Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = underwater acoustic wireless energy transmission

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1815 KiB  
Review
Recent Progress on Underwater Wireless Communication Methods and Applications
by Zhe Li, Weikun Li, Kai Sun, Dixia Fan and Weicheng Cui
J. Mar. Sci. Eng. 2025, 13(8), 1505; https://doi.org/10.3390/jmse13081505 - 5 Aug 2025
Abstract
The rapid advancement of underwater wireless communication technologies is critical to unlocking the full potential of marine resource exploration and environmental monitoring. This paper reviews recent progress in three primary modalities: underwater acoustic communication, radio frequency (RF) communication, and underwater optical wireless communication [...] Read more.
The rapid advancement of underwater wireless communication technologies is critical to unlocking the full potential of marine resource exploration and environmental monitoring. This paper reviews recent progress in three primary modalities: underwater acoustic communication, radio frequency (RF) communication, and underwater optical wireless communication (UWOC), each designed to address specific challenges posed by complex underwater environments. Acoustic communication, while effective for long-range transmission, is constrained by ambient noise and high latency; recent innovations in noise reduction and data rate enhancement have notably improved its reliability. RF communication offers high-speed, short-range capabilities in shallow waters, but still faces challenges in hardware miniaturization and accurate channel modeling. UWOC has emerged as a promising solution, enabling multi-gigabit data rates over medium distances through advanced modulation techniques and turbulence mitigation. Additionally, bio-inspired approaches such as electric field communication provide energy-efficient and robust alternatives under turbid conditions. This paper further examines the practical integration of these technologies in underwater platforms, including autonomous underwater vehicles (AUVs), highlighting trade-offs between energy efficiency, system complexity, and communication performance. By synthesizing recent advancements, this review outlines the advantages and limitations of current underwater communication methods and their real-world applications, offering insights to guide the future development of underwater communication systems for robotic and vehicular platforms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 1538 KiB  
Article
AI-Driven Adaptive Communications for Energy-Efficient Underwater Acoustic Sensor Networks
by A. Ur Rehman, Laura Galluccio and Giacomo Morabito
Sensors 2025, 25(12), 3729; https://doi.org/10.3390/s25123729 - 14 Jun 2025
Viewed by 795
Abstract
Underwater acoustic sensor networks, crucial for marine monitoring, face significant challenges, including limited bandwidth, high delay, and severe energy constraints. Addressing these limitations requires an energy-efficient design to ensure network survivability, reliability, and reduced operational costs. This paper proposes an artificial intelligence-driven framework [...] Read more.
Underwater acoustic sensor networks, crucial for marine monitoring, face significant challenges, including limited bandwidth, high delay, and severe energy constraints. Addressing these limitations requires an energy-efficient design to ensure network survivability, reliability, and reduced operational costs. This paper proposes an artificial intelligence-driven framework aimed at enhancing energy efficiency and sustainability in applications of marine wildlife monitoring in underwater sensor networks, according to the vision of implementing an underwater acoustic sensor network. The framework integrates intelligent computing directly into underwater sensor nodes, employing lightweight AI models to locally classify marine species. Transmitting only classification results, instead of raw data, significantly reduces data volume, thus conserving energy. Additionally, a software-defined radio methodology dynamically adapts transmission parameters such as modulation schemes, packet length, and transmission power to further minimize energy consumption and environmental disruption. GNU Radio simulations evaluate the framework effectiveness using metrics like energy consumption, bit error rate, throughput, and delay. Adaptive transmission strategies implicitly ensure reduced energy usage as compared to non-adaptive transmission solutions employing fixed communication parameters. The results illustrate the framework ability to effectively balance energy efficiency, performance, and ecological impact. This research contributes directly to ongoing development in sustainable and energy-efficient underwater wireless sensor network design and deployment. Full article
(This article belongs to the Special Issue Energy Efficient Design in Wireless Ad Hoc and Sensor Networks)
Show Figures

