Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (402)

Search Parameters:
Keywords = unmanned agricultural aerial system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 4519 KiB  
Article
Aerial Autonomy Under Adversity: Advances in Obstacle and Aircraft Detection Techniques for Unmanned Aerial Vehicles
by Cristian Randieri, Sai Venkata Ganesh, Rayappa David Amar Raj, Rama Muni Reddy Yanamala, Archana Pallakonda and Christian Napoli
Drones 2025, 9(8), 549; https://doi.org/10.3390/drones9080549 - 4 Aug 2025
Abstract
Unmanned Aerial Vehicles (UAVs) have rapidly grown into different essential applications, including surveillance, disaster response, agriculture, and urban monitoring. However, for UAVS to steer safely and autonomously, the ability to detect obstacles and nearby aircraft remains crucial, especially under hard environmental conditions. This [...] Read more.
Unmanned Aerial Vehicles (UAVs) have rapidly grown into different essential applications, including surveillance, disaster response, agriculture, and urban monitoring. However, for UAVS to steer safely and autonomously, the ability to detect obstacles and nearby aircraft remains crucial, especially under hard environmental conditions. This study comprehensively analyzes the recent landscape of obstacle and aircraft detection techniques tailored for UAVs acting in difficult scenarios such as fog, rain, smoke, low light, motion blur, and disorderly environments. It starts with a detailed discussion of key detection challenges and continues with an evaluation of different sensor types, from RGB and infrared cameras to LiDAR, radar, sonar, and event-based vision sensors. Both classical computer vision methods and deep learning-based detection techniques are examined in particular, highlighting their performance strengths and limitations under degraded sensing conditions. The paper additionally offers an overview of suitable UAV-specific datasets and the evaluation metrics generally used to evaluate detection systems. Finally, the paper examines open problems and coming research directions, emphasising the demand for lightweight, adaptive, and weather-resilient detection systems appropriate for real-time onboard processing. This study aims to guide students and engineers towards developing stronger and intelligent detection systems for next-generation UAV operations. Full article
Show Figures

Figure 1

24 pages, 7736 KiB  
Article
Integrating Remote Sensing and Ground Data to Assess the Effects of Subsoiling on Drought Stress in Maize and Sunflower Grown on Haplic Chernozem
by Milena Kercheva, Dessislava Ganeva, Zlatomir Dimitrov, Atanas Z. Atanasov, Gergana Kuncheva, Viktor Kolchakov, Plamena Nikolova, Stelian Dimitrov, Martin Nenov, Lachezar Filchev, Petar Nikolov, Galin Ginchev, Maria Ivanova, Iliana Ivanova, Katerina Doneva, Tsvetina Paparkova, Milena Mitova and Martin Banov
Agriculture 2025, 15(15), 1644; https://doi.org/10.3390/agriculture15151644 - 30 Jul 2025
Viewed by 148
Abstract
In drought-prone regions without irrigation systems, effective agrotechnologies such as subsoiling are crucial for enhancing soil infiltration and water retention. However, the effects of subsoiling can vary depending on crop type and environmental conditions. Despite previous research, there is limited understanding of the [...] Read more.
In drought-prone regions without irrigation systems, effective agrotechnologies such as subsoiling are crucial for enhancing soil infiltration and water retention. However, the effects of subsoiling can vary depending on crop type and environmental conditions. Despite previous research, there is limited understanding of the contrasting responses of C3 (sunflower) and C4 (maize) crops to subsoiling under drought stress. This study addresses this knowledge gap by assessing the effectiveness of subsoiling as a drought mitigation practice on Haplic Chernozem in Northern Bulgaria, integrating ground-based and remote sensing data. Soil physical parameters, leaf area index (LAI), canopy temperature, crop water stress index (CWSI), soil moisture, and yield were evaluated under both conventional tillage and subsoiling for the two crops. A variety of optical and radar descriptive remote sensing products derived from Sentinel-1 and Sentinel-2 satellite data were calculated for different crop types. Consequently, the use of machine learning, utilizing all the processed remote sensing products, enabled the reasonable prediction of LAI, achieving a coefficient of determination (R2) after a cross-validation greater than 0.42 and demonstrating good agreement with in situ observations. Results revealed differing responses: subsoiling had a positive effect on sunflower, improving LAI, water status, and slightly increasing yield, while it had no positive effect on maize. These findings highlight the importance of crop-specific responses in evaluating subsoiling practices and demonstrate the added value of integrating unmanned aerial systems (UAS) and satellite-based remote sensing data into agricultural drought monitoring. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

