Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (164)

Search Parameters:
Keywords = uncontrolled cell death

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 771 KiB  
Review
Therapeutic Prospects of αv Integrins Inhibition in Fibrotic Lung Diseases and Carcinogenesis
by Eugenija Leonidovna Golovina, Veronika Vladimirovna Kochubey, Marina Alekseevna Shabanova, Darya Maksimovna Chekhvalova, Valentina Alexandrovna Serebryakova, Evgenii Germanovich Skurikhin, Olga Evgenievna Vaizova, Sergey Georgievich Morozov, Aslan Amirkhanovich Kubatiev and Alexander Mikhaylovich Dygai
Int. J. Mol. Sci. 2025, 26(13), 6202; https://doi.org/10.3390/ijms26136202 - 27 Jun 2025
Viewed by 529
Abstract
The uncontrolled fibrosis of lung tissue can lead to premature death in patients suffering from idiopathic pulmonary fibrosis (IPF), and it complicates the course of chronic obstructive pulmonary disease (COPD) and emphysema. It is also a risk factor for developing lung cancer. Antifibrotic [...] Read more.
The uncontrolled fibrosis of lung tissue can lead to premature death in patients suffering from idiopathic pulmonary fibrosis (IPF), and it complicates the course of chronic obstructive pulmonary disease (COPD) and emphysema. It is also a risk factor for developing lung cancer. Antifibrotic drugs, such as nantedanib and pirfenidone, are able to slow down the progression of pulmonary fibrosis, but more effective treatment is still needed to reverse it. Studies on the pathogenesis of tissue fibrosis have demonstrated that integrins play a crucial role affecting the development of pulmonary fibrosis, for example, by activating transforming growth factor-β (TGF-β). Taking the above into consideration, targeting specific integrins could offer promising opportunities for managing fibroplastic changes in lung tissue. Integrins are a type of transmembrane molecule that mediate interactions between cells and extracellular matrix (ECM) molecules. This review discusses the role of integrins in the pathogeneses of respiratory diseases and carcinogenesis, as well as presents promising approaches to the drug therapy of pulmonary fibrosis of various etiologies based on integrin inhibition. Full article
Show Figures

Figure 1

33 pages, 2729 KiB  
Review
Misregulation of the Ubiquitin–Proteasome System and Autophagy in Muscular Dystrophies Associated with the Dystrophin–Glycoprotein Complex
by Manuela Bozzi, Francesca Sciandra, Maria Giulia Bigotti and Andrea Brancaccio
Cells 2025, 14(10), 721; https://doi.org/10.3390/cells14100721 - 15 May 2025
Viewed by 1176
Abstract
The stability of the sarcolemma is severely impaired in a series of genetic neuromuscular diseases defined as muscular dystrophies. These are characterized by the centralization of skeletal muscle syncytial nuclei, the replacement of muscle fibers with fibrotic tissue, the release of inflammatory cytokines, [...] Read more.
The stability of the sarcolemma is severely impaired in a series of genetic neuromuscular diseases defined as muscular dystrophies. These are characterized by the centralization of skeletal muscle syncytial nuclei, the replacement of muscle fibers with fibrotic tissue, the release of inflammatory cytokines, and the disruption of muscle protein homeostasis, ultimately leading to necrosis and loss of muscle functionality. A specific subgroup of muscular dystrophies is associated with genetic defects in components of the dystrophin–glycoprotein complex (DGC), which plays a crucial role in linking the cytosol to the skeletal muscle basement membrane. In these cases, dystrophin-associated proteins fail to correctly localize to the sarcolemma, resulting in dystrophy characterized by an uncontrolled increase in protein degradation, which can ultimately lead to cell death. In this review, we explore the role of intracellular degradative pathways—primarily the ubiquitin–proteasome and autophagy–lysosome systems—in the progression of DGC-linked muscular dystrophies. The DGC acts as a hub for numerous signaling pathways that regulate various cellular functions, including protein homeostasis. We examine whether the loss of structural stability within the DGC affects key signaling pathways that modulate protein recycling, with a particular emphasis on autophagy. Full article
Show Figures