Figure 1

21 pages, 1416 KiB  
Article
A Novel Medium Access Policy Based on Reinforcement Learning in Energy-Harvesting Underwater Sensor Networks
by Çiğdem Eriş, Ömer Melih Gül and Pınar Sarısaray Bölük
Sensors 2024, 24(17), 5791; https://doi.org/10.3390/s24175791 - 6 Sep 2024
Cited by 7 | Viewed by 1586
Abstract
Underwater acoustic sensor networks (UASNs) are fundamental assets to enable discovery and utilization of sub-sea environments and have attracted both academia and industry to execute long-term underwater missions. Given the heightened significance of battery dependency in underwater wireless sensor networks, our objective is [...] Read more.
Underwater acoustic sensor networks (UASNs) are fundamental assets to enable discovery and utilization of sub-sea environments and have attracted both academia and industry to execute long-term underwater missions. Given the heightened significance of battery dependency in underwater wireless sensor networks, our objective is to maximize the amount of harvested energy underwater by adopting the TDMA time slot scheduling approach to prolong the operational lifetime of the sensors. In this study, we considered the spatial uncertainty of underwater ambient resources to improve the utilization of available energy and examine a stochastic model for piezoelectric energy harvesting. Considering a realistic channel and environment condition, a novel multi-agent reinforcement learning algorithm is proposed. Nodes observe and learn from their choice of transmission slots based on the available energy in the underwater medium and autonomously adapt their communication slots to their energy harvesting conditions instead of relying on the cluster head. In the numerical results, we present the impact of piezoelectric energy harvesting and harvesting awareness on three lifetime metrics. We observe that energy harvesting contributes to 4% improvement in first node dead (FND), 14% improvement in half node dead (HND), and 22% improvement in last node dead (LND). Additionally, the harvesting-aware TDMA-RL method further increases HND by 17% and LND by 38%. Our results show that the proposed method improves in-cluster communication time interval utilization and outperforms traditional time slot allocation methods in terms of throughput and energy harvesting efficiency. Full article
Show Figures

Figure 1

23 pages, 4300 KiB  
Article
Evaluation Method for Underwater Ultrasonic Energy Radiation Performance Based on the Spatial Distribution Characteristics of Acoustic Power
by Zhongzheng Liu, Tao Zhang, Yazhen Yuan, Yuhang Li and Yanzhang Geng
Sensors 2024, 24(12), 3942; https://doi.org/10.3390/s24123942 - 18 Jun 2024
Cited by 1 | Viewed by 1383
Abstract
In recent years, underwater wireless ultrasonic energy transmission technology (UWUET) has attracted much attention because it utilizes the propagation characteristics of ultrasound in water. Effectively evaluating the performance of underwater ultrasonic wireless energy transmission is a key issue in engineering design. The current [...] Read more.
In recent years, underwater wireless ultrasonic energy transmission technology (UWUET) has attracted much attention because it utilizes the propagation characteristics of ultrasound in water. Effectively evaluating the performance of underwater ultrasonic wireless energy transmission is a key issue in engineering design. The current approach to performance evaluation is usually based on the system energy transfer efficiency as the main criterion, but this criterion mainly considers the overall energy conversion efficiency between the transmitting end and the receiving end, without an in-depth analysis of the characteristics of the distribution of the underwater acoustic field and the energy loss that occurs during the propagation of acoustic waves. In addition, existing methods focusing on acoustic field analysis tend to concentrate on a single parameter, ignoring the dynamic distribution of acoustic energy in complex aquatic environments, as well as the effects of changes in the underwater environment on acoustic propagation, such as spatial variability in temperature and salinity. These limitations reduce the usefulness and accuracy of models in complex marine environments, which in turn reduces the efficiency of acoustic energy management and optimization. To solve these problems, this study proposes a method to evaluate the performance of underwater ultrasonic energy radiation based on the spatial distribution characteristics of acoustic power. By establishing an acoustic power distribution model in a complex impedance–density aqueous medium and combining numerical simulation and experimental validation, this paper explores the spatial variation of acoustic power and its impact on the energy transfer efficiency in depth. Using high-resolution spatial distribution data and actual environmental parameters, the method significantly improves the accuracy of the assessment and the adaptability of the model in complex underwater environments. The results show that, compared with the traditional method, this method performs better in terms of the accuracy of the acoustic energy radiation calculation results, and is able to reflect the energy distribution and spatial heterogeneity of the acoustic source more comprehensively, which provides an important theoretical basis and practical guidance for the optimal design and performance enhancement of the underwater ultrasonic wireless energy transmission system. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