20 pages, 1346 KiB  
Article
Integrated Smart Farm System Using RNN-Based Supply Scheduling and UAV Path Planning
by Dongwoo You, Yukai Chen and Donkyu Baek
Drones 2025, 9(8), 531; https://doi.org/10.3390/drones9080531 - 28 Jul 2025
Viewed by 344
Abstract
Smart farming has emerged as a promising solution to address challenges such as climate change, population growth, and limited agricultural infrastructure. To enhance the operational efficiency of smart farms, this paper proposes an integrated system that combines Recurrent Neural Networks (RNNs) and Unmanned [...] Read more.
Smart farming has emerged as a promising solution to address challenges such as climate change, population growth, and limited agricultural infrastructure. To enhance the operational efficiency of smart farms, this paper proposes an integrated system that combines Recurrent Neural Networks (RNNs) and Unmanned Aerial Vehicles (UAVs). The proposed framework forecasts future resource shortages using an RNN model and recent environmental data collected from the field. Based on these forecasts, the system schedules a resource supply plan and determines the UAV path by considering both dynamic energy consumption and priority levels, aiming to maximize the efficiency of the resource supply. Experimental results show that the proposed integrated smart farm framework achieves an average reduction of 81.08% in the supply miss rate. This paper demonstrates the potential of an integrated AI- and UAV-based smart farm management system in achieving both environmental responsiveness and operational optimization. Full article
(This article belongs to the Section Drones in Agriculture and Forestry)
Show Figures

Figure 1

46 pages, 2814 KiB  
Review
From Application-Driven Growth to Paradigm Shift: Scientific Evolution and Core Bottleneck Analysis in the Field of UAV Remote Sensing
by Denghong Huang, Zhongfa Zhou, Zhenzhen Zhang, Xiandan Du, Ruiqi Fan, Qianxia Li and Youyan Huang
Appl. Sci. 2025, 15(15), 8304; https://doi.org/10.3390/app15158304 - 25 Jul 2025
Viewed by 240
Abstract
Unmanned Aerial Vehicle Remote Sensing (UAV-RS) has emerged as a transformative technology in high-resolution Earth observation, with widespread applications in precision agriculture, ecological monitoring, and disaster response. However, a systematic understanding of its scientific evolution and structural bottlenecks remains lacking. This study collected [...] Read more.
Unmanned Aerial Vehicle Remote Sensing (UAV-RS) has emerged as a transformative technology in high-resolution Earth observation, with widespread applications in precision agriculture, ecological monitoring, and disaster response. However, a systematic understanding of its scientific evolution and structural bottlenecks remains lacking. This study collected 4985 peer-reviewed articles from the Web of Science Core Collection and conducted a comprehensive scientometric analysis using CiteSpace v.6.2.R4, Origin 2022, and Excel. We examined publication trends, country/institutional collaboration networks, keyword co-occurrence clusters, and emerging research fronts. Results reveal an exponential growth in UAV-RS research since 2015, dominated by application-driven studies. Hotspots include vegetation indices, structure from motion modeling, and deep learning integration. However, foundational challenges—such as platform endurance, sensor coordination, and data standardization—remain underexplored. The global collaboration network exhibits a “strong hubs, weak bridges” pattern, limiting transnational knowledge integration. This review highlights the imbalance between surface-level innovation and deep technological maturity and calls for a paradigm shift from fragmented application responses to integrated systems development. Our findings provide strategic insights for researchers, policymakers, and funding agencies to guide the next stage of UAV-RS evolution. Full article
Show Figures

Figure 1

21 pages, 16254 KiB  
Article
Prediction of Winter Wheat Yield and Interpretable Accuracy Under Different Water and Nitrogen Treatments Based on CNNResNet-50
by Donglin Wang, Yuhan Cheng, Longfei Shi, Huiqing Yin, Guangguang Yang, Shaobo Liu, Qinge Dong and Jiankun Ge
Agronomy 2025, 15(7), 1755; https://doi.org/10.3390/agronomy15071755 - 21 Jul 2025
Viewed by 427
Abstract
Winter wheat yield prediction is critical for optimizing field management plans and guiding agricultural production. To address the limitations of conventional manual yield estimation methods, including low efficiency and poor interpretability, this study innovatively proposes an intelligent yield estimation method based on a [...] Read more.
Winter wheat yield prediction is critical for optimizing field management plans and guiding agricultural production. To address the limitations of conventional manual yield estimation methods, including low efficiency and poor interpretability, this study innovatively proposes an intelligent yield estimation method based on a convolutional neural network (CNN). A comprehensive two-factor (fertilization × irrigation) controlled field experiment was designed to thoroughly validate the applicability and effectiveness of this method. The experimental design comprised two irrigation treatments, sufficient irrigation (C) at 750 m3 ha−1 and deficit irrigation (M) at 450 m3 ha−1, along with five fertilization treatments (at a rate of 180 kg N ha−1): (1) organic fertilizer alone, (2) organic–inorganic fertilizer blend at a 7:3 ratio, (3) organic–inorganic fertilizer blend at a 3:7 ratio, (4) inorganic fertilizer alone, and (5) no fertilizer control. The experimental protocol employed a DJI M300 RTK unmanned aerial vehicle (UAV) equipped with a multispectral sensor to systematically acquire high-resolution growth imagery of winter wheat across critical phenological stages, from heading to maturity. The acquired multispectral imagery was meticulously annotated using the Labelme professional annotation tool to construct a comprehensive experimental dataset comprising over 2000 labeled images. These annotated data were subsequently employed to train an enhanced CNN model based on ResNet50 architecture, which achieved automated generation of panicle density maps and precise panicle counting, thereby realizing yield prediction. Field experimental results demonstrated significant yield variations among fertilization treatments under sufficient irrigation, with the 3:7 organic–inorganic blend achieving the highest actual yield (9363.38 ± 468.17 kg ha−1) significantly outperforming other treatments (p < 0.05), confirming the synergistic effects of optimized nitrogen and water management. The enhanced CNN model exhibited superior performance, with an average accuracy of 89.0–92.1%, representing a 3.0% improvement over YOLOv8. Notably, model accuracy showed significant correlation with yield levels (p < 0.05), suggesting more distinct panicle morphological features in high-yield plots that facilitated model identification. The CNN’s yield predictions demonstrated strong agreement with the measured values, maintaining mean relative errors below 10%. Particularly outstanding performance was observed for the organic fertilizer with full irrigation (5.5% error) and the 7:3 organic-inorganic blend with sufficient irrigation (8.0% error), indicating that the CNN network is more suitable for these management regimes. These findings provide a robust technical foundation for precision farming applications in winter wheat production. Future research will focus on integrating this technology into smart agricultural management systems to enable real-time, data-driven decision making at the farm scale. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

25 pages, 11642 KiB  
Article
Non-Invasive Estimation of Crop Water Stress Index and Irrigation Management with Upscaling from Field to Regional Level Using Remote Sensing and Agrometeorological Data
by Emmanouil Psomiadis, Panos I. Philippopoulos and George Kakaletris
Remote Sens. 2025, 17(14), 2522; https://doi.org/10.3390/rs17142522 - 20 Jul 2025
Viewed by 448
Abstract
Precision irrigation plays a crucial role in managing crop production in a sustainable and environmentally friendly manner. This study builds on the results of the GreenWaterDrone project, aiming to estimate, in real time, the actual water requirements of crop fields using the crop [...] Read more.
Precision irrigation plays a crucial role in managing crop production in a sustainable and environmentally friendly manner. This study builds on the results of the GreenWaterDrone project, aiming to estimate, in real time, the actual water requirements of crop fields using the crop water stress index, integrating infrared canopy temperature, air temperature, relative humidity, and thermal and near-infrared imagery. To achieve this, a state-of-the-art aerial micrometeorological station (AMMS), equipped with an infrared thermal sensor, temperature–humidity sensor, and advanced multispectral and thermal cameras is mounted on an unmanned aerial system (UAS), thus minimizing crop field intervention and permanently installed equipment maintenance. Additionally, data from satellite systems and ground micrometeorological stations (GMMS) are integrated to enhance and upscale system results from the local field to the regional level. The research was conducted over two years of pilot testing in the municipality of Trifilia (Peloponnese, Greece) on pilot potato and watermelon crops, which are primary cultivations in the region. Results revealed that empirical irrigation applied to the rhizosphere significantly exceeded crop water needs, with over-irrigation exceeding by 390% the maximum requirement in the case of potato. Furthermore, correlations between high-resolution remote and proximal sensors were strong, while associations with coarser Landsat 8 satellite data, to upscale the local pilot field experimental results, were moderate. By applying a comprehensive model for upscaling pilot field results, to the overall Trifilia region, project findings proved adequate for supporting sustainable irrigation planning through simulation scenarios. The results of this study, in the context of the overall services introduced by the project, provide valuable insights for farmers, agricultural scientists, and local/regional authorities and stakeholders, facilitating improved regional water management and sustainable agricultural policies. Full article
Show Figures

Figure 1

23 pages, 4667 KiB  
Article
An Experimental Study on the Charging Effects and Atomization Characteristics of a Two-Stage Induction-Type Electrostatic Spraying System for Aerial Plant Protection
by Yufei Li, Qingda Li, Jun Hu, Changxi Liu, Shengxue Zhao, Wei Zhang and Yafei Wang
Agronomy 2025, 15(7), 1641; https://doi.org/10.3390/agronomy15071641 - 5 Jul 2025
Viewed by 338
Abstract
To address the technical problems of broad droplet size spectrum, insufficient atomization uniformity, and spray drift in plant protection unmanned aerial vehicle (UAV) applications, this study developed a novel two-stage aerial electrostatic spraying device based on the coupled mechanisms of hydraulic atomization and [...] Read more.
To address the technical problems of broad droplet size spectrum, insufficient atomization uniformity, and spray drift in plant protection unmanned aerial vehicle (UAV) applications, this study developed a novel two-stage aerial electrostatic spraying device based on the coupled mechanisms of hydraulic atomization and electrostatic induction, and, through the integration of three-dimensional numerical simulation and additive manufacturing technology, a new two-stage inductive charging device was designed on the basis of the traditional hydrodynamic nozzle structure, and a synergistic optimization study of the charging effect and atomization characteristics was carried out systematically. With the help of a charge ratio detection system and Malvern laser particle sizer, spray pressure (0.25–0.35 MPa), charging voltage (0–16 kV), and spray height (100–1000 mm) were selected as the key parameters, and the interaction mechanism of each parameter on the droplet charge ratio (C/m) and the particle size distribution (Dv50) was analyzed through the Box–Behnken response surface experimental design. The experimental data showed that when the charge voltage was increased to 12 kV, the droplet charge-to-mass ratio reached a peak value of 1.62 mC/kg (p < 0.01), which was 83.6% higher than that of the base condition; the concentration of the particle size distribution of the charged droplets was significantly improved; charged droplets exhibited a 23.6% reduction in Dv50 (p < 0.05) within the 0–200 mm core atomization zone below the nozzle, with the coefficient of variation of volume median diameter decreasing from 28.4% to 16.7%. This study confirms that the two-stage induction structure can effectively break through the charge saturation threshold of traditional electrostatic spraying, which provides a theoretical basis and technical support for the optimal design of electrostatic spraying systems for plant protection UAVs. This technology holds broad application prospects in agricultural settings such as orchards and farmlands. It can significantly enhance the targeted deposition efficiency of pesticides, reducing drift losses and chemical usage, thereby enabling agricultural enterprises to achieve practical economic benefits, including reduced operational costs, improved pest control efficacy, and minimized environmental pollution, while generating environmental benefits. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

23 pages, 9135 KiB  
Article
Stone Detection on Agricultural Land Using Thermal Imagery from Unmanned Aerial Systems
by Florian Thürkow, Mike Teucher, Detlef Thürkow and Milena Mohri
AgriEngineering 2025, 7(7), 203; https://doi.org/10.3390/agriengineering7070203 - 1 Jul 2025
Viewed by 688
Abstract
Stones in agricultural fields pose a recurring challenge, particularly due to their potential to damage agricultural machinery and disrupt field operations. As modern agriculture moves toward automation and precision farming, efficient stone detection has become a critical concern. This study explores the potential [...] Read more.
Stones in agricultural fields pose a recurring challenge, particularly due to their potential to damage agricultural machinery and disrupt field operations. As modern agriculture moves toward automation and precision farming, efficient stone detection has become a critical concern. This study explores the potential of thermal imaging as a non-invasive method for detecting stones under varying environmental conditions. A series of controlled laboratory experiments and field investigations confirmed the assumption that stones exhibit higher surface temperatures than the surrounding soil, especially when soil moisture is high and air temperatures are cooling rapidly. This temperature difference is attributed to the higher thermal inertia of stones, which allows them to absorb and retain heat longer than soil, as well as to the evaporative cooling from moist soil. These findings demonstrate the viability of thermal cameras as a tool for stone detection in precision farming. Incorporating this technology with GPS mapping enables the generation of accurate location data, facilitating targeted stone removal and reducing equipment damage. This approach aligns with the goals of sustainable agricultural engineering by supporting field automation, minimizing mechanical inefficiencies, and promoting data-driven decisions. Thermal imaging thereby contributes to the evolution of next-generation agricultural systems. Full article
(This article belongs to the Special Issue Recent Trends and Advances in Agricultural Engineering)
Show Figures

Figure 1

33 pages, 3235 KiB  
Article
Intelligent Assurance of Resilient UAV Navigation Under Visual Data Deficiency for Sustainable Development of Smart Regions
by Serhii Semenov, Magdalena Krupska-Klimczak, Olga Wasiuta, Beata Krzaczek, Patryk Mieczkowski, Leszek Głowacki, Jian Yu, Jiang He and Olena Chernykh
Sustainability 2025, 17(13), 6030; https://doi.org/10.3390/su17136030 - 1 Jul 2025
Viewed by 396
Abstract
Ensuring the resilient navigation of unmanned aerial vehicles (UAVs) under conditions of limited or unstable sensor information is one of the key challenges of modern autonomous mobility within smart infrastructure and sustainable development. This article proposes an intelligent autonomous UAV control method based [...] Read more.
Ensuring the resilient navigation of unmanned aerial vehicles (UAVs) under conditions of limited or unstable sensor information is one of the key challenges of modern autonomous mobility within smart infrastructure and sustainable development. This article proposes an intelligent autonomous UAV control method based on the integration of geometric trajectory modeling, neural network-based sensor data filtering, and reinforcement learning. The geometric model, constructed using path coordinates, allows the trajectory tracking problem to be formalized as an affine control system, which ensures motion stability even in cases of partial data loss. To process noisy or fragmented GPS and IMU signals, an LSTM-based recurrent neural network filter is implemented. This significantly reduces positioning errors and maintains trajectory stability under environmental disturbances. In addition, the navigation system includes a reinforcement learning module that performs real-time obstacle prediction, path correction, and speed adaptation. The method has been tested in a simulated environment with limited sensor availability, variable velocity profiles, and dynamic obstacles. The results confirm the functionality and effectiveness of the proposed navigation system under sensor-deficient conditions. The approach is applicable to environmental monitoring, autonomous delivery, precision agriculture, and emergency response missions within smart regions. Its implementation contributes to achieving the Sustainable Development Goals (SDG 9, SDG 11, and SDG 13) by enhancing autonomy, energy efficiency, and the safety of flight operations. Full article
Show Figures

Figure 1

31 pages, 31711 KiB  
Article
On the Usage of Deep Learning Techniques for Unmanned Aerial Vehicle-Based Citrus Crop Health Assessment
by Ana I. Gálvez-Gutiérrez, Frederico Afonso and Juana M. Martínez-Heredia
Remote Sens. 2025, 17(13), 2253; https://doi.org/10.3390/rs17132253 - 30 Jun 2025
Viewed by 432
Abstract
This work proposes an end-to-end solution for leaf segmentation, disease detection, and damage quantification, specifically focusing on citrus crops. The primary motivation behind this research is to enable the early detection of phytosanitary problems, which directly impact the productivity and profitability of Spanish [...] Read more.
This work proposes an end-to-end solution for leaf segmentation, disease detection, and damage quantification, specifically focusing on citrus crops. The primary motivation behind this research is to enable the early detection of phytosanitary problems, which directly impact the productivity and profitability of Spanish and Portuguese agricultural developments, while ensuring environmentally safe management practices. It integrates an onboard computing module for Unmanned Aerial Vehicles (UAVs) using a Raspberry Pi 4 with Global Positioning System (GPS) and camera modules, allowing the real-time geolocation of images in citrus croplands. To address the lack of public data, a comprehensive database was created and manually labelled at the pixel level to provide accurate training data for a deep learning approach. To reduce annotation effort, we developed a custom automation algorithm for pixel-wise labelling in complex natural backgrounds. A SegNet architecture with a Visual Geometry Group 16 (VGG16) backbone was trained for the semantic, pixel-wise segmentation of citrus foliage. The model was successfully integrated as a modular component within a broader system architecture and was tested with UAV-acquired images, demonstrating accurate disease detection and quantification, even under varied conditions. The developed system provides a robust tool for the efficient monitoring of citrus crops in precision agriculture. Full article
(This article belongs to the Special Issue Application of Satellite and UAV Data in Precision Agriculture)
Show Figures

Figure 1

26 pages, 1506 KiB  
Article
Exploring the Functional Properties of Leaves of Moringa oleifera Lam. Cultivated in Sicily Using Precision Agriculture Technologies for Potential Use as a Food Ingredient
by Carlo Greco, Graziella Serio, Enrico Viola, Marcella Barbera, Michele Massimo Mammano, Santo Orlando, Elena Franciosi, Salvatore Ciulla, Antonio Alfonzo, Rosario Schicchi, Daniela Piazzese, Carla Gentile, Luca Settanni, Giuseppe Mannino and Raimondo Gaglio
Antioxidants 2025, 14(7), 799; https://doi.org/10.3390/antiox14070799 - 27 Jun 2025
Viewed by 442
Abstract
This study aimed to evaluate the microbiological quality and functional properties of Moringa oleifera Lam. leaves from plants cultivated in Sicily, with the objective of exploring their potential use in functional food production. Precision agriculture techniques, including unmanned aerial vehicle-based multispectral remote sensing, [...] Read more.
This study aimed to evaluate the microbiological quality and functional properties of Moringa oleifera Lam. leaves from plants cultivated in Sicily, with the objective of exploring their potential use in functional food production. Precision agriculture techniques, including unmanned aerial vehicle-based multispectral remote sensing, were used to determine the optimal harvesting time for M. oleifera. After harvesting, leaves were dried using a smart solar dryer system based on a wireless sensor network and milled with a laboratory centrifugal mill to produce powdered M. oleifera leaves (PMOLs). Plate counts showed no colonies of undesired microorganisms in PMOLs. The MiSeq Illumina analysis revealed that the class Alphaproteobacteria was dominant (83.20% of Relative Abundance) among bacterial groups found in PMOLs. The hydroalcoholic extract from PMOLs exhibited strong redox-active properties in solution assays and provided antioxidant protection in a cell-based lipid peroxidation model (CAA50: 5.42 μg/mL). Additionally, it showed antiproliferative activity against three human tumour epithelial cell lines (HepG2, Caco-2, and MCF-7), with GI50 values ranging from 121.03 to 237.75 μg/mL. The aromatic profile of PMOLs includes seven phytochemical groups: alcohols, aldehydes, ketones, esters, acids, terpenes, and hydrocarbons. The most representative compounds were terpenes (27.5%), ketones (25.3%), and alcohols (14.5%). Results suggest that PMOLs can serve as a natural additive for functional foods. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

18 pages, 1803 KiB  
Article
Flight Parameters for Spray Deposition Efficiency of Unmanned Aerial Application Systems (UAASs)
by Thiago Caputti, Luan Pereira de Oliveira, Camila Rodrigues, Paulo Cremonez, Wheeler Foshee, Alvin M. Simmons and Andre Luiz Biscaia Ribeiro da Silva
Drones 2025, 9(7), 461; https://doi.org/10.3390/drones9070461 - 27 Jun 2025
Viewed by 602
Abstract
The use of unmanned aerial application systems (UAASs) for precision pesticide applications has increased alongside the demand for sustainable agricultural practices. However, limited studies have standardized the necessary flight parameters ensuring the optimal use of UAASs in specialty crops (e.g., fruits and vegetables). [...] Read more.
The use of unmanned aerial application systems (UAASs) for precision pesticide applications has increased alongside the demand for sustainable agricultural practices. However, limited studies have standardized the necessary flight parameters ensuring the optimal use of UAASs in specialty crops (e.g., fruits and vegetables). Thus, the objective of this study was to evaluate the effects of flight speed, droplet size, and application volume on the spray deposition of UAASs, creating guidelines to facilitate their use in specialty crops. Field experiments were conducted in a three-factorial experimental design of three flight speeds (i.e., 4, 7, and 10 m/s), three droplet sizes (i.e., 150, 250, and 350 µm), and two application volumes (i.e., 18.75 and 28.10 L/ha). Spraying droplet parameters (i.e., coverage, droplet density, and droplet spectra, and application uniformity), measured through the effective swath width, were recorded to assess spray deposition efficiency. Flight speed, droplet size, and application volume significantly influenced spray deposition. Treatments with slower flight speeds (4 m/s) and higher application volumes (28.10 L/ha) increased spray coverage, while droplet density was maximized at 4 m/s with the finest droplet size (150 µm), which are desirable characteristics for pesticide applications in specialty crops. Ultimately, the effective swath width and spray uniformity were maximized at a flight speed of 7.93 m/s with a droplet size of 350 µm. These results help optimize UAAS-based pesticide application, increasing efficiency and reducing environmental impact; however, understanding pesticide translocation dynamics (i.e., systemic or contact) on plants is key for growers to determine flight parameters. Full article
Show Figures

Figure 1

18 pages, 2820 KiB  
Article
Winter Wheat Nitrogen Content Prediction and Transferability of Models Based on UAV Image Features
by Jing Zhang, Gong Cheng, Shaohui Huang, Junfang Yang, Yunma Yang, Suli Xing, Jingxia Wang, Huimin Yang, Haoliang Nie, Wenfang Yang, Kang Yu and Liangliang Jia
Agriculture 2025, 15(13), 1373; https://doi.org/10.3390/agriculture15131373 - 26 Jun 2025
Viewed by 333
Abstract
Accurate and timely monitoring of plant nitrogen content (PNC) is essential for precision agriculture (PA) and food security. While multispectral unmanned aerial vehicle (UAV) imagery has shown promise in PNC estimation, the optimal feature combination methods of spectral and texture features remain underexplored, [...] Read more.
Accurate and timely monitoring of plant nitrogen content (PNC) is essential for precision agriculture (PA) and food security. While multispectral unmanned aerial vehicle (UAV) imagery has shown promise in PNC estimation, the optimal feature combination methods of spectral and texture features remain underexplored, and model transferability across different agricultural practices is poorly understood. This study aims to present an innovative approach by integrating 40 texture features and 22 spectral features from UAV multispectral images with machine learning (ML) methods (RF, SVR, and XGBoost) for winter wheat nitrogen content prediction. In addition, through analysis of an 8-year long-term field experiment with rigorous data, the results indicated that (1) the RF and XGboost models incorporating both spectral and texture features achieved good prediction accuracy, with R2 values of 0.98 and 0.99, respectively, RMSE values of 0.10 and 0.07, and MAE values of 0.07and 0.05; (2) models trained on Farmers’ Practice (FP) data showed superior transferability to Ecological Intensification (EI) conditions (R2 = 0.98, RMSE = 0.08, and MAE = 0.05 for XGBoost), while EI-trained models performed less well when applied to FP conditions (R2 = 0.89, RMSE = 0.45, and MAE = 0.35 for XGBoost). These findings established an effective framework for UAV-based PNC monitoring, demonstrating that fused spectral–textural features with FP-trained XGboost can achieve both high accuracy and practical transferability, offering valuable decision-support tools for precision nitrogen management in different farming systems. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

19 pages, 2692 KiB  
Article
Enhanced Spring Wheat Soil Plant Analysis Development (SPAD) Estimation in Hetao Irrigation District: Integrating Leaf Area Index (LAI) Under Variable Irrigation Conditions
by Qiang Wu, Dingyi Hou, Min Xie, Qi Gao, Mengyuan Li, Shuiyuan Hao, Chao Cui, Keke Fan, Yu Zhang and Yongping Zhang
Agriculture 2025, 15(13), 1372; https://doi.org/10.3390/agriculture15131372 - 26 Jun 2025
Viewed by 360
Abstract
Non-destructive monitoring of chlorophyll content through Soil Plant Analysis Development (SPAD) values is essential for precision agriculture in water-limited regions. However, current estimation methods using spectral information alone face significant limitations in sensitivity and transferability under variable irrigation conditions. While integrating canopy structural [...] Read more.
Non-destructive monitoring of chlorophyll content through Soil Plant Analysis Development (SPAD) values is essential for precision agriculture in water-limited regions. However, current estimation methods using spectral information alone face significant limitations in sensitivity and transferability under variable irrigation conditions. While integrating canopy structural parameters with spectral data represents a promising solution, systematic investigation of this approach throughout the entire growth cycle of spring wheat under different irrigation regimes remains limited. This study evaluated three machine learning algorithms (Random Forest, Support Vector Regression, and Multi-Layer Perceptron) for SPAD estimation in spring wheat cultivated in the Hetao Irrigation District. Using a split-plot experimental design with two irrigation treatments (conventional: four irrigations; limited: two irrigations) and five nitrogen levels (0–300 kg·ha−1), we analyzed ten vegetation indices derived from Unmanned Aerial Vehicle (UAV) multispectral imagery, with and without Leaf Area Index (LAI) integration, across six growth stages. Results demonstrated that incorporating LAI significantly improved SPAD estimation accuracy across all algorithms, with Random Forest exhibiting the most substantial enhancement (R2 increasing from 0.698 to 0.842, +20.6%; RMSE decreasing from 5.025 to 3.640, −27.6%). Notably, LAI contributed more significantly to SPAD estimation under limited irrigation conditions (R2 improvement: +17.6%) compared to conventional irrigation (+11.0%), indicating its particular value for chlorophyll monitoring in water-stressed environments. The Green Normalized Difference Vegetation Index (GNDVI) emerged as the most important predictor (importance score: 0.347), followed by LAI (0.213), confirming the complementary nature of spectral and structural information. These findings provide a robust framework for non-destructive SPAD estimation in spring wheat and highlight the importance of integrating canopy structural information with spectral data, particularly in water-limited agricultural systems. Full article
(This article belongs to the Special Issue Remote Sensing in Smart Irrigation Systems)
Show Figures

Figure 1

28 pages, 13304 KiB  
Article
Detection of Wild Mushrooms Using Machine Learning and Computer Vision
by Christos Chaschatzis, Chrysoula Karaiskou, Chryssanthi Iakovidou, Panagiotis Radoglou-Grammatikis, Stamatia Bibi, Sotirios K. Goudos and Panagiotis G. Sarigiannidis
Information 2025, 16(7), 539; https://doi.org/10.3390/info16070539 - 25 Jun 2025
Viewed by 279
Abstract
The increasing global demand for sustainable and high-quality agricultural products has driven interest in precision agriculture technologies. This study presents a novel approach to wild mushroom detection, particularly focusing on Macrolepiota procera as a focal species for demonstration and benchmarking. The proposed approach [...] Read more.
The increasing global demand for sustainable and high-quality agricultural products has driven interest in precision agriculture technologies. This study presents a novel approach to wild mushroom detection, particularly focusing on Macrolepiota procera as a focal species for demonstration and benchmarking. The proposed approach utilises unmanned aerial vehicles (UAVs) equipped with multispectral imaging and the YOLOv5 object detection algorithm. A custom dataset, the wild mushroom detection dataset (WOES), comprising 907 annotated aerial and ground images, was developed to support model training and evaluation. Our method integrates low-cost hardware with advanced deep learning and vegetation index analysis (NDRE) to enable real-time identification of mushrooms in forested environments. The proposed system achieved an identification accuracy exceeding 90% and completed detection tasks within 30 min per field survey. Although the dataset is geographically limited to Western Macedonia, Greece, and focused primarily on a morphologically distinctive species, the methodology is designed to be extendable to other wild mushroom types. This work contributes a replicable framework for scalable, cost-effective mushroom monitoring in ecological and agricultural applications. Full article
Show Figures

Figure 1

Back to TopTop