Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (317)

Search Parameters:
Keywords = underlying rocks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5881 KB  
Article
Numerical Simulation on the Propagation Behaviour of Hydraulic Fractures in Sandstone–Shale Interbeds
by Shasha Li, Yunyang Li and Wan Cheng
Processes 2025, 13(10), 3318; https://doi.org/10.3390/pr13103318 - 16 Oct 2025
Viewed by 284
Abstract
In the shale oil reservoirs, sandstone and shale often overlie each other. This significantly affects the vertical propagation of hydraulic fractures (HFs); however, the underlying mechanisms still remain unclear. This study employs Xsite software to investigate the influence of rock fracture toughness, tensile [...] Read more.
In the shale oil reservoirs, sandstone and shale often overlie each other. This significantly affects the vertical propagation of hydraulic fractures (HFs); however, the underlying mechanisms still remain unclear. This study employs Xsite software to investigate the influence of rock fracture toughness, tensile strength, elastic modulus, Poisson’s ratio, interlayer stress contrast, and the flow rate and viscosity of fracturing fluid on the propagation behaviour of HFs in sandstone–shale interbeds. As the type-I fracture toughness of the shale layer increases, the area of the vertical HF decreases and the average HF width becomes smaller. As the tensile strength of the sandstone layer increases, the distribution range of fluid pressure at the interface expands. The HF prefers to propagate in the softer rock rather than the harder one. A relatively narrower HF width is created in the layer with a higher elastic modulus resulting in a higher flow resistance to fracturing fluid. A shale layer with a high Poisson’s ratio is more likely to undergo a lateral expansion, causing stress at the fracture tip to be dispersed. When the effect of lithological interfaces is considered, an increasing interlayer stress contrast causes HFs to gradually transition from penetrating the interfaces to becoming confined between the two interfaces. When the influence of the lithological interface is not considered, an increasing interlayer stress contrast causes the HF to gradually transition from a penny-shaped fracture to a blade-shaped fracture. The HF penetrates the interfaces more easily at a higher injection rate and fluid viscosity, because most of the injected energy is used to create new fractures rather than leakoff into the interfaces. Understanding the influence of these factors on the HF propagation behaviour is of great significance for optimising hydraulic fracturing design. Full article
(This article belongs to the Special Issue Advances in Oil and Gas Reservoir Modeling and Simulation)
Show Figures

Figure 1

18 pages, 5373 KB  
Article
High PEEP Activates ITGB1, Inducing Diaphragm Fibrosis During Prolonged Mechanical Ventilation
by Jiahong Gong, Jianwei Jia, Runze He, Xiaolan Yu, Ye Jiang, Weimin Shen, Xiaoli Qian, Peifeng Xu, Ying Xu and Huiqing Ge
Biomolecules 2025, 15(10), 1466; https://doi.org/10.3390/biom15101466 - 16 Oct 2025
Viewed by 281
Abstract
Background: Mechanical ventilation (MV) with high positive end-expiratory pressure (PEEP) is linked to ventilation-induced diaphragm dysfunction (VIDD), but the role of integrin beta-1 (ITGB1) in PEEP-associated diaphragm fibrosis remains unclear. Methods: Eighteen rabbits were divided into control (CON), MV without PEEP(MV), and MV [...] Read more.
Background: Mechanical ventilation (MV) with high positive end-expiratory pressure (PEEP) is linked to ventilation-induced diaphragm dysfunction (VIDD), but the role of integrin beta-1 (ITGB1) in PEEP-associated diaphragm fibrosis remains unclear. Methods: Eighteen rabbits were divided into control (CON), MV without PEEP(MV), and MV with 8 cmH2O PEEP (PEEP) groups. C2C12 underwent cyclic stretching (15% tension), and ITGB1 was knocked down. Fibrosis markers (TGFβ-1, α-SMA), ITGB1/ROCK1 expression, and pathway activation were analyzed via RNA sequencing, immunohistochemistry, and Western blotting. Results: The PEEP group exhibited elevated airway pressure and upregulated fibrosis markers (TGFβ-1 and α-SMA) alongside activated ITGB1/ROCK1 mechanotransduction pathways. Stretched C2C12 showed morphological shrinkage and increased fibrotic protein expression. RNA sequencing confirmed enrichment in fibrosis- and integrin-related pathways. ITGB1 knockdown attenuated TGFβ-1 and α-SMA induction. Conclusions: ITGB1 mediates PEEP-induced diaphragm fibrosis via TGFβ-1 signaling and collagen deposition, suggesting ITGB1 targeting as a potential therapeutic strategy for VIDD. These findings elucidate the mechanotransduction mechanisms underlying MV-associated diaphragm dysfunction. Full article
Show Figures