18 pages, 2093 KiB  
Article
Performance Analysis of a WPCN-Based Underwater Acoustic Communication System
by Ronglin Xing, Yuhang Zhang, Yizhi Feng and Fei Ji
J. Mar. Sci. Eng. 2024, 12(1), 43; https://doi.org/10.3390/jmse12010043 - 23 Dec 2023
Cited by 2 | Viewed by 2150
Abstract
Underwater acoustic communication (UWAC) has a wide range of applications, including marine environment monitoring, disaster warning, seabed terrain exploration, and oil extraction. It plays an indispensable and increasingly important role in marine resource exploration and marine economic development. In current UWAC systems, the [...] Read more.
Underwater acoustic communication (UWAC) has a wide range of applications, including marine environment monitoring, disaster warning, seabed terrain exploration, and oil extraction. It plays an indispensable and increasingly important role in marine resource exploration and marine economic development. In current UWAC systems, the terminal nodes are usually powered by energy-limited batteries. Due to the harshness of the underwater environment, especially in the ocean environment, it is very costly and difficult, even impossible, to replace the batteries for the terminal nodes in UWACs, which results in the short lifetime and unreliability of the terminal nodes and the systems. In this paper, we present the application of a wireless powered communication network (WPCN) to the UWAC systems to provide an auxiliary and convenient energy supplement for solving the energy-limited problem of the terminal nodes, where the hybrid access point (H-AP) transfers energy to the terminal nodes in the downlink. In contrast, the terminal nodes use the harvested energy to transmit the information to the H-AP in the uplink. To evaluate the proposed WPCN-based UWAC systems, we investigate the performance of the average bit error rate (BER), outage probability, and achievable information rate for the systems in a frequency-selective sparse channel and non-white noise environment. We derive the closed-form expression for the probability density function (PDF) of the received signal-to-noise ratio (SNR). Based on this, we further derive novel closed-form expressions for the average BER and the outage probability of the systems. Numerical results confirm the validity of the proposed analytical results. It is shown that there exists an optimal signal frequency and time allocation factor for the systems to achieve optimal performance, and a larger optimal time allocation factor is preferred for a smaller hybrid access point (H-AP) transmit power or a larger transmission distance, while a smaller optimal signal frequency is required for a larger transmission distance. Full article
(This article belongs to the Special Issue Underwater Wireless Communications: Recent Advances and Challenges)
Show Figures

