Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = uniform moving heat source

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10856 KB  
Article
Influence of Structural Components on Thermal Deformations in Large Machine Tools
by Álvaro Sáinz de la Maza García, Leonardo Sastoque Pinilla and Luis Norberto López de Lacalle Marcaide
J. Manuf. Mater. Process. 2025, 9(8), 267; https://doi.org/10.3390/jmmp9080267 - 8 Aug 2025
Viewed by 434
Abstract
In sectors that require large components with tight tolerances, the control of machine thermal deformations as a result of ambient temperature variations, motor consumption, and heating of moving components is essential. There are many alternatives for modelling and trying to compensate for this [...] Read more.
In sectors that require large components with tight tolerances, the control of machine thermal deformations as a result of ambient temperature variations, motor consumption, and heating of moving components is essential. There are many alternatives for modelling and trying to compensate for this deformation, but structural components are rarely analysed independently to study their influence on positioning errors. This study analysed component temperature and deformation measurements using 49 thermocouples and 14 integral deformation sensors (IDS) installed on a large-scale machine tool. The effect of each heat source on component deformations was studied and those with a predominant effect were identified. The results can ease thermal effect prediction models development and new machine design process to maximise accuracy by focusing effort on the most critical components and most important heat sources. It was found that ambient temperature variations lead to greater but more uniform deformations than internal heat sources, reaching a 60% of total deformations with smaller temperature changes (8.7 °C, against 15–35 °C due to internal heat sources). These deformations are localized mainly in the machine bed (100 μm in X direction and 170 μm in the Y direction) and column (150 μm in the Z direction) and in the axis ball screw bearings (reaching 55 °C). Consequently, it is concluded that improving bearing and motor refrigeration could significantly reduce thermally-induced deformations. Full article
Show Figures

Graphical abstract

32 pages, 7667 KB  
Article
Development of a Non-Uniform Heat Source Model for Accurate Prediction of Wheel Tread Temperature on Long Downhill Ramps
by Jinyu Zhang, Jingxian Ding and Jianyong Zuo
Lubricants 2025, 13(6), 235; https://doi.org/10.3390/lubricants13060235 - 24 May 2025
Cited by 1 | Viewed by 857
Abstract
Accurately simulating the thermal behavior of wheel–brake shoe friction on long downhill ramps is challenging due to the complexity of modeling appropriate heat source models. This study investigates heat generation during the frictional braking process of freight train wheels and brake shoes under [...] Read more.
Accurately simulating the thermal behavior of wheel–brake shoe friction on long downhill ramps is challenging due to the complexity of modeling appropriate heat source models. This study investigates heat generation during the frictional braking process of freight train wheels and brake shoes under long-slope conditions. Four heat source models—constant, modified Gaussian, sinusoidal, and parabolic distributions—were developed based on energy conservation principles and validated through experimental data. A thermomechanical coupled finite element model was established, incorporating a moving heat source to analyze the effects of different models on wheel tread temperature distribution and its evolution over time. The results show that all four models effectively simulate frictional heat generation, with computed temperatures, deviating by only 6.0–8.2% from experimental measurements, confirming their accuracy and reliability. Among the models, the modified Gaussian distribution heat source, with its significantly higher peak local heat flux (2.82 times that of the constant model) and rapid attenuation, offers the most precise simulation of the non-uniform temperature distribution in the contact region. This leads to a 40% increase in the temperature gradient variation rate and effectively reproduces the “hot spot” effect. The new non-uniform heat source model accurately captures local temperature dynamics and predicts frictional heat transfer and thermal damage trends. The modified Gaussian distribution model outperforms others in simulating local temperature peaks, offering support for optimizing braking system models and improving thermal damage prediction. Future research will refine this model by incorporating factors like material wear, environmental conditions, and dynamic contact characteristics. Full article
(This article belongs to the Special Issue Tribology in Railway Engineering)
Show Figures