Graphical abstract

20 pages, 13321 KB  
Article
Limit Analysis Theory and Numerical Simulation Study on the Cover Thickness of Tunnel Crown in Soil–Rock Strata
by Fang Ji, Qinshan Wang, Hongtao Wang, Yaotao Yuan, Zhenxiang Hao, Ping Liu and Rongli Liu
Mathematics 2025, 13(20), 3293; https://doi.org/10.3390/math13203293 - 15 Oct 2025
Viewed by 172
Abstract
When constructing subway tunnels in composite strata consisting of overlying soil and underlying rock, placing the tunnel within the overburden rock strata and setting a certain thickness of safety cover rock on top is an effective way to ensure the safety of tunnel [...] Read more.
When constructing subway tunnels in composite strata consisting of overlying soil and underlying rock, placing the tunnel within the overburden rock strata and setting a certain thickness of safety cover rock on top is an effective way to ensure the safety of tunnel construction and the stability of the surrounding rock. However, there is currently no unified understanding or standard regarding the safe overburden thickness of the tunnel and its general rules. To investigate the effect of changes in the roof overlying rock thickness on the surrounding rock stability of subway tunnels, this study is based on the typical soil–rock strata of an underground tunnel section of Jinan Metro Line 4 in China. A total of 4 different conditions for the thickness of the overlying soil layer were considered, and 48 comparison schemes were designed. A systematic study of numerical simulation comparisons of tunnel excavation under different cover rock thicknesses was conducted. The deformation and plastic zone evolution characteristics of the surrounding rock were revealed under different cover rock thicknesses, and the existence of an optimal cover rock thickness range for tunnel crowns in soil–rock strata was identified. Based on this, a theoretical analysis model for the failure of the tunnel roof overlying rock was constructed. Using the upper-bound approach limit analysis method, the theoretical formula for the critical overburden thickness of the tunnel crown was derived. The influence of different rock mechanical parameters and tunnel design parameters on the critical overburden thickness was analyzed. The results were compared with numerical simulation results to verify the effectiveness of the proposed method. The research findings provide theoretical references for selecting reasonable buried depths and support designs for mining-bored tunnels in soil–rock composite strata. Full article
Show Figures

Figure 1

21 pages, 1674 KB  
Article
Comparative Transcriptomics Provides Insight into the Neuroendocrine Regulation of Spawning in the Black-Lip Rock Oyster (Saccostrea echinata)
by Md Abu Zafar, Saowaros Suwansa-ard, Aiden Mellor, Max Wingfield, Karl Reiher, Abigail Elizur and Scott F. Cummins
Int. J. Mol. Sci. 2025, 26(20), 10032; https://doi.org/10.3390/ijms262010032 - 15 Oct 2025
Viewed by 178
Abstract
The black-lip rock oyster, Saccostrea echinata, is an emerging aquaculture species; however, difficulties in regulating their gonad conditioning to full maturation and spawning have impacted industry progress. Addressing this challenge requires a deeper understanding of the molecular mechanisms underlying reproduction, particularly the [...] Read more.
The black-lip rock oyster, Saccostrea echinata, is an emerging aquaculture species; however, difficulties in regulating their gonad conditioning to full maturation and spawning have impacted industry progress. Addressing this challenge requires a deeper understanding of the molecular mechanisms underlying reproduction, particularly the signalling molecules (e.g., neuroendocrine hormones) that regulate gonad development and spawning, which remains poorly understood in this species. Therefore, we investigated the molecular neuroendocrine regulation of gonad maturation in S. echinata through the analysis of gonad histological changes correlated with gene expression in the visceral ganglia and gonad (of male and female) at pre- and post-spawn stages. Our targeted analysis of neuropeptide genes demonstrated that only LASGLVamide showed significant differential expression, being upregulated in the pre-spawn female gonad. Of the 26 reproductive-related genes identified, four were significantly upregulated in female gonad (SOX9, Dax1, Nanos-like, and Piwi-like), while an insulin-like peptide receptor was elevated in male visceral ganglia at post-spawn. Untargeted investigation revealed numerous transmembrane receptors significantly upregulated in the pre-spawn ovary, such as receptors for thyrotropin-releasing hormone, metabotropic glutamate, and 5-hydroxytryptamine, while mesotocin and oxytocin receptors were upregulated in pre-spawn male gonads. At the post-spawn stage, the visceral ganglia displayed upregulation of genes encoding stress-related proteins such as superoxidase dismutase and DnaJ homologue subfamily A member 1. These findings provide important insights into the complexities of neuroendocrine signalling molecules and establish a molecular foundation to guide selective breeding and broodstock management strategies that will support sustainable aquaculture development of black-lip rock oyster. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