Figure 1

10 pages, 2076 KiB  
Proceeding Paper
Novel and Optimized Efficient Transmission Using Dynamic Routing Technique for Underwater Acoustic Sensor Networks
by Swapna Babu, Bhuvaneswari Subramanian, Sujitha Madhavadhas, Kavitha Ganesan, Manjula Dhandapani and Surendiran Muthukumar Deva
Eng. Proc. 2023, 59(1), 89; https://doi.org/10.3390/engproc2023059089 - 20 Dec 2023
Viewed by 1049
Abstract
Underwater acoustic sensor networks involve deploying sensors underwater in order to establish a wireless network framework aimed at discovering new resources, detecting targets, and monitoring pollution. However, the primary challenge in these networks lies in enhancing energy efficiency and extending the sensor’s lifespan, [...] Read more.
Underwater acoustic sensor networks involve deploying sensors underwater in order to establish a wireless network framework aimed at discovering new resources, detecting targets, and monitoring pollution. However, the primary challenge in these networks lies in enhancing energy efficiency and extending the sensor’s lifespan, as manually recharging batteries deep within the sea or ocean is not feasible. To address this, we have employed a dynamic network model for target sensing. In an effort to enhance the energy, transmission, and overall lifespan of the Underwater Acoustic Sensor Network (UASN), we have devised a Heuristic Search Algorithm called the Multi-population Harmony Search Algorithm. Additionally, a Dynamic Routing Technique has been developed to dynamically determine whether a given set of sensors should operate or enter sleep mode, with the objective of effectively covering the specified targets. Full article
(This article belongs to the Proceedings of Eng. Proc., 2023, RAiSE-2023)
Show Figures

Figure 1

21 pages, 5017 KiB  
Article
Trust-Aware and Fuzzy Logic-Based Reliable Layering Routing Protocol for Underwater Acoustic Networks
by Duoliang Han, Xiujuan Du, Lijuan Wang, Xiuxiu Liu and Xiaojing Tian
Sensors 2023, 23(23), 9323; https://doi.org/10.3390/s23239323 - 22 Nov 2023
Cited by 6 | Viewed by 1390
Abstract
Routing protocols based on trust mechanisms have been widely investigated for wireless sensor networks, and the works have achieved good results, while there are few works on trusted routing for underwater acoustic networks (UANs). However, trust-aware routing is the key to improving the [...] Read more.
Routing protocols based on trust mechanisms have been widely investigated for wireless sensor networks, and the works have achieved good results, while there are few works on trusted routing for underwater acoustic networks (UANs). However, trust-aware routing is the key to improving the packet delivery rate and the energy efficiency of UANs. Therefore, inspired by the theory of trust evaluation, a trust-aware and fuzzy logic-based reliable layering routing protocol (TAFLRLR) is proposed. In the TAFLRLR protocol, to avoid the problem of the void area and improve the transmission reliability, the candidate nodes of the next-hop forwarding nodes are determined according to the layers of neighbor nodes. Moreover, a fuzzy logic-based trust evaluation mechanism (FLTEM) is provided, which employs the fuzzy comprehensive evaluation decision model to calculate the comprehensive trust value for underwater sensor nodes. Further, the node density of a candidate node and its comprehensive trust value are taken as the input of a fuzzy control system and the forwarding probability (FP) of the node is taken as the output, and the candidate node with the highest FP is selected as the best forwarding node. Simulation results illustrate the superiority and effectiveness of the TAFLRLR protocol in terms of energy efficiency, routing reliability, and transmission reliability. Full article
Show Figures

Figure 1

17 pages, 562 KiB  
Article
Cross-Layer Protocol Based on Directional Reception in Underwater Acoustic Wireless Sensor Networks
by Yao Sun, Wei Ge, Yingsong Li and Jingwei Yin
J. Mar. Sci. Eng. 2023, 11(3), 666; https://doi.org/10.3390/jmse11030666 - 21 Mar 2023
Cited by 7 | Viewed by 2354
Abstract
The long propagation delay of acoustic links leads to the complex randomness of packet collision, which reduces the network packet delivery rate (PDR) and aggravates network congestion. A single vector hydrophone with directional reception characteristics can concentrate the reception gain on a certain [...] Read more.
The long propagation delay of acoustic links leads to the complex randomness of packet collision, which reduces the network packet delivery rate (PDR) and aggravates network congestion. A single vector hydrophone with directional reception characteristics can concentrate the reception gain on a certain direction, which can increase spatial reuse, reduce packet collision, and help to improve the performance of the underwater acoustic wireless sensor networks (UASNs). Herein, this paper proposes a cross-layer protocol with low interference and low congestion (CLIC) based on directional reception. An integrated routing-medium access control (MAC) design is also devised in the CLIC scheme to use the directional beams to create the least-interfering, highest-capacity data transmission links, weighing key factors affecting network performance to obtain routes with low collisions and low congestion. Simulation results show that the CLIC has a higher packet delivery rate (PDR) and higher energy efficiency compared to the QELAR, CITP, and VBF protocols. Full article
(This article belongs to the Special Issue Underwater Wireless Communications: Recent Advances and Challenges)
Show Figures

