstract
The growing interest in cycling as a means of urban transport has led to an increased focus on cyclist safety as a key aspect of urban planning and transport policy. Simulation studies conducted by the International Transport Forum have demonstrated that reductions in [...] Read more.
The growing interest in cycling as a means of urban transport has led to an increased focus on cyclist safety as a key aspect of urban planning and transport policy. Simulation studies conducted by the International Transport Forum have demonstrated that reductions in CO2 and other pollutants can be achieved in the context of urban transport, thus realising the goals of decarbonising road transport. The spread of modal transport in cities is a potential reality within the next decade. Bicycles play a significant role in this context. This article presents an analysis of data on accidents involving cyclists. National and international data were analysed to identify the main risk factors. The aim of the paper is to analyse the risk to cyclists with an attempt to identify and map the five biggest risks to cyclists in urban traffic. The aim of the research is to raise awareness of cyclist safety issues and to identify directions for further action to reduce accidents and improve overall road safety. The results of the conducted analyses indicate that the risk for cyclists in road traffic (including urban traffic) has been on a noticeable downward trend over the past five to ten years. This trend allows for the mapping of the most significant types/risks in cycling in urban environments, thereby enabling the implementation of risk management strategies based on the method of risk mapping. Full article
Show Figures

Figure 1

Back to TopTop