16 pages, 3297 KB  
Article
Larazotide Acetate Protects the Intestinal Mucosal Barrier from Anoxia/Reoxygenation Injury via Various Cellular Mechanisms
by Jain Kim, Jay P. Madan, Sandeep Laumas, B. Radha Krishnan and Younggeon Jin
Biomedicines 2025, 13(10), 2483; https://doi.org/10.3390/biomedicines13102483 - 12 Oct 2025
Viewed by 369
Abstract
Background/Objective: Larazotide acetate (LA) is a synthetic octapeptide under development as a therapeutic candidate for celiac disease, acting to reduce intestinal permeability and regulate tight junctions (TJs). Although several studies have shown barrier-protective effects, the cellular mechanisms underlying LA’s actions in the [...] Read more.
Background/Objective: Larazotide acetate (LA) is a synthetic octapeptide under development as a therapeutic candidate for celiac disease, acting to reduce intestinal permeability and regulate tight junctions (TJs). Although several studies have shown barrier-protective effects, the cellular mechanisms underlying LA’s actions in the intestinal epithelium remain unclear. This study aimed to elucidate the mechanistic roles of LA in maintaining intestinal epithelial integrity during cellular injury. Methods: C2BBe1 and leaky IPEC-J2 cell monolayers were pretreated with 10 mM LA and subjected to anoxia/reoxygenation (A/R) injury. Transepithelial electrical resistance (TEER), TJ protein localization, and phosphorylation of myosin light chain-2 (MLC-2) were analyzed. In addition, RNA sequencing was conducted to identify differentially expressed genes and signaling pathways affected by LA treatment. Results: LA pretreatment significantly increased TEER and preserved TJ protein organization during A/R injury. Transcriptomic analysis revealed enrichment of genes related to barrier regulation, small GTPase signaling, protein phosphorylation, proliferation, and migration. LA pretreatment markedly reduced MLC-2 phosphorylation, likely through modulation of the ROCK pathway, consistent with RNA-seq findings. Moreover, LA enhanced cellular proliferation, validating transcriptomic predictions. Conclusions: LA exerts a protective effect on intestinal epithelial integrity by stabilizing tight junctions, reducing MLC-2 phosphorylation, and promoting epithelial proliferation. These findings highlight a novel mechanism for LA and support its therapeutic potential in treating gastrointestinal disorders associated with “leaky gut” and mucosal injury. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