Figure 1

30 pages, 54337 KiB  
Article
Reliable Data Transmission in Underwater Wireless Sensor Networks Using a Cluster-Based Routing Protocol Endorsed by Member Nodes
by Kaveripakam Sathish, Monia Hamdi, Ravikumar Chinthaginjala, Giovanni Pau, Amel Ksibi, Rajesh Anbazhagan, Mohamed Abbas and Mohammed Usman
Electronics 2023, 12(6), 1287; https://doi.org/10.3390/electronics12061287 - 8 Mar 2023
Cited by 45 | Viewed by 3917
Abstract
Considering Underwater Wireless Sensor Networks (UWSNs) have limited power resources (low bandwidth, long propagation delays, and non-rechargeable batteries), it is critical that they develop solutions to reduce power usage. Clustering is one solution because it not only saves energy consumption but also improves [...] Read more.
Considering Underwater Wireless Sensor Networks (UWSNs) have limited power resources (low bandwidth, long propagation delays, and non-rechargeable batteries), it is critical that they develop solutions to reduce power usage. Clustering is one solution because it not only saves energy consumption but also improves scalability and data integrity. The design of UWSNs is vital to the development of clustering algorithms. The limited energy of sensor nodes, narrow transmission bandwidth, and unpredictable topology of mobile Underwater Acoustic Wireless Sensor Networks (UAWSNs) make it challenging to build an effective and dependable underwater communication network. Despite its success in data dependability, the acoustic underwater communication channel consumes the greatest energy at a node. Recharging and replacing a submerged node’s battery could be prohibitively expensive. We propose a network architecture called Member Nodes Supported Cluster-Based Routing Protocol (MNS-CBRP) to achieve consistent information transfer speeds by using the network’s member nodes. As a result, we use clusters, which are produced by dividing the network’s space into many minute circular sections. Following that, a Cluster Head (CH) node is chosen for each circle. Despite the fact that the source nodes are randomly spread, all of the cluster heads are linked to the circle’s focal point. It is the responsibility of the MNS-CBRP source nodes to communicate the discovered information to the CH. The discovered data will then be sent to the CH that follows it, and so on, until all data packets have been transferred to the surface sinks. We tested our techniques thoroughly using QualNet Simulator to determine their viability. Full article
(This article belongs to the Special Issue Big Data Analysis Based Network)
Show Figures