Figure 1

12 pages, 7624 KB  
Article
Correlation Data Augmentation-Based YOLO-Integrated Object Detection of Thermal-Equalization Video Using Line Scanning Inductive Thermography
by Seung-Ju Lee, Won-Tae Kim and Hyun-Kyu Suh
Appl. Sci. 2024, 14(24), 11903; https://doi.org/10.3390/app142411903 - 19 Dec 2024
Viewed by 1108
Abstract
Active infrared thermography (IRT) in non-destructive testing is an attractive technique used to detect wide areas in real-time on site. Most of the objects inspected on site generally have rough surfaces and foreign substances, which significantly affects their detectability. To solve this problem, [...] Read more.
Active infrared thermography (IRT) in non-destructive testing is an attractive technique used to detect wide areas in real-time on site. Most of the objects inspected on site generally have rough surfaces and foreign substances, which significantly affects their detectability. To solve this problem, in this study, line scanning (LS)-based induction thermography was used to acquire thermal image data of a specimen containing foreign substances. The heat distribution caused by foreign substances was removed using the Gaussian filtering-based Fast Fourier Transform (FFT) algorithm. After that, the data augmentation was performed by analyzing the correlation, and crack detection for the images was performed using you only look once (YOLO) deep learning. This study presents a method for removing non-uniform heat sources using the FFT algorithm, securing virtual data augmentation, and a detection mechanism for moving inspection objects using AI deep learning. Full article
Show Figures

Figure 1

21 pages, 4507 KB  
Article
Influence of the Indian Summer Monsoon on Inter-Annual Variability of the Tibetan-Plateau NDVI in Its Main Growing Season
by Xin Mao, Hong-Li Ren, Ge Liu, Baohuang Su and Yinghan Sang
Remote Sens. 2023, 15(14), 3612; https://doi.org/10.3390/rs15143612 - 20 Jul 2023
Cited by 7 | Viewed by 1947
Abstract
The vegetation on the Tibetan Plateau (TP), as a major component of the land–atmosphere interaction, affects the TP thermal conditions. And, as a direct climatic factor of vegetation, precipitation over the TP is significantly regulated by the Indian summer monsoon (ISM). Using remote-sensing-based [...] Read more.
The vegetation on the Tibetan Plateau (TP), as a major component of the land–atmosphere interaction, affects the TP thermal conditions. And, as a direct climatic factor of vegetation, precipitation over the TP is significantly regulated by the Indian summer monsoon (ISM). Using remote-sensing-based vegetation images, meteorological observations, and reanalysis datasets, this study deeply explored the influence of the ISM on vegetation on the TP in its main growing season, where the vegetation on the TP is indicated by the normalized difference vegetation index (NDVI). The findings reveal that the ISM is a critical external factor impacting the TP vegetation and has a significantly positive correlation with the TP precipitation and NDVI. Corresponding to a strong ISM, the South Asia high moves northwestward toward the TP and Iranian Plateau with an increase in intensity, and the cyclonic circulation develops over the south of the TP in the middle-lower troposphere. This tropospheric circulation structure aids in the transportation of more water vapor to the TP and enhances convection there, which facilitates more precipitation and thus the TP vegetation growth, featuring a uniform NDVI pattern. Since the positive correlation between precipitation over the TP and NDVI is weaker than that between the ISM and NDVI, we suggest that the ISM can influence the TP vegetation growth not only through changing precipitation but also through other local climatic factors. The increased convection and precipitation over the TP induced by the ISM can also affect the surface thermal conditions, featuring an interaction between the TP vegetation and heat sources. The evapotranspiration of vegetation and its coverage affect local latent and sensible heat fluxes, while the TP thermal condition changes affect in return the vegetation growth. In addition, the changes in thermal conditions over the TP caused by the substantial increase in vegetation may have a de-correlation effect on the relationship between the ISM and uniform NDVI pattern after the TP vegetation reaches its maximum coverage. Full article
Show Figures

Figure 1

14 pages, 10088 KB  
Article
Preparation and Thermal Conductivity Enhancement of Boron Nitride Nano-Material PiG Composite
by Zhenhua Chen, Qinhua Wei, Gao Tang, Hongsheng Shi and Laishun Qin
Nanomaterials 2023, 13(6), 1106; https://doi.org/10.3390/nano13061106 - 20 Mar 2023
Cited by 3 | Viewed by 2576
Abstract
With the improvement of the conversion efficiency of LED chip and fluorescent material and the increasing demand for high-brightness light sources, LED technology has begun to move toward the direction of high-power. However, there is a huge problem that high-power LED must face [...] Read more.
With the improvement of the conversion efficiency of LED chip and fluorescent material and the increasing demand for high-brightness light sources, LED technology has begun to move toward the direction of high-power. However, there is a huge problem that high-power LED must face with a large amount of heat generated by high power causing a high temperature thermal decay or even thermal quenching of the fluorescent material in the device, resulting in a reduction of the luminous efficiency, color coordinates, color rendering index, light uniformity, and service life of LED. In order to solve this problem, fluorescent materials with high thermal stability and better heat dissipation were prepared to enhance their performance in high-power LED environments. A variety of boron nitride nanomaterials were prepared by the solid phase-gas phase method. By adjusting the ratio of boric acid to urea in the raw material, different BN nanoparticles and nanosheets were obtained. Moreover, the control of catalyst amount and synthesis temperature can be used to synthesize boron nitride nanotubes with various morphologies. By adding different morphologies and quantities of BN material in PiG (phosphor in glass), the mechanical strength, heat dissipation, and luminescent properties of the sheet can be effectively controlled. PiG prepared by adding the right number of nanotubes and nanosheets has higher quantum efficiency and better heat dissipation after being excited by high power LED. Full article
Show Figures