18 pages, 5933 KB  
Article
The Impact of Reservoir Parameters and Fluid Properties on Seepage Characteristics and Fracture Morphology Using Water-Based Fracturing Fluid
by Zhaowei Zhang, Qiang Sun, Hongge Wang, Chaoxian Chen, Changyu Chen, Qian Zhou, Qisen Gong, Xiaoyue Zhuo and Peng Zhuo
Processes 2025, 13(10), 3166; https://doi.org/10.3390/pr13103166 - 5 Oct 2025
Viewed by 467
Abstract
This study, motivated by the pronounced fluid loss characteristics of water-based fracturing fluids, developed a fluid–solid coupling model to investigate water-based fracturing in geological reservoirs. The model was further employed to analyse the effects of multiple factors on fracture propagation and the seepage [...] Read more.
This study, motivated by the pronounced fluid loss characteristics of water-based fracturing fluids, developed a fluid–solid coupling model to investigate water-based fracturing in geological reservoirs. The model was further employed to analyse the effects of multiple factors on fracture propagation and the seepage capacity of water-based fracturing fluids. Moreover, the underlying mechanisms of fracture propagation and seepage enhancement were elucidated from a microscopic molecular perspective. The results obtained that the high apparent viscosity of water-based fracturing fluids not only enhances the fracturing efficiency of reservoir rocks but also results in a reduced seepage volume (−17 mL) in low-permeability reservoirs. Furthermore, the reservoir porosity (+2.5%) exhibits a clear inverse proportional relationship with fracturing efficiency (−0.9 m), while the seepage volume (+7 mL) of water-based fracturing fluids continues to increase. The strength and quantity of hydrogen bonds between molecules in water-based fracturing fluid, influenced by external factors, directly affect fluid seepage. The seepage behaviour of water-based fracturing fluids in geological reservoirs, together with the influence of reservoir conditions on fracture propagation, provides valuable reference data for rock fracturing and reservoir stimulation. However, the absence of data analysis and microscopic images of microscopic molecular dynamics constitutes a challenging problem that demands attention. Full article
Show Figures

Figure 1

24 pages, 5930 KB  
Article
Modulating Mechanisms of Surfactants on Fluid/Fluid/Rock Interfacial Properties for Enhanced Oil Recovery: A Multi-Scale Evaluation from SARA-Based Experiments to Atomistic Simulations
by Yiming Wang, Xinru Liang, Jinze Du, Yuxing Tan, Yu Sun, Gaobo Yu, Jinjian Hou, Zhenda Tan and Jiacheng Li
Coatings 2025, 15(10), 1146; https://doi.org/10.3390/coatings15101146 - 2 Oct 2025
Viewed by 363
Abstract
Low-Salinity Water Flooding (LSWF) has gained attention for its cost-effectiveness and environmental advantages, yet its underlying mechanisms remain not fully understood. Oil recovery in LSWF is primarily governed by interfacial dynamics and formation wettability. This research investigates the effects of seawater dilution in [...] Read more.
Low-Salinity Water Flooding (LSWF) has gained attention for its cost-effectiveness and environmental advantages, yet its underlying mechanisms remain not fully understood. Oil recovery in LSWF is primarily governed by interfacial dynamics and formation wettability. This research investigates the effects of seawater dilution in carbonate reservoirs through laboratory analyses and displacement experiments. Results show that oil recovery efficiency is largely driven by rock–fluid interactions rather than fluid–fluid interactions, with optimal brine concentrations enhancing wettability alteration, boundary flexibility, and mineral leaching. These findings highlight the importance of considering both fluid–rock interactions and mineral reactivity, rather than attributing recovery to a single mechanism. Molecular dynamics simulations further supported the experimental observations. Overall, the study emphasizes that early and well-designed low-salinity injection strategies can maximize LSWF performance. The results elucidate the key interaction mechanisms between surfactants and the various components of heavy oil through atomic-scale precision modeling and dynamic process tracking. These simulations clarify, at the microscopic level, the differences in displacement dynamics and efficiency of organic solvent systems toward different hydrocarbon components. Full article
(This article belongs to the Section Liquid–Fluid Coatings, Surfaces and Interfaces)
Show Figures