Figure 1

21 pages, 4876 KiB  
Article
DOIDS: An Intrusion Detection Scheme Based on DBSCAN for Opportunistic Routing in Underwater Wireless Sensor Networks
by Rui Zhang, Jing Zhang, Qiqi Wang and Hehe Zhang
Sensors 2023, 23(4), 2096; https://doi.org/10.3390/s23042096 - 13 Feb 2023
Cited by 23 | Viewed by 2864
Abstract
In Underwater Wireless Sensor Networks (UWSNs), data should be transmitted to data centers reliably and efficiently. However, due to the harsh channel conditions, reliable data transmission is a challenge for large-scale UWSNs. Thus, opportunistic routing (OR) protocols with high reliability, strong robustness, low [...] Read more.
In Underwater Wireless Sensor Networks (UWSNs), data should be transmitted to data centers reliably and efficiently. However, due to the harsh channel conditions, reliable data transmission is a challenge for large-scale UWSNs. Thus, opportunistic routing (OR) protocols with high reliability, strong robustness, low end-to-end delay, and high energy efficiency are widely applied. However, OR in UWSNs is vulnerable to routing attacks. For example, sinkhole attack nodes can attract traffic from surrounding nodes by forging information such as the distance to the sink node. In order to reduce the negative impact of malicious nodes on data transmission, we propose an intrusion detection scheme (IDS) based on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering algorithm for OR (DOIDS) in this paper. DOIDS is based on small-sample IDS and is suitable for UWSNs with sparse node deployment. In DOIDS, the local monitoring mechanism is adopted. Every node in the network running DOIDS can select the trusted next hop. Firstly, according to the behavior characteristics of common routing attack nodes and unreliable underwater acoustic channel characteristics, DOIDS selected the energy consumption, forwarding, and link quality information of candidate nodes as the detection feature values. Then, the collected feature information is used to detect potential abnormal nodes through the DBSCAN clustering algorithm. Finally, a decision function is defined according to the time decay function to reduce the false detection rate of DOIDS. It makes a final judgment on whether the potential abnormal node is malicious. The simulation results show that the algorithm can effectively improve the detection accuracy rate (3% to 15% for different scenarios) and reduce the false positive rate, respectively. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

22 pages, 1072 KiB  
Review
Review of Localization and Clustering in USV and AUV for Underwater Wireless Sensor Networks
by Kaveripakam Sathish, Ravikumar Chinthaginjala Venkata, Rajesh Anbazhagan and Giovanni Pau
Telecom 2023, 4(1), 43-64; https://doi.org/10.3390/telecom4010004 - 11 Jan 2023
Cited by 55 | Viewed by 5764
Abstract
Oceanographic data collection, disaster prevention, aided navigation, critical observation sub-missions, contaminant screening, and seaward scanning are just a few of the submissions that use underwater sensor hubs. Unmanned submerged vehicles (USVs) or autonomous acoustic underwater vehicles (AUVs) through sensors would similarly be able [...] Read more.
Oceanographic data collection, disaster prevention, aided navigation, critical observation sub-missions, contaminant screening, and seaward scanning are just a few of the submissions that use underwater sensor hubs. Unmanned submerged vehicles (USVs) or autonomous acoustic underwater vehicles (AUVs) through sensors would similarly be able to explore unique underwater resources and gather data when utilized in conjunction with integrated screen operations. The most advanced technological method of oceanic observation is wireless information routing beneath the ocean or generally underwater. Water bottoms are typically observed using oceanographic sensors that collect data at certain ocean zones. Most research on UWSNs focuses on physical levels, even though the localization level, such as guiding processes, is a more recent zone. Analyzing the presenting metrics of the current direction conventions for UWSNs is crucial for considering additional enhancements in a procedure employing underwater wireless sensor networks for locating sensors (UWSNs). Due to their severely constrained propagation, radio frequency (RF) transmissions are inappropriate for underwater environments. This makes it difficult to maintain network connectivity and localization. This provided a plan for employing adequate reliability and improved communication and is used to locate the node exactly using a variety of methods. In order to minimize inaccuracies, specific techniques are utilized to calculate the distance to the destination. It has a variety of qualities, such as limited bandwidth, high latency, low energy, and a high error probability. Both nodes enable technical professionals stationed on land to communicate data from the chosen oceanic zones rapidly. This study investigates the significance, uses, network architecture, requirements, and difficulties of undersea sensors. Full article
Show Figures

