Statistical Channel Model and Systematic Random Linear Network Coding Based QoS Oriented and Energy Efficient UWSN Routing Protocol
Abstract
:1. Introduction
2. Related Works
2.1. Channel Mode
2.2. Network Coding Schemes for Underwater Networks
3. Our Contribution
- UWSN Channel Model for Dynamic Acoustic Environment;
- Systematic Random Linear Network Coding (S-RLNC) Based transmission system;
- S-RLNC based UWSN Routing Protocol.
3.1. UWSN Channel Model
3.1.1. Nominal Conditions and Large-Scale Deviation (LSD)
Nominal Conditions
Large-Scale Deviations (LSD) Caused Due to Location Dynamism
3.1.2. Characterization of the Small Scale Acoustic Channel
Probability Density Function (PDF) for
Intra-Paths Correlation
Path Correlation in Frequency Domain
Path Correlation in the Time Domain
Statistical Model for
3.1.3. Channel Gain Characterization
3.2. Systematic-RLNC Based Data Transmission System
3.2.1. Systematic Random Linear Network Coding (SRLNC)
- (1)
- Process at the source node,
- (2)
- Process at the intermediate node, and
- (3)
- Process at the sink node.
Process at the Source Node
Process at the Intermediate Node
Process at the Sink Node
- (1)
- Optimization of the Coefficient Information Bits
3.3. Systematic RLNC Based UWSN
3.3.1. UWSN Network Model
3.3.2. SRLNC Based Routing Protocol
3.3.3. Packet Delivery Probability (PDP)
3.3.4. Statistical Significance
4. Results and Discussion
4.1. Characterization of UWSN Channel Model
4.2. Characterization of SRLNC Transmission Model
4.3. Characterization of S-RLNC for UWSNs
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Heidemann, J.; Stojanovic, M.; Zorzi, M. Underwater Sensor Networks: Applications. Advances, and Challenges. Philos. Trans. R. Soc. A 2012, 370, 158–175. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Luo, H.; Hong, F.; Yang, M.; Li, N. Current Progress and Research Issues in Underwater Sensor Networks. J. Comput. Res. Dev. 2010, 47, 377–389. [Google Scholar]
- Qarabaqi, P.; Stojanovic, M. Statistical Characterization and Computationally Efficient Modeling of a Class of Underwater Acoustic Communication Channels. IEEE J. Ocean. Eng. 2013, 38, 701–717. [Google Scholar] [CrossRef]
- Coutinho, R.W.L.; Boukerche, A.; Vieira, L.F.M.; Loureiro, A.A.F. GEDAR: Geographic and opportunistic routing protocol with Depth Adjustment for mobile underwater sensor networks. In Proceedings of the 2014 IEEE International Conference on Communications (ICC), Sydney, NSW, Australia, 10–14 June 2014; pp. 251–256. [Google Scholar] [CrossRef]
- Hong, F.; Zhang, Y.L.; Yang, B.Z.; Guo, Y.; Guo, Z. Review on Time Synchronization Techniques in Underwater Acoustic Sensor Networks. Acta Electron. Sin. 2013, 41, 960–965. [Google Scholar]
- Peng, J.; Hong, C.J.; Liu, T. Strategy of routing based on layered for underwater wireless sensor networks. J. Commun. 2014, 35, 25–31. [Google Scholar]
- Stojanovic, M.; Freitag, L. Recent Trends in Underwater Acoustic Communications. Mar. Technol. Soc. J. 2013, 47, 45–50. [Google Scholar] [CrossRef]
- Sozer, E.; Stojanovic, M.; Proakis, J. Underwater acoustic networks. IEEE J. Ocean. Eng. 2000, 25, 72–83. [Google Scholar] [CrossRef]
- Proakis, J.G.; Rice, J.A.; Sozer, E.M.; Stojanovic, M. Shallow-Water Acoustic Networks. IEEE Commun. Mag. 2003, 39, 114–119. [Google Scholar] [CrossRef]
- Stojanovic, M. Acoustic (underwater) communications. In Encyclopedia of Telecommunications; Proakis, J.G., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Porter, M.B. Bellhop Code. Available online: http://oalib.hlsresearch.com/Rays/index.html (accessed on 10 February 2016).