Graphical abstract

14 pages, 1222 KiB  
Review
The Role of GREMLIN1, a Bone Morphogenetic Protein Antagonist, in Cancer Stem Cell Regulation
by Yuhan Gao, Swapnali De and Derek P. Brazil
Cells 2025, 14(8), 578; https://doi.org/10.3390/cells14080578 - 11 Apr 2025
Viewed by 1275
Abstract
Cancer remains a leading cause of death globally, characterized by uncontrolled cell proliferation, tumor growth and metastasis. Bone morphogenetic proteins (BMPs) and their growth differentiation factor (GDF) relatives are crucial regulators of developmental processes such as limb, kidney and lung formation, cell fate [...] Read more.
Cancer remains a leading cause of death globally, characterized by uncontrolled cell proliferation, tumor growth and metastasis. Bone morphogenetic proteins (BMPs) and their growth differentiation factor (GDF) relatives are crucial regulators of developmental processes such as limb, kidney and lung formation, cell fate determination, cell proliferation, and apoptosis. Cancer stem cells (CSCs) are a subpopulation of self-renewing cells within tumors that possess stemness properties and a tumor cell-forming capability. The presence of CSCs in a tumor is linked to growth, metastasis, treatment resistance and cancer recurrence. The tumor microenvironment in which CSCs exist also plays a critical role in the onset, progression and treatment resistance in many cancers. Growth factors such as BMPs and GDFs counterbalance transforming growth factor-beta (TGF-β) in the maintenance of CSC pluripotency and cancer cell differentiation. BMP signaling typically functions in a tumor suppressor role in various cancers by inducing CSC differentiation and suppressing stemness characteristics. This differentiation process is vital, as it curtails the self-renewal capacity that characterizes CSCs, thereby limiting their ability to sustain tumor growth. The interplay between BMPs and their secreted antagonists, such as GREM1, Noggin and Chordin, adds another layer of complexity to CSC regulation. Human cancers such as gastric, colorectal, glioblastoma, and breast cancer are characterized by GREMLIN1 (GREM1) overexpression, leading to inhibition of BMP signaling, facilitating the maintenance of pluripotency in CSCs, thus promoting tumorigenesis. GREM1 overexpression may also contribute to CSC immune evasion, further exacerbating patient prognoses. In addition to BMP inhibition, GREM1 has been implicated as a target of fibroblast growth factor (FGF) → Sonic hedgehog (Shh) signaling, as well as the Wnt/Frizzled pathway, both of which may contribute to the maintenance of CSC stemness. The complex role of BMPs and their antagonists in regulating CSC behavior underscores the importance of a balanced BMP signaling pathway. This article will summarize current knowledge of BMP and GREM1 regulation of CSC function, as well as conflicting data on the exact role of GREM1 in modulating CSC biology, tumor formation and cancer. Targeting this pathway by inhibiting GREM1 using neutralizing antibodies or small molecules may hold early-stage promise for novel therapeutic strategies aimed at reducing CSC burden in cancers and improving patient outcomes. Full article
(This article belongs to the Special Issue Signaling in Cancer Stem Cells)
Show Figures