Figure 1

16 pages, 5129 KB  
Article
Macro-Micro-Coupling Simulation and Space Experiment Study on Zone Melting Process of Bismuth Telluride-Based Crystal Materials
by Huxiang Xia, Xiaoya Li and Qingyan Xu
Metals 2022, 12(5), 886; https://doi.org/10.3390/met12050886 - 23 May 2022
Cited by 1 | Viewed by 2446
Abstract
Zone melting is one of the main techniques for preparing bismuth telluride-based crystal thermoelectric materials. In this research, a macro-micro-coupled simulation model was established to analyze the distribution of temperature and heat flow during the zone melting process. The simulation results show the [...] Read more.
Zone melting is one of the main techniques for preparing bismuth telluride-based crystal thermoelectric materials. In this research, a macro-micro-coupled simulation model was established to analyze the distribution of temperature and heat flow during the zone melting process. The simulation results show the melting temperature tends to affect the length of the melting zone, while the moving velocity of the melting furnace tends to affect the curvature of the melting and solidification interface. There are two small plateaus observed in the temperature curve of the central axis of bismuth telluride ingot when the moving velocity of the heat source is higher than 20 mm/h. As the moving velocity of the heat source increases, the platform effect is becoming more obvious. Based on the simulation results, the zone melt experiments were carried out both under microgravity condition on the Tiangong II space laboratory and conventional gravity condition on the ground. The experimental results indicate that the bismuth telluride-based crystal prepared in microgravity tends to possess more uniform composition. This uniform composition will lead to more uniform thermoelectric performance for telluride-based crystals. In the space condition, the influence of surface tension is much higher than that of gravity. The bismuth telluride ingot is very vulnerable to the influence of surface tension on the surface morphology during the solidification process. If the solidification process is not well controlled, it will be easier to produce uneven surface morphology. Full article
Show Figures

Figure 1

15 pages, 3527 KB  
Article
Analytical Thermal Modeling of Powder Bed Metal Additive Manufacturing Considering Powder Size Variation and Packing
by Jinqiang Ning, Wenjia Wang, Xuan Ning, Daniel E. Sievers, Hamid Garmestani and Steven Y. Liang
Materials 2020, 13(8), 1988; https://doi.org/10.3390/ma13081988 - 24 Apr 2020
Cited by 18 | Viewed by 5537
Abstract
This work presents a computationally efficient predictive model based on solid heat transfer for temperature profiles in powder bed metal additive manufacturing (PBMAM) considering the heat transfer boundary condition and powder material properties. A point moving heat source model is used for the [...] Read more.
This work presents a computationally efficient predictive model based on solid heat transfer for temperature profiles in powder bed metal additive manufacturing (PBMAM) considering the heat transfer boundary condition and powder material properties. A point moving heat source model is used for the three-dimensional temperature prediction in an absolute coordinate. The heat loss from convection and radiation is calculated using a heat sink solution with a mathematically discretized boundary considering non-uniform temperatures and heat loss at the boundary. Powder material properties are calculated considering powder size statistical distribution and powder packing. The spatially uniform and temperature-independent material properties are employed in the temperature prediction. The presented model was tested in PBMAM of AlSi10Mg under different process conditions. The calculations of material properties are needed for AlSi10Mg because of the significant difference in thermal conductivity between powder form and solid bulk form. Close agreement is observed upon experimental validation on the molten pool dimensions. Full article
(This article belongs to the Special Issue Recent Advances in Metal Additive Manufacturing)
Show Figures