- Peterson, J.C.; Porter, M.B. Ray/Beam Tracing for Modeling the Effects of Ocean and Platform Dynamics. IEEE J. Ocean. Eng. 2013, 38, 4. [Google Scholar] [CrossRef]
- Tindle, C.T. Wavefronts and waveforms in deep-water sound propagation. J. Acoust. Soc. Am. 2002, 112, 464–475. [Google Scholar] [CrossRef]
- Deane, G.B.; Preisig, J.C.; Tindle, C.T.; Lavery, A.; Stokes, M.D. Deterministic forward scatter from surface gravity waves. J. Acoust. Soc. Am. 2012, 132, 3673–3686. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Pompili, D.; Melodia, T. Underwater acoustic sensor networks: Research challenges. Ad Hoc Netw. 2005, 3, 257–279. [Google Scholar] [CrossRef]
- Pompili, D.; Akyildiz, I.F. Overview of networking protocols for underwater wireless communications. IEEE Commun. Mag. 2009, 47, 97–102. [Google Scholar] [CrossRef]
- Qarabaqi, P.; Stojanovic, M. Statistical modeling of a shallow water acoustic communication channel. In Proceedings of the Underwater Acoustic, Measurements Conference, Nafplion, Greece, 21–26 June 2009; pp. 1341–1350. [Google Scholar]
- Radosevic, A.; Proakis, J.G.; Stojanovic, M. Statistical characterization and capacity of shallow water acoustic channels. In Proceedings of the OCEANS 2009-EUROPE, Bremen, Germany, 11–14 May 2009; pp. 1–8. [Google Scholar] [CrossRef]
- Socheleau, F.; Passerieux, J.; Laot, C. Characterisation of timevarying underwater acoustic communication channel with application to channel capacity. In Proceedings of the Underwater Acoustic, Measurements Conference, Nafplion, Greece, 21–26 June 2009. [Google Scholar]
- Galvin, R.; Coats, R. A stochastic underwater acoustic channel model. Proc. MTS/IEEE Oceans Conf. 1996, 1, 203–210. [Google Scholar] [CrossRef]
- Chitre, M. A high-frequency warm shallow water acoustic communications channel model and measurements. J. Acoust. Soc. Am. 2007, 122, 2580–2586. [Google Scholar] [CrossRef]
- Qarabaqi, P.; Stojanovic, M. Modeling the large scale transmission loss in underwater acoustic channels. In Proceedings of the 2011 49th Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA, 28–30 September 2011; pp. 445–452. [Google Scholar] [CrossRef]
- Tomasi, B.; Casari, P.; Badia, L.; Zorzi, M. A study of incremental redundancy hybrid ARQ over Markov channel models derived from experimental data. In Proceedings of the Fifth ACM International Workshop on UnderWater Networks—WUWNet’10, Woods Hole, MA, USA, 30 September–1 October 2010. [Google Scholar] [CrossRef]
- Yang, W.-B.; Yang, T.C. High-frequency channel characterization for M-ary frequency-shift-keying underwater acoustic communications. J. Acoust. Soc. Am. 2006, 120, 2615–2626. [Google Scholar] [CrossRef]
- Zhang, J.; Cross, J.; Zheng, Y.R. Statistical channel modeling of wireless shallow water acoustic communications from experiment data. In Proceedings of the 2010—Milcom 2010 Military Communications Conference, San Jose, CA, USA, 31 October–3 November 2010; pp. 2412–2416. [Google Scholar] [CrossRef]
- Ruiz-Vega, F.; Clemente, M.C.; Otero, P.; Paris, J.F. Rician shadowed statistical characterization of shallow water acoustic channels. In Proceedings of the Conference on Underwater Communications: Channel Modelling and Validation, UCOMMS, Sestri-Levante, Italy, 12–14 September 2012. [Google Scholar]
- Tomasi, B.; Zappa, G.; McCoy, K.; Casari, P.; Zorzi, M. Experimental study of the space-time properties of acoustic channels for underwater communications. In Proceedings of the Oceans’10 IEEE Sydney, Sydney, Australia, 24–27 May 2010. [Google Scholar] [CrossRef]
- Socheleau, F.-X.; Laot, C.; Passerieux, J.-M. Stochastic Replay of Non-WSSUS Underwater Acoustic Communication Channels Recorded at Sea. IEEE Trans. Signal Process. 2011, 59, 4838–4849. [Google Scholar] [CrossRef]