Figure 1

20 pages, 2709 KB  
Article
Spatiotemporal Evolution and Driving Mechanisms of Eco-Environmental Quality in a Typical Inland Lake Basin of the Northeastern Tibetan Plateau: A Case Study of the Qinghai Lake Basin
by Zhen Chen, Xiaohong Gao, Zhifeng Liu, Yaohang Sun and Kelong Chen
Land 2025, 14(10), 1955; https://doi.org/10.3390/land14101955 - 26 Sep 2025
Viewed by 386
Abstract
The Qinghai Lake Basin (QLB), as a key component of the ecological security barrier on the Tibetan Plateau, is crucial for regional sustainable development due to the stability of its alpine agro-pastoral ecosystems. This study aims to systematically analyze the spatiotemporal evolution patterns [...] Read more.
The Qinghai Lake Basin (QLB), as a key component of the ecological security barrier on the Tibetan Plateau, is crucial for regional sustainable development due to the stability of its alpine agro-pastoral ecosystems. This study aims to systematically analyze the spatiotemporal evolution patterns and underlying driving mechanisms of eco-environmental quality (EEQ) in the QLB from 2001 to 2022. Based on Google Earth Engine (GEE) and long-term MODIS data, we constructed a Remote Sensing Ecological Index (RSEI) model to evaluate the EEQ dynamics. Geodetector (GD) was applied to quantitatively identify key driving factors and their interactions. The findings reveal: (1) The mean RSEI value increased from 0.46 in 2001 to 0.51 in 2022, showing a fluctuating improvement trend with significant transitions toward higher ecological quality grades; (2) spatially, a distinct “high-north-south, low-center” pattern emerged, with excellent-grade areas (4.77%) concentrated in alpine meadows and poor-grade areas (5.10%) mainly in bare rock regions; (3) 47.81% of the region experienced ecological improvement, whereas 16.34% showed degradation, predominantly above 3827 m elevation; and (4) GD analysis indicated natural factors dominated EEQ differentiation, with temperature (q = 0.340) and elevation (q = 0.332) being primary drivers. The interaction between temperature and precipitation (q = 0.593) exerted decisive control on ecological pattern evolution. This study provides an efficient monitoring framework and a spatially explicit governance paradigm for maintaining differentiated management and ecosystem stability in alpine agro-pastoral regions. Full article
Show Figures

Figure 1

23 pages, 8283 KB  
Article
Research on Deterioration Characteristics of Tuffaceous Sandstone Under Acidic Wet–Dry Cycles
by Dunwen Liu, Mengzhao Wang, Chengtao Yang and Xiaofei Sun
Appl. Sci. 2025, 15(19), 10465; https://doi.org/10.3390/app151910465 - 26 Sep 2025
Viewed by 266
Abstract
Conducted against the background of a highway project in Zhuji, Zhejiang Province, this study investigates the deterioration behavior of tuffaceous sandstone under the combined action of acid rain and wet–dry cycles. Laboratory experiments were carried out to explore its mechanical properties and damage [...] Read more.
Conducted against the background of a highway project in Zhuji, Zhejiang Province, this study investigates the deterioration behavior of tuffaceous sandstone under the combined action of acid rain and wet–dry cycles. Laboratory experiments were carried out to explore its mechanical properties and damage evolution mechanisms. Standard specimens prepared from field rock samples were subjected to wet–dry cycles using an acidic solution with pH ≈ 5.0. By integrating uniaxial compression, Brazilian splitting, ultrasonic wave monitoring, and acoustic emission techniques, a systematic analysis was carried out to evaluate the degradation of mechanical parameters, the evolution of wave velocity, and the underlying damage and failure mechanisms. The results indicate the following: (1) With the increase in the number of acidic dry–wet cycles, the compressive and tensile strengths of tuffaceous sandstone decrease significantly; the deterioration rate first decreases and then increases, with 150 cycles identified as the critical threshold for strength deterioration, beyond which the material enters a stage of rapid degradation. (2) The evolution of ultrasonic wave velocity shows a significant negative correlation with strength deterioration, and the attenuation rate of wave velocity exhibits a consistent trend with the number of cycles as that of strength deterioration. (3) Acoustic emission RA-AF analysis reveals that tensile cracks in tuffaceous sandstone gradually decrease while shear cracks slowly increase, with cracks primarily developing along the weakly cemented tuffaceous areas. (4) This study established fitting formulas for the deterioration of compressive and tensile strengths with the number of cycles, as well as a damage calculation formula based on changes in wave velocity. (5) This study provides practical support for mitigating natural disasters, such as slope instability, induced by this type of combined weathering. Full article
Show Figures