Figure 1

47 pages, 3289 KiB  
Review
Translational Advances in Oncogene and Tumor-Suppressor Gene Research
by Radoslav Stojchevski, Edward Agus Sutanto, Rinni Sutanto, Nikola Hadzi-Petrushev, Mitko Mladenov, Sajal Raj Singh, Jitendra Kumar Sinha, Shampa Ghosh, Bhuvaneshwar Yarlagadda, Krishna Kumar Singh, Prashant Verma, Sonali Sengupta, Rakesh Bhaskar and Dimiter Avtanski
Cancers 2025, 17(6), 1008; https://doi.org/10.3390/cancers17061008 - 17 Mar 2025
Cited by 1 | Viewed by 3223
Abstract
Cancer, characterized by the uncontrolled proliferation of cells, is one of the leading causes of death globally, with approximately one in five people developing the disease in their lifetime. While many driver genes were identified decades ago, and most cancers can be classified [...] Read more.
Cancer, characterized by the uncontrolled proliferation of cells, is one of the leading causes of death globally, with approximately one in five people developing the disease in their lifetime. While many driver genes were identified decades ago, and most cancers can be classified based on morphology and progression, there is still a significant gap in knowledge about genetic aberrations and nuclear DNA damage. The study of two critical groups of genes—tumor suppressors, which inhibit proliferation and promote apoptosis, and oncogenes, which regulate proliferation and survival—can help to understand the genomic causes behind tumorigenesis, leading to more personalized approaches to diagnosis and treatment. Aberration of tumor suppressors, which undergo two-hit and loss-of-function mutations, and oncogenes, activated forms of proto-oncogenes that experience one-hit and gain-of-function mutations, are responsible for the dysregulation of key signaling pathways that regulate cell division, such as p53, Rb, Ras/Raf/ERK/MAPK, PI3K/AKT, and Wnt/β-catenin. Modern breakthroughs in genomics research, like next-generation sequencing, have provided efficient strategies for mapping unique genomic changes that contribute to tumor heterogeneity. Novel therapeutic approaches have enabled personalized medicine, helping address genetic variability in tumor suppressors and oncogenes. This comprehensive review examines the molecular mechanisms behind tumor-suppressor genes and oncogenes, the key signaling pathways they regulate, epigenetic modifications, tumor heterogeneity, and the drug resistance mechanisms that drive carcinogenesis. Moreover, the review explores the clinical application of sequencing techniques, multiomics, diagnostic procedures, pharmacogenomics, and personalized treatment and prevention options, discussing future directions for emerging technologies. Full article
(This article belongs to the Special Issue Multi-Omics Analysis in the Study of Carcinogenesis)
Show Figures

Figure 1

17 pages, 3198 KiB  
Review
The Effects of Iridin and Irigenin on Cancer: Comparison with Well-Known Isoflavones in Breast, Prostate, and Gastric Cancers
by Yaeram Won, Hun-Hwan Kim, Se-Hyo Jeong, Pritam Bhagwan Bhosale, Abuyaseer Abusaliya, Jeong-Doo Heo, Je-Kyung Seong, Mee-Jung Ahn, Hye-Jung Kim and Gon-Sup Kim
Int. J. Mol. Sci. 2025, 26(6), 2390; https://doi.org/10.3390/ijms26062390 - 7 Mar 2025
Cited by 1 | Viewed by 1131
Abstract
Cancer, a worldwide problem and one of the leading causes of death due to uncontrolled cell proliferation, can be caused by various factors, such as genetic and environmental factors. Apoptosis is a programmed cell death mechanism that eliminates abnormal cells or renews cells. [...] Read more.
Cancer, a worldwide problem and one of the leading causes of death due to uncontrolled cell proliferation, can be caused by various factors, such as genetic and environmental factors. Apoptosis is a programmed cell death mechanism that eliminates abnormal cells or renews cells. There are two main apoptotic pathways: intrinsic and extrinsic pathways. These pathways can be affected by various signaling pathways in cancer, such as the PI3K/AKT, MAPK, Wnt, and JAK/STAT pathways. Numerous approaches to cancer treatment have been studied, and among them, natural compounds have been actively researched. Flavonoids are natural compounds from fruits and vegetables and have been studied for their anti-cancer effects. Isoflavones, one of the subclasses of flavonoids, are usually found in soy food or legumes and are effective in several bioactive functions. The well-known isoflavones are genistein, daidzein, and glycitein. Irigenin and iridin can be extracted from the Iris family. Both irigenin and iridin are currently being studied for anti-inflammation, antioxidant, and anti-cancer by inducing apoptosis. In this review, we summarized five isoflavones, genistein, daidzein, glycitein, irigenin, and iridin and their effects on three different cancers: breast cancer, prostate cancer, and gastric cancer. Full article
Show Figures