- Heitsenrether, R.M.; Badiey, M. Modeling acoustic signal fluctuations induced by sea surface roughness. Proc. AIP Conf. 2004, 728, 214–221. [Google Scholar]
- Preisig, J.C.; Deane, G.B. Surface wave focusing and acoustic communications in the surf zone. J. Acoust. Soc. Am. 2004, 116, 2067–2080. [Google Scholar] [CrossRef]
- Mo, H.; Zhou, Z.; Zuba, M.; Peng, Z.; Cui, J.H.; Shu, Y. Practical Coding-based Multi-hop Reliable Data Transfer for Underwater Acoustic Networks. In Proceedings of the IEEE Globecom, Anaheim, CA, USA, 3–7 December 2012; pp. 5751–5756. [Google Scholar]
- Chitre, M.; Soh, W.-S. Network coding to combat packet loss in underwater networks. In Proceedings of the Fifth ACM International WUWNet, Woods Hole, MA, USA, 30 September–1 October 2010; p. 106. [Google Scholar] [CrossRef]
- Wu, H.; Chen, M.; Guan, X. A Network Coding Based Routing Protocol for Underwater Sensor Networks. Sensors 2012, 12, 4559–4577. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, B.; Xie, P.; Zeng, W.; Cui, J.H. Efficient error recovery with network coding in underwater sensor networks. Ad Hoc Netw. 2009, 7, 791–802. [Google Scholar] [CrossRef]
- Kun, H.; Zhigang, J.; Ping, H.A. New Opportunistic Routing Mechanism Based on Partial Network Coding. In Proceedings of the 5th International Conference on Intelligent Networks and Intelligent Systems, Bucharest, Romania, 19–21 September 2012; pp. 154–157. [Google Scholar]
- Kebkal, V.; Kebkal, O.; Kebkal, K. Network coding for underwater acoustic sensor networks. In Proceedings of the 2013 MTS/IEEE Oceans, Bergen, Norway, 10–14 June 2013; pp. 1–5. [Google Scholar]
- Xu, J.; Li, K.; Min, G. Reliable and Energy-Efficient Multipath Communications in Underwater Sensor Networks. IEEE Trans. Parallel Distrib. Syst. 2011, 23, 1326–1335. [Google Scholar] [CrossRef]
- Xie, P.; Cui, J.-H. An FEC-based Reliable Data Transport Protocol for Underwater Sensor Networks. In Proceedings of the 16th International Conference on Computer Communications and Networks ICCCN, Honolulu, HI, USA, 13–16 August 2007; pp. 747–753. [Google Scholar] [CrossRef]
- Kulhandjian, H.; Melodia, T.; Koutsonikolas, D. CDMA-Based Analog Network Coding for Underwater Acoustic Sensor Networks. IEEE Trans. Wirel. Commun. 2015, 14, 6495–6507. [Google Scholar] [CrossRef]
- Kebkal, V.; Kebkal, O.; Kebkal, K. Network coding for underwater acoustic networks of butterfly topology. In Proceedings of the Oceans 2014—Taipei, Taipei, Taiwan, 7–10 April 2014; pp. 1–5. [Google Scholar] [CrossRef]
- Kulhandjian, H.; Melodia, T.; Koutsonikolas, D. CDMA-based analog network coding through interference cancellation for underwater acoustic sensor networks. In Proceedings of the Seventh ACM International Conference on Underwater Networks and Systems WUWNet ’12, Los Angeles, CA, USA, 5–6 November 2012. [Google Scholar]
- Isufi, E.; Leus, G.; Dol, H. Network Coding for Flooding-Based Routing in Underwater Sensor Networks. In Proceedings of the Seventh ACM International Conference on Underwater Networks and Systems WUWNet ’14, Rome, Italy, 12–14 November 2014. [Google Scholar]
- Pramod, H.B. Performance and Methodologies of Underwater Sensor Acoustic Network: Research Challenges. In Proceedings of the International Conference on Recent Advances in Science and Engineering, Bangalore, India, 1 February 2014. [Google Scholar]
- Pramod, H.B.; Kumar, R. Time Critical Appliction and Design Issues in Underwater Sensor Network. Int. J. Comput. Corp. Res. 2016, 6, 2. [Google Scholar]
- Evaluation of Parallel Application’s Performance Dependency on RAM using Parallel Virtual Machine. Int. J. Comput. Sci. Commun. Netw. 2014, 2, 641–646.