Figure 1

32 pages, 5289 KiB  
Review
Recent Advances, Future Trends, Applications and Challenges of Internet of Underwater Things (IoUT): A Comprehensive Review
by Syed Agha Hassnain Mohsan, Yanlong Li, Muhammad Sadiq, Junwei Liang and Muhammad Asghar Khan
J. Mar. Sci. Eng. 2023, 11(1), 124; https://doi.org/10.3390/jmse11010124 - 6 Jan 2023
Cited by 89 | Viewed by 15357
Abstract
Oceans cover more than 70% of the Earth’s surface. For various reasons, almost 95% of these areas remain unexplored. Underwater wireless communication (UWC) has widespread applications, including real-time aquatic data collection, naval surveillance, natural disaster prevention, archaeological expeditions, oil and gas exploration, shipwreck [...] Read more.
Oceans cover more than 70% of the Earth’s surface. For various reasons, almost 95% of these areas remain unexplored. Underwater wireless communication (UWC) has widespread applications, including real-time aquatic data collection, naval surveillance, natural disaster prevention, archaeological expeditions, oil and gas exploration, shipwreck exploration, maritime security, and the monitoring of aquatic species and water contamination. The promising concept of the Internet of Underwater Things (IoUT) is having a great influence in several areas, for example, in small research facilities and average-sized harbors, as well as in huge unexplored areas of ocean. The IoUT has emerged as an innovative technology with the potential to develop a smart ocean. The IoUT framework integrates different underwater communication techniques such as optical, magnetic induction, and acoustic signals. It is capable of revolutionizing industrial projects, scientific research, and business. The key enabler technology for the IoUT is the underwater wireless sensor network (UWSN); however, at present, this is characterized by limitations in reliability, long propagation delays, high energy consumption, a dynamic topology, and limited bandwidth. This study examines the literature to identify potential challenges and risks, as well as mitigating solutions, associated with the IoUT. Our findings reveal that the key contributing elements to the challenges facing the IoUT are underwater communications, energy storage, latency, mobility, a lack of standardization, transmission media, transmission range, and energy constraints. Furthermore, we discuss several IoUT applications while highlighting potential future research directions. Full article
(This article belongs to the Special Issue Underwater Sensing, Signal Processing and Communications)
Show Figures

Figure 1

20 pages, 1059 KiB  
Article
AUV-Aided Optical—Acoustic Hybrid Data Collection Based on Deep Reinforcement Learning
by Fanfeng Bu, Hanjiang Luo, Saisai Ma, Xiang Li, Rukhsana Ruby and Guangjie Han
Sensors 2023, 23(2), 578; https://doi.org/10.3390/s23020578 - 4 Jan 2023
Cited by 11 | Viewed by 2926
Abstract
Autonomous underwater vehicles (AUVs)-assisted mobile data collection in underwater wireless sensor networks (UWSNs) has received significant attention because of their mobility and flexibility. To satisfy the increasing demand of diverse application requirements for underwater data collection, such as time-sensitive data freshness, emergency event [...] Read more.
Autonomous underwater vehicles (AUVs)-assisted mobile data collection in underwater wireless sensor networks (UWSNs) has received significant attention because of their mobility and flexibility. To satisfy the increasing demand of diverse application requirements for underwater data collection, such as time-sensitive data freshness, emergency event security as well as energy efficiency, in this paper, we propose a novel multi-modal AUV-assisted data collection scheme which integrates both acoustic and optical technologies and takes advantage of their complementary strengths in terms of communication distance and data rate. In this scheme, we consider the age of information (AoI) of the data packet, node transmission energy as well as energy consumption of the AUV movement, and we make a trade-off between them to retrieve data in a timely and reliable manner. To optimize these, we leverage a deep reinforcement learning (DRL) approach to find the optimal motion trajectory of AUV by selecting the suitable communication options. In addition to that, we also design an optimal angle steering algorithm for AUV navigation under different communication scenarios to reduce energy consumption further. We conduct extensive simulations to verify the effectiveness of the proposed scheme, and the results show that the proposed scheme can significantly reduce the weighted sum of AoI as well as energy consumption. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