Figure 1

18 pages, 2041 KiB  
Review
Insights on the Role of Sialic Acids in Acute Lymphoblastic Leukemia in Children
by Kimberley Rinai Radu and Kwang-Hyun Baek
Int. J. Mol. Sci. 2025, 26(5), 2233; https://doi.org/10.3390/ijms26052233 - 1 Mar 2025
Cited by 1 | Viewed by 1186
Abstract
Sialic acids serve as crucial terminal sugars on glycoproteins or glycolipids present on cell surfaces. These sugars are involved in diverse physiological and pathological processes through their interactions with carbohydrate-binding proteins, facilitating cell–cell communication and influencing the outcomes of bacterial and viral infections. [...] Read more.
Sialic acids serve as crucial terminal sugars on glycoproteins or glycolipids present on cell surfaces. These sugars are involved in diverse physiological and pathological processes through their interactions with carbohydrate-binding proteins, facilitating cell–cell communication and influencing the outcomes of bacterial and viral infections. The role of hypersialylation in tumor growth and metastasis has been widely studied. Recent research has highlighted the significance of aberrant sialylation in enabling tumor cells to escape immune surveillance and sustain their malignant behavior. Acute lymphoblastic leukemia (ALL) is a heterogenous hematological malignancy that primarily affects children and is the second leading cause of mortality among individuals aged 1 to 14. ALL is characterized by the uncontrolled proliferation of immature lymphoid cells in the bone marrow, peripheral blood, and various organs. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are cell surface proteins that can bind to sialic acids. Activation of Siglecs triggers downstream reactions, including induction of cell apoptosis. Siglec-7 and Siglec-9 have been reported to promote cancer progression by driving macrophage polarization, and their expressions on natural killer cells can inhibit tumor cell death. This comprehensive review aims to explore the sialylation mechanisms and their effects on ALL in children. Understanding the complex interplay between sialylation and ALL holds great potential for developing novel diagnostic tools and therapeutic interventions in managing this pediatric malignancy. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

19 pages, 8490 KiB  
Article
Peptide Fractions Extracted from the Hemolymph of Hermetia illucens Inhibit Growth and Motility and Enhance the Effects of Traditional Chemotherapeutics in Human Colorectal Cancer Cells
by Donatella Lucchetti, Roberta Rinaldi, Giulia Artemi, Rosanna Salvia, Federica De Stefano, Carmen Scieuzo, Patrizia Falabella and Alessandro Sgambato
Int. J. Mol. Sci. 2025, 26(5), 1891; https://doi.org/10.3390/ijms26051891 - 22 Feb 2025
Cited by 1 | Viewed by 872
Abstract
Cancer is a leading cause of death worldwide, characterized by uncontrolled cell growth and multiple mutations. Chemotherapy is often associated with harmful side effects, and cancer cells may become resistant through various mechanisms. New approaches, which are able to address both the toxicity [...] Read more.
Cancer is a leading cause of death worldwide, characterized by uncontrolled cell growth and multiple mutations. Chemotherapy is often associated with harmful side effects, and cancer cells may become resistant through various mechanisms. New approaches, which are able to address both the toxicity and resistance issues of chemotherapy, are of primary importance in cancer research. Antimicrobial peptides (AMPs), naturally occurring molecules in the innate immune system of all living organisms, have a wide spectrum of cytotoxic activities against cancer cells and could be a promising alternative to actual chemotherapeutics. Here, we tested peptide fractions, rich in AMPs, extracted from the hemolymph of the larvae of the insect Hermetia illucens on the HT29 and HCT116 human colorectal cancer cells, observing cell growth inhibition by cell accumulation in the G2/M phase and increased apoptosis. Furthermore, the peptide extract induced a significant cytoskeleton reorganization, resulting in reduced motility. These effects were more evident with the peptide fractions obtained from the Escherichia coli-infected larvae. The peptide fractions also enhanced the effects of traditional chemotherapeutics. Overall, the results obtained suggest the presence of biologically active molecules in the hemolymph of H. illucens larvae, confirming that insect-derived peptides are a promising research area in oncology. Full article
(This article belongs to the Special Issue Natural Products with Anti-Inflammatory and Anticancer Activity)
Show Figures