Figure 1

18 pages, 11011 KB  
Article
Research on the Deviatoric Stress Mode and Control of the Surrounding Rock in Close-Distance Double-Thick Coal Seam Roadways
by Dongdong Chen, Jiachen Tang, Wenrui He, Changxiang Gao and Chenjie Wang
Appl. Sci. 2025, 15(19), 10416; https://doi.org/10.3390/app151910416 - 25 Sep 2025
Viewed by 206
Abstract
To address the issue of sustained deformation in the main roadway surrounding rock triggered by intense movement of overlying strata following the reduction of width of the stopping pillar (WSP) in closely spaced double extra-thick coal seams (CSDECS). Analyze the evolution patterns of [...] Read more.
To address the issue of sustained deformation in the main roadway surrounding rock triggered by intense movement of overlying strata following the reduction of width of the stopping pillar (WSP) in closely spaced double extra-thick coal seams (CSDECS). Analyze the evolution patterns of abutment pressure, principal stress vector lines, and zones of deviatoric stress concentration (ZDSC) of the main roadways using multi-method approaches. The findings are as follows: As the WSP is reduced, the maximum abutment pressure (MAP) on both sides of the gate roadways’ surrounding rock becomes significantly more asymmetric and intense. The deflection trajectory of the maximum principal stress line (MPSL) in the two coal seams, induced by the advancing underlying panel, follows an approximate inverted ︺ shape. The evolution of the ZDSC and the main roadways in the adjacent working faces all shows three-stage characteristics. For the upper coal seam, it is characterized by crescent-shaped symmetry → slow and asymmetric increase of the peak value and the offset of the ZDSC → the ZDSC on the non-mining side (NM-S) reaches the maximum while the mining side (M-S) shows the reverse trend. For the lower coal seam, it is characterized by crescent-shaped symmetry → quasi-annular distribution with a slight increase in the peak value → significant and asymmetric increase of the peak values. Based on the identification of the key control zones in the ZDSC, an asymmetric reinforcement segmented control method was proposed. The findings provide useful guidance for analogous engineering projects. Full article
(This article belongs to the Topic Advances in Mining and Geotechnical Engineering)
Show Figures

Figure 1

32 pages, 7351 KB  
Article
Function of Bolts in Arching Process of Surrounding Rocks of Roadways and Its Application in Support Design for Large Section Gateways
by Tuanjie Guo, Peiju Yang, Jitao Zhao and Zhenglong Cheng
Appl. Sci. 2025, 15(19), 10327; https://doi.org/10.3390/app151910327 - 23 Sep 2025
Viewed by 251
Abstract
In order to determine appropriate anchoring parameters after enlarging the cross-section of the mining roadway, a comprehensive study was conducted to investigate the development of deformation and failure characteristics in the surrounding rock. The mechanical behavior of rock failure under high-stress conditions and [...] Read more.
In order to determine appropriate anchoring parameters after enlarging the cross-section of the mining roadway, a comprehensive study was conducted to investigate the development of deformation and failure characteristics in the surrounding rock. The mechanical behavior of rock failure under high-stress conditions and the progressive evolution of deformation and failure from shallow to deep zones were thoroughly analyzed. It was proposed that the primary function of bolt support in mining roadways is to guide the surrounding rock to form a stable compressive arch or ring structure. The mechanical mechanism underlying the formation of such an arch under bolt guidance, along with the stability characteristics during this process, was investigated. The principles for determining bolt support parameters were established as follows: (a) ensuring the formation of a closed compressive ring within the anchorage zone around the roadway; (b) preventing shear failure at the roadway corners; and (c) controlling the extent of roof subsidence under gravitational loading. Design methodologies for determining rock bolt and anchor cable length and spacing were formulated and implemented in the support design of large-section mining roadways within million-ton fully mechanized mining faces. The cross-sectional dimensions of the supported roadway are 5.8 × 4.0 m. Field monitoring results indicate that, after stabilization of the surrounding rock deformation, the maximum convergence between both sides does not exceed 140 mm, the maximum roof subsidence remains below 40 mm, and the maximum roof separation is limited to within 4 mm. These findings provide strong evidence that the selected design parameters fully meet the engineering requirements for roadway support. Full article
Show Figures

Figure 1

21 pages, 1087 KB  
Review
Involvement of Neuroinflammation and Oxidative Stress in L-DOPA-Induced Dyskinesia in Parkinson’s Disease: Role of Renin–Angiotensin System and ROCK Pathway
by Ana Muñoz, Andrea López-López, Jannette Rodríguez-Pallares and José Luis Labandeira-Garcia
Antioxidants 2025, 14(10), 1154; https://doi.org/10.3390/antiox14101154 - 23 Sep 2025
Viewed by 427
Abstract
Dopamine (DA) replacement by L-DOPA administration is the most common and effective treatment for Parkinson’s disease (PD). However, its chronic use leads to important side effects at advanced stages of the disease. Levodopa-induced dyskinesia (LID), characterized by involuntary, abnormal movements, is the main [...] Read more.
Dopamine (DA) replacement by L-DOPA administration is the most common and effective treatment for Parkinson’s disease (PD). However, its chronic use leads to important side effects at advanced stages of the disease. Levodopa-induced dyskinesia (LID), characterized by involuntary, abnormal movements, is the main challenge of L-DOPA treatment. Although the causes underlying LID are not fully understood, abnormal plasticity in corticostriatal synapses and dysregulated DA release from serotonin terminals play a crucial role. In recent years, several studies have suggested the involvement of neuroinflammation and oxidative stress in the pathophysiology of LID. Interestingly, different evidence has shown that blocking these pathways reduces LID in experimental animal PD models, pointing to the use of antioxidant/anti-inflammatory agents as a potential therapy for LID. Numerous studies have shown the role of the brain renin–angiotensin system (RAS) and the ROCK pathway in neuroinflammation and oxidative stress. Compounds acting through these routes have strong neuroprotective properties in PD models. Additionally, the use of ROCK inhibitors, such as fasudil, and RAS blockers has shown potent anti-dyskinetic effects. Therefore, compounds acting on the RAS and ROCK pathways could have a dual role, slowing down the degeneration of dopaminergic neurons and reducing the development of LID. Full article
Show Figures

Figure 1

21 pages, 11856 KB  
Article
A Strategy to Optimize the Mechanical Properties and Microstructure of Loess by Nano-Modified Soil Stabilizer
by Baofeng Lei, Xingchen Zhang, Henghui Fan, Shijian Wu, Changzhi Zhao, Wenbo Ni and Changhao Liu
Materials 2025, 18(19), 4435; https://doi.org/10.3390/ma18194435 - 23 Sep 2025
Viewed by 371
Abstract
With the increasing demand for soil modification technologies in the field of civil engineering, this study employed cement-stabilized soil and MBER (Material Becoming Earth into Rock) stabilized soil as controls to investigate the modification effects of an N-MBER (nanosilica reinforced MBER) stabilizer on [...] Read more.
With the increasing demand for soil modification technologies in the field of civil engineering, this study employed cement-stabilized soil and MBER (Material Becoming Earth into Rock) stabilized soil as controls to investigate the modification effects of an N-MBER (nanosilica reinforced MBER) stabilizer on the mechanical properties and microstructure of loess. The mechanical and water stability characteristics of N-MBER-stabilized loess under varying moisture contents and compaction degrees were analyzed through unconfined compressive strength (UCS) tests, softening coefficient tests, falling-head permeability tests, and wet–dry cycle tests. Combined with scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and nuclear magnetic resonance (NMR) techniques, the underlying mechanism of the N-MBER stabilizer in loess stabilization was thoroughly revealed. The results indicate that the N-MBER stabilizer significantly enhances the UCS and softening coefficient of loess. Particularly, under conditions of 28-day curing, a moisture content of 16%, and a compaction degree of 1, the compressive strength achieves a local optimum value of 3.68 MPa. Compared to soils stabilized with MBER stabilizers and cement stabilizers, the N-MBER-stabilized loess exhibits superior water resistance and microstructural density, with a significant reduction in the proportion of pore defects. Specifically, after five wet–dry cycles at a curing age of 28 days, the strength loss rates for MBER-stabilized soil and cement-stabilized soil were 24.4% and 27.54%, respectively, while that for N-MBER-stabilized soil was 18.23%, demonstrating its enhanced water resistance. Additionally, compared to cement-stabilized soil, the N-MBER-stabilized soil exhibited a 21.63% reduction in total pore number, with a 41.64% reduction specifically in large pores. The extremely small particle size and large specific surface area of the nanomaterial enable more effective interactions with soil particles, promoting hydration reactions. The resulting ettringite (AFt) and three-dimensional networked C-S-H gel tightly interweave with soil particles, forming a stable cemented structure. Compared to traditional concrete roads, stabilized soil roads enable the utilization of locally available materials and demonstrate a significant cost advantage. This study provides theoretical support and experimental evidence for the application of nanomaterials in loess improvement engineering. Full article
Show Figures