22 pages, 6781 KiB  
Article
An On-Site-Based Opportunistic Routing Protocol for Scalable and Energy-Efficient Underwater Acoustic Sensor Networks
by Rongxin Zhu, Xiwen Huang, Xiangdang Huang, Deshun Li and Qiuling Yang
Appl. Sci. 2022, 12(23), 12482; https://doi.org/10.3390/app122312482 - 6 Dec 2022
Cited by 10 | Viewed by 2149
Abstract
With the advancements in wireless sensor networks and the Internet of Underwater Things (IoUT), underwater acoustic sensor networks (UASNs) have attracted much attention, which has also been widely used in marine engineering exploration and disaster prevention. However, UASNs still face many challenges, including [...] Read more.
With the advancements in wireless sensor networks and the Internet of Underwater Things (IoUT), underwater acoustic sensor networks (UASNs) have attracted much attention, which has also been widely used in marine engineering exploration and disaster prevention. However, UASNs still face many challenges, including high propagation latency, limited bandwidth, high energy consumption, and unreliable transmission, influencing the good quality of service (QoS). In this paper, we propose a routing protocol based on the on-site architecture (SROA) for UASNs to improve network scalability and energy efficiency. The on-site architecture adopted by SROA is different from most architectures in that the data center is deployed underwater, which makes the sink nodes closer to the data source. A clustering method is introduced in SROA, which makes the network adapt to the changes in the network scale and avoid single-point failure. Moreover, the Q-learning algorithm is applied to seek optimal routing policies, in which the characteristics of underwater acoustic communication such as residual energy, end-to-end delay, and link quality are considered jointly when constructing the reward function. Furthermore, the reduction of packet retransmissions and collisions is advocated using a waiting mechanism developed from opportunistic routing (OR). The SROA realizes opportunistic routing to choose candidate nodes and coordinate packet forwarding among candidate nodes. The scalability of the proposed routing protocols is also analyzed by varying the network size and transmission range. According to the evaluation results, with the network scale ranging from 100 to 500, the SROA outperforms the existing routing protocols, extensively decreasing energy consumption and end-to-end delay. Full article
(This article belongs to the Topic Wireless Sensor Networks)
Show Figures

Figure 1

26 pages, 2253 KiB  
Article
Statistical Channel Model and Systematic Random Linear Network Coding Based QoS Oriented and Energy Efficient UWSN Routing Protocol
by Pramod Halebeedu Basavaraju, Gururaj Harinahalli Lokesh, Gowtham Mohan, Noor Zaman Jhanjhi and Francesco Flammini
Electronics 2022, 11(16), 2590; https://doi.org/10.3390/electronics11162590 - 18 Aug 2022
Cited by 16 | Viewed by 2573
Abstract
Considering the significance of an energy efficient, delay tolerant and reliable communication protocol for underwater acoustic wireless sensor network (UWSN), this paper proposes a novel systematic random linear network coding (SRLNC) based transmission system examined over a robust statistical UWSN channel model. The [...] Read more.
Considering the significance of an energy efficient, delay tolerant and reliable communication protocol for underwater acoustic wireless sensor network (UWSN), this paper proposes a novel systematic random linear network coding (SRLNC) based transmission system examined over a robust statistical UWSN channel model. The derived statistical channel model deals with both the small-scale fading primarily caused by scattering and small wavelength changes and large-scale fading introduced due to node dislocation in the underwater acoustic medium. The proposed SRLNC transmission-based routing approach has been applied over the proposed underwater acoustic (statistical) channel model, and respective performance assessment has been conducted in terms of throughput, energy efficiency, delay and computational complexity by varying network condition parameters. The contributions such as low coefficient vector and Galois filed, low redundant message requirements, computationally efficient pre-coding scheme, iterative buffer flush and enhanced FEC based decoding make the SRLNC based routing protocol sufficiently robust to enable reliable, energy-efficient and delay resilient communication over UWSN. The proposed SRLNC based UWSN routing protocol and its efficacy over dynamic channel conditions affirm that it can be a potential solution for QoS-oriented mission critical underwater communication purposes. Full article
Show Figures

Figure 1

Back to TopTop