Figure 1

19 pages, 1775 KiB  
Article
Anti-Inflammatory Effects of Curcumin-Based Nanoparticles Containing α-Linolenic Acid in a Model of Psoriasis In Vitro
by Simona Serini, Sonia Trombino, Roberta Cassano, Mariapaola Marino and Gabriella Calviello
Nutrients 2025, 17(4), 692; https://doi.org/10.3390/nu17040692 - 14 Feb 2025
Cited by 2 | Viewed by 1709
Abstract
Background/Objectives. Psoriasis is a common chronic skin inflammatory disorder pathogenetically associated with genetic, environmental, and immunological factors. The hallmarks of psoriatic lesions include sustained inflammation related to alterations in the innate and adaptive immune response, uncontrolled keratinocyte proliferation, differentiation, and death, as well [...] Read more.
Background/Objectives. Psoriasis is a common chronic skin inflammatory disorder pathogenetically associated with genetic, environmental, and immunological factors. The hallmarks of psoriatic lesions include sustained inflammation related to alterations in the innate and adaptive immune response, uncontrolled keratinocyte proliferation, differentiation, and death, as well as dysregulated crosstalk between immune cells and keratinocytes. In search of novel therapeutic strategies based on the use of natural products and dietary components to combine to the available conventional and innovative therapeutics, we explored the anti-inflammatory, antioxidant, and immunomodulatory activities of Curcumin (CU)-based solid lipid nanoparticles (SLNs) carrying the omega-3 fatty acid linolenic acid (LNA) in an in vitro model of psoriasis that had been previously constructed and characterized by us. Methods. This in vitro model consists of differentiated in vitro THP-1 macrophages (Mφs) and NCTC-2544 keratinocytes exposed or not to conditioned medium (CM) from Mφs treated with the Toll-like receptor-7 ligand imiquimod (IMQ). Results. In Mφs, the treatment with CU-LNA-SLNs inhibited the IMQ-induced expression of proinflammatory cytokines (IL-23, IL-8, IL-6: 43%, 26.5% and 73.7% inhibition, respectively, vs IMQ-treated Mφs), as well as the hyperproliferative response (12.8% inhibition vs IMQ-treated Mφs) and the increase in cell death observed in keratinocytes treated with Mφ-derived CM (64.7% inhibition). Moreover, in the same conditions, CU-LNA-SLNs reverted to control levels of the increased keratinocyte expression of two markers of ferroptosis, a form of death recently involved in the pathogenesis of psoriasis (TFRC and MDA: 13.4% and 56.1% inhibition, respectively). Conclusions. These results suggest that CU-LNA-SLNs could inhibit psoriatic inflammation, as well as the hyperproliferation and death of keratinocytes in psoriatic lesions, and could be considered as a new possible therapeutic strategy for psoriasis to be further evaluated for the topic treatment of psoriatic skin in vivo. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

24 pages, 2835 KiB  
Review
Dynamic Multilevel Regulation of EGFR, KRAS, and MYC Oncogenes: Driving Cancer Cell Proliferation Through (Epi)Genetic and Post-Transcriptional/Translational Pathways
by Mario Seres, Katarina Spacayova, Zdena Sulova, Jana Spaldova, Albert Breier and Lucia Pavlikova
Cancers 2025, 17(2), 248; https://doi.org/10.3390/cancers17020248 - 14 Jan 2025
Cited by 4 | Viewed by 2590
Abstract
The epidermal growth factor receptor (EGFR) regulates gene expression through two primary mechanisms: as a growth factor in the nucleus, where it translocates upon binding its ligand, or via its intrinsic tyrosine kinase activity in the cytosol, where it modulates key signaling pathways [...] Read more.
The epidermal growth factor receptor (EGFR) regulates gene expression through two primary mechanisms: as a growth factor in the nucleus, where it translocates upon binding its ligand, or via its intrinsic tyrosine kinase activity in the cytosol, where it modulates key signaling pathways such as RAS/MYC, PI3K, PLCγ, and STAT3. During tumorigenesis, these pathways become deregulated, leading to uncontrolled proliferation, enhanced migratory and metastatic capabilities, evasion of programmed cell death, and resistance to chemotherapy or radiotherapy. The RAS and MYC oncogenes are pivotal in tumorigenesis, driving processes such as resistance to apoptosis, replicative immortality, cellular invasion and metastasis, and metabolic reprogramming. These oncogenes are subject to regulation by a range of epigenetic and post-transcriptional modifications. This review focuses on the deregulation of EGFR, RAS, and MYC expression caused by (epi)genetic alterations and post-translational modifications. It also explores the therapeutic potential of targeting these regulatory proteins, emphasizing the importance of phenotyping neoplastic tissues to inform the treatment of cancer. Full article
(This article belongs to the Special Issue Epigenetic Regulation in Cancers)
Show Figures