Figure 1

21 pages, 24540 KB  
Article
Analysis of Dynamic Response Characteristics and Failure Pattern of Rock Slopes Containing X-Joints and Underlying Weak Interlayers
by He Meng, Yanjun Shang, Liyun Zhou, Yangfan Li, Xuetao Yi and Qingsen Meng
Appl. Sci. 2025, 15(18), 10209; https://doi.org/10.3390/app151810209 - 19 Sep 2025
Viewed by 384
Abstract
Under the complex geological structural stress of the Western Himalayan syntaxis, the widespread distribution of hard and brittle rocks (such as sandstone and limestone) makes them prone to the formation of conjugate joints, also known as X-joints. These joints create weak structural planes [...] Read more.
Under the complex geological structural stress of the Western Himalayan syntaxis, the widespread distribution of hard and brittle rocks (such as sandstone and limestone) makes them prone to the formation of conjugate joints, also known as X-joints. These joints create weak structural planes in the slope rock mass, and when combined with weak interlayers within the slope, they result in a complex dynamic response and hazard situation in this region, which is further exacerbated by frequent seismic activity. This poses a serious threat to the planning, construction, and safe operation of the Belt and Road Initiative. To study the slope vibration response and instability mechanisms under these conditions, we conducted a shaking table test using the Iymek avalanche as a case study and performed Hilbert–Huang Transform (HHT) analysis. We also compared the results of the shaking table test on slope models without X-joints but containing weak interlayers. The findings show that the presence of X-joints leads to an earlier onset of plastic failure in the slope. During the failure development, X-joints cause stress concentration and the diversification of stress redistribution paths, delaying energy release. Ultimately, the avalanche failure mode in the X-joint slopes is more dispersed compared to the landslide failure mode in the model without X-joints. At the toe of the slope beneath the weak interlayer, low-frequency seismic waves can cause a significant amplification of acceleration, and the weak interlayer is often the shear outlets of the slope. These findings provide new insights into the seismic failure evolution of jointed slopes with weak interlayers and offer practical references for seismic hazard mitigation in mountainous infrastructure. Full article
Show Figures

Figure 1

38 pages, 15532 KB  
Article
Lightweight Deep Learning Approaches for Lithological Mapping in Vegetated Terrains of the Vălioara Valley, Romania
by Valentin Árvai and Gáspár Albert
ISPRS Int. J. Geo-Inf. 2025, 14(9), 350; https://doi.org/10.3390/ijgi14090350 - 15 Sep 2025
Viewed by 689
Abstract
Mapping lithology in areas with dense vegetation remains a major challenge for remote sensing, as plant cover tends to obscure the spectral signatures of underlying rock formations. This study tackles that issue by comparing the performance of three custom-built lightweight deep learning models [...] Read more.
Mapping lithology in areas with dense vegetation remains a major challenge for remote sensing, as plant cover tends to obscure the spectral signatures of underlying rock formations. This study tackles that issue by comparing the performance of three custom-built lightweight deep learning models in the mixed-vegetation terrain of the surroundings of the Vălioara Valley, Romania. We used time-series data from Sentinel-2 and elevation data from the SRTM, with preprocessing techniques such as the Principal Component Analysis (PCA) and the Forced Invariance Method (FIM) to reduce the spectral interference caused by vegetation. Predictions were made with a Multi-Layer Perceptron (MLP), a Convolutional Neural Network (CNN), and a Vision Transformer (ViT). In addition to measuring the classification accuracy, we assessed how the different models handled vegetation coverage. We also explored how vegetation density (NDVI) correlated with the classification results. Tests show that the Vision Transformer outperforms the other models by 6%, offering a stronger resilience to vegetation interference, while FIM doubled the model confidence in specific (locally rare) lithologies and decorrelated vegetation in multiple measures. These findings highlight both the potential of ViTs for remote sensing in complex environments and the importance of applying vegetation suppression techniques like FIM to improve geological interpretation from satellite data. Full article
Show Figures

Figure 1

Back to TopTop