- Pramod, H.B.; Kumar, R. An Effective Algorithmic for Integrity and Performance Enhancement in Underwater Sensor Networks. IEAE Int. J. Eng. 2016, 1, 1. [Google Scholar]
- Pramod, H.B.; Kumar, R. Effective Security and Energy Aware Approach for Performance Augmentation of Underwater Sensor Networks. Int. J. Sci. Eng. Res. 2016, 7, 7. [Google Scholar]
- Pramod, H.B.; Kumar, R. On-Cloud Deep Learning Based Approach for Performance Enhancement in Underwater Acoustic Communications. In Proceedings of the IEEE International Conference on SCOPES-2016 Centurian University of Technology and Management, Paralakhemundi, India, 3–4 October 2016. [Google Scholar]
- Pramod, H.B.; Kumar, R. Multilayered Energy Harvesting and Aggregation in Underwater Sensor Acoustic network for Performance Enhancement. In Proceedings of the IEEE International Conference on Emerging Technological Trends, Baselios Mathew II College of Engineering, Sasthancotta, Kerala, India, 21–22 October 2016. [Google Scholar]
- Brekhovskikh, L.M.; Lysanov, Y.P. Fundamentals of Ocean Acoustics, 3rd ed.; Springer: New York, NY, USA, 2003. [Google Scholar]
- Cardieri, P.; Rappaport, T. Statistics of the sum of lognormal variables in wireless communications. In Proceedings of the IEEE Vehicular Technology Conference, Tokyo, Japan, 15–18 May 2000; pp. 1823–1827. [Google Scholar]
- Radosevic, A.; Ahmed, R.; Duman, T.M.; Proakis, J.G.; Stojanovic, M. Adaptive OFDM Modulation for Underwater Acoustic Communications: Design Considerations and Experimental Results. IEEE J. Ocean. Eng. 2013, 39, 357–370. [Google Scholar] [CrossRef]
- Li, W.; Preisig, J.C. Estimation of Rapidly Time-Varying Sparse Channels. IEEE J. Ocean. Eng. 2007, 32, 927–939. [Google Scholar] [CrossRef]
- Hao, K.; Jin, Z.; Shen, H.; Wang, Y. An Efficient and Reliable Geographic Routing Protocol Based on Partial Network Coding for Underwater Sensor Networks. Sensors 2015, 15, 12720–12735. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Le, T.T.; Nguyen, H.H.; Voznak, M. Energy-efficient clustering multi-hop routing pro tocol in a UWSN. Sensors 2013, 21, 627. [Google Scholar] [CrossRef]
- Subramani, N.; Mohan, P.; Alotaibi, Y.; Alghamdi, S.; Khalaf, O.I. An Efficient Metaheuristic-Based Clustering with Routing Protocol for Underwater Wireless Sensor Networks. Sensors 2022, 22, 415. [Google Scholar] [CrossRef]
- Mohan, P.; Subramani, N.; Alotaibi, Y.; Alghamdi, S.; Khalaf, O.I.; Ulaganathan, S. Improved metaheuristics-based clustering with multihop routing protocol for underwater wireless sensor networks. Sensors 2022, 22, 1618. [Google Scholar] [CrossRef]
- Haque, K.F.; Kabir, K.H.; Abdelgawad, A. Advancement of routing protocols and applications of underwater wireless sensor network (UWSN)—A survey. J. Sens. Actuator Netw. 2020, 9, 19. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basavaraju, P.H.; Lokesh, G.H.; Mohan, G.; Jhanjhi, N.Z.; Flammini, F. Statistical Channel Model and Systematic Random Linear Network Coding Based QoS Oriented and Energy Efficient UWSN Routing Protocol. Electronics 2022, 11, 2590. https://doi.org/10.3390/electronics11162590
Basavaraju PH, Lokesh GH, Mohan G, Jhanjhi NZ, Flammini F. Statistical Channel Model and Systematic Random Linear Network Coding Based QoS Oriented and Energy Efficient UWSN Routing Protocol. Electronics. 2022; 11(16):2590. https://doi.org/10.3390/electronics11162590
Chicago/Turabian StyleBasavaraju, Pramod Halebeedu, Gururaj Harinahalli Lokesh, Gowtham Mohan, Noor Zaman Jhanjhi, and Francesco Flammini. 2022. "Statistical Channel Model and Systematic Random Linear Network Coding Based QoS Oriented and Energy Efficient UWSN Routing Protocol" Electronics 11, no. 16: 2590. https://doi.org/10.3390/electronics11162590
APA StyleBasavaraju, P. H., Lokesh, G. H., Mohan, G., Jhanjhi, N. Z., & Flammini, F. (2022). Statistical Channel Model and Systematic Random Linear Network Coding Based QoS Oriented and Energy Efficient UWSN Routing Protocol. Electronics, 11(16), 2590. https://doi.org/10.3390/electronics11162590