Figure 1

21 pages, 6323 KiB  
Review
Mechanisms of Vitamins Inhibiting Ferroptosis
by Meng Zhang, Xin Chen and Yumei Zhang
Antioxidants 2024, 13(12), 1571; https://doi.org/10.3390/antiox13121571 - 20 Dec 2024
Cited by 4 | Viewed by 2340
Abstract
Ferroptosis is an iron-dependent form of cell death, which is characterized by the uncontrolled and overwhelming peroxidation of cell membrane lipids. Ferroptosis has been implicated in the progression of various pathologies, including steatotic liver, heart failure, neurodegenerative diseases, and diabetes. Targeted inhibition of [...] Read more.
Ferroptosis is an iron-dependent form of cell death, which is characterized by the uncontrolled and overwhelming peroxidation of cell membrane lipids. Ferroptosis has been implicated in the progression of various pathologies, including steatotic liver, heart failure, neurodegenerative diseases, and diabetes. Targeted inhibition of ferroptosis provides a promising strategy to treat ferroptosis-related diseases. Multivitamins, including vitamins A, B, C, D, E, and K, have shown a good ability to inhibit ferroptosis. For example, vitamin A significantly upregulated the expression of several key ferroptotic gatekeepers genes through nuclear retinoic acid receptors and retinoic X receptors (RAR/RXR). Vitamin B6 could compensate for the impaired glutathione (GSH) levels and restore Glutathione peroxidase 4 (GPX4) expression in cells, ultimately inhibiting ferroptosis. Vitamin D could up-regulate the expression of several anti-ferroptosis proteins by activating vitamin D receptors. Vitamin E and hydroquinone vitamin K (VKH2) can directly inhibit the propagation of lipid peroxidation, thereby inhibiting ferroptosis. In this review, we summarize the currently understood mechanisms by which vitamins inhibit ferroptosis to provide reference information for future research on the development of ferroptosis inhibitors. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

22 pages, 8152 KiB  
Article
Is Silver a Precious Metal for G-Quadruplex Stabilization Mediated by Porphyrins?
by Nuno M. M. Moura, Sofia Guedes, Diana Salvador, Helena Oliveira, M. Graça P. M. S. Neves and Catarina I. V. Ramos
Int. J. Mol. Sci. 2024, 25(24), 13556; https://doi.org/10.3390/ijms252413556 - 18 Dec 2024
Viewed by 907
Abstract
Cancer is a leading cause of death, so continuous efforts into cancer therapy are imperative. In tumor cells, telomerase and oncogene activity are key points for uncontrolled cell growth. Targeting these processes with ligands that inhibit telomerase and/or reduce oncogene expression has been [...] Read more.
Cancer is a leading cause of death, so continuous efforts into cancer therapy are imperative. In tumor cells, telomerase and oncogene activity are key points for uncontrolled cell growth. Targeting these processes with ligands that inhibit telomerase and/or reduce oncogene expression has been identified as a promising cancer therapy. This study evaluated the selectivity and affinity of the silverII complex of 5,10,15,20-tetrakis(N-methyl-4-pyridinium)porphyrin (AgTMPyP) to