Figure 1

14 pages, 2924 KB  
Article
Thermally Stratified Darcy Forchheimer Flow on a Moving Thin Needle with Homogeneous Heterogeneous Reactions and Non-Uniform Heat Source/Sink
by Muhammad Ramzan, Naila Shaheen, Seifedine Kadry, Yeu Ratha and Yunyoung Nam
Appl. Sci. 2020, 10(2), 432; https://doi.org/10.3390/app10020432 - 7 Jan 2020
Cited by 28 | Viewed by 3208
Abstract
This study discusses the flow of viscous fluid past a moving thin needle in a Darcy–Forchheimer permeable media. The novelty of the envisioned mathematical model is enhanced by adding the effects of a non-uniform source/sink amalgamated with homogeneous–heterogeneous (hh) reactions. The MATLAB bvp4c [...] Read more.
This study discusses the flow of viscous fluid past a moving thin needle in a Darcy–Forchheimer permeable media. The novelty of the envisioned mathematical model is enhanced by adding the effects of a non-uniform source/sink amalgamated with homogeneous–heterogeneous (hh) reactions. The MATLAB bvp4c function is employed to solve the non-linear ordinary differential equations (ODEs), which are obtained via similarity transformations. The outcomes of numerous parameters are explicitly discussed graphically. The drag force coefficient and heat transfer rate are considered and discussed accordingly. It is comprehended that higher estimates of variable source/sink boost the temperature profile. Full article
(This article belongs to the Special Issue Computational Fluid Mechanics and Heat Transfer)
Show Figures

Figure 1

15 pages, 6449 KB  
Article
Analytical Thermal Modeling of Metal Additive Manufacturing by Heat Sink Solution
by Jinqiang Ning, Daniel E. Sievers, Hamid Garmestani and Steven Y. Liang
Materials 2019, 12(16), 2568; https://doi.org/10.3390/ma12162568 - 12 Aug 2019
Cited by 37 | Viewed by 6586
Abstract
Metal additive manufacturing can produce geometrically complex parts with effective cost. The high thermal gradients due to the repeatedly rapid heat and solidification cause defects in the produced parts, such as cracks, porosity, undesired residual stress, and part distortion. Different techniques were employed [...] Read more.
Metal additive manufacturing can produce geometrically complex parts with effective cost. The high thermal gradients due to the repeatedly rapid heat and solidification cause defects in the produced parts, such as cracks, porosity, undesired residual stress, and part distortion. Different techniques were employed for temperature investigation. Experimental measurement and finite element method-based numerical models are limited by the restricted accessibility and expensive computational cost, respectively. The available physics-based analytical model has promising short computational efficiency without resorting to finite element method or any iteration-based simulations. However, the heat transfer boundary condition cannot be considered without the involvement of finite element method or iteration-based simulations, which significantly reduces the computational efficiency, and thus the usefulness of the developed model. This work presents an explicit and closed-form solution, namely heat sink solution, to consider the heat transfer boundary condition. The heat sink solution was developed from the moving point heat source solution based on heat transfer of convection and radiation. The part boundary is mathematically discretized into many heats sinks due to the non-uniform temperature distribution, which causes non-uniform heat loss. The temperature profiles, thermal gradients, and temperature-affected material properties are calculated and presented. Good agreements were observed upon validation against experimental molten pool measurements. Full article
(This article belongs to the Special Issue Multi-scale Modeling of Materials and Structures)
Show Figures

Figure 1

18 pages, 4972 KB  
Article
Heat Source Modeling in Selective Laser Melting
by Elham Mirkoohi, Daniel E. Seivers, Hamid Garmestani and Steven Y. Liang
Materials 2019, 12(13), 2052; https://doi.org/10.3390/ma12132052 - 26 Jun 2019
Cited by 91 | Viewed by 8021
Abstract
Selective laser melting (SLM) is an emerging additive manufacturing (AM) technology for metals. Intricate three-dimensional parts can be generated from the powder bed by selectively melting the desired location of the powders. The process is repeated for each layer until the part is [...] Read more.
Selective laser melting (SLM) is an emerging additive manufacturing (AM) technology for metals. Intricate three-dimensional parts can be generated from the powder bed by selectively melting the desired location of the powders. The process is repeated for each layer until the part is built. The necessary heat is provided by a laser. Temperature magnitude and history during SLM directly determine the molten pool dimensions, thermal stress, residual stress, balling effect, and dimensional accuracy. Laser-matter interaction is a crucial physical phenomenon in the SLM process. In this paper, five different heat source models are introduced to predict the three-dimensional temperature field analytically. These models are known as steady state moving point heat source, transient moving point heat source, semi-elliptical moving heat source, double elliptical moving heat source, and uniform moving heat source. The analytical temperature model for all of the heat source models is solved using three-dimensional differential equations of heat conduction with different approaches. The steady state and transient moving heat source are solved using a separation of variables approach. However, the rest of the models are solved by employing Green’s functions. Due to the high temperature in the presence of the laser, the temperature gradient is usually high which has a substantial impact on thermal material properties. Consequently, the temperature field is predicted by considering the temperature sensitivity thermal material properties. Moreover, due to the repeated heating and cooling, the part usually undergoes several melting and solidification cycles, and this physical phenomenon is considered by modifying the heat capacity using latent heat of melting. Furthermore, the multi-layer aspect of the metal AM process is considered by incorporating the temperature history from the previous layer since the interaction of the layers have an impact on heat transfer mechanisms. The proposed temperature field models based on different heat source approaches are validated using experimental measurement of melt pool geometry from independent experimentations. A detailed explanation of the comparison of models is also provided. Moreover, the effect of process parameters on the balling effect is also discussed. Full article
Show Figures

Figure 1

13 pages, 3566 KB  
Article
Analytical Modeling of the Temperature Using Uniform Moving Heat Source in Planar Induction Heating Process
by Feng Li, Jinqiang Ning and Steven Y. Liang
Appl. Sci. 2019, 9(7), 1445; https://doi.org/10.3390/app9071445 - 6 Apr 2019
Cited by 28 | Viewed by 5459
Abstract
The planar induction heating possesses more difficulties in industry application compared with traditional spiral induction coils in mostly heat treatment processes. Numerical approaches are adopted in the power distribution and temperature prediction during the induction heating process, which has a relatively low computational [...] Read more.
The planar induction heating possesses more difficulties in industry application compared with traditional spiral induction coils in mostly heat treatment processes. Numerical approaches are adopted in the power distribution and temperature prediction during the induction heating process, which has a relatively low computational efficiency. In this work, an analytical calculation model of the planar induction heating with magnetic flux concentrator is investigated based on the uniform moving heating source. In this model, the power density in the surface of the workpiece induced by coils is calculated and applied into the analytical model of the temperature calculation using a uniform moving heat source. Planar induction heating tests are conducted under various induction coil parameters and the corresponding temperature evolution is obtained by the infrared imaging device NEC R300W2-NNU and the thermocouples. The final surface temperature prediction is compared to the finite element simulation results and experimental data. The analytical results show a good match with the finite element simulation and the experimental results, and the errors are in reasonable range and acceptable. The analytical model can compute the temperature distribution directly and the computational time is much less than the finite element method. Therefore, the temperature prediction method in this work has the advantage of less experimental and computational complexity, which can extend the analytical modeling methodology in induction heating to a broader application. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Graphical abstract

14 pages, 947 KB  
Article
The Coupled Photothermal Reaction and Transport in a Laser Additive Metal Nanolayer Simultaneous Synthesis and Pattering for Flexible Electronics
by Song-Ling Tsai, Yi-Kai Liu, Heng Pan, Chien-Hung Liu and Ming-Tsang Lee
Nanomaterials 2016, 6(1), 12; https://doi.org/10.3390/nano6010012 - 8 Jan 2016
Cited by 8 | Viewed by 6855
Abstract
The Laser Direct Synthesis and Patterning (LDSP) technology has advantages in terms of processing time and cost compared to nanomaterials-based laser additive microfabrication processes. In LDSP, a scanning laser on the substrate surface induces chemical reactions in the reactive liquid solution and selectively [...] Read more.
The Laser Direct Synthesis and Patterning (LDSP) technology has advantages in terms of processing time and cost compared to nanomaterials-based laser additive microfabrication processes. In LDSP, a scanning laser on the substrate surface induces chemical reactions in the reactive liquid solution and selectively deposits target material in a preselected pattern on the substrate. In this study, we experimentally investigated the effect of the processing parameters and type and concentration of the additive solvent on the properties and growth rate of the resulting metal film fabricated by this LDSP technology. It was shown that reactive metal ion solutions with substantial viscosity yield metal films with superior physical properties. A numerical analysis was also carried out the first time to investigate the coupled opto-thermo-fluidic transport phenomena and the effects on the metal film growth rate. To complete the simulation, the optical properties of the LDSP deposited metal film with a variety of thicknesses were measured. The characteristics of the temperature field and the thermally induced flow associated with the moving heat source are discussed. It was shown that the processing temperature range of the LDSP is from 330 to 390 K. A semi-empirical model for estimating the metal film growth rate using this process was developed based on these results. From the experimental and numerical results, it is seen that, owing to the increased reflectivity of the silver film as its thickness increases, the growth rate decreases gradually from about 40 nm at initial to 10 nm per laser scan after ten scans. This self-controlling effect of LDSP process controls the thickness and improves the uniformity of the fabricated metal film. The growth rate and resulting thickness of the metal film can also be regulated by adjustment of the processing parameters, and thus can be utilized for controllable additive nano/microfabrication. Full article
Show Figures

Figure 1

Back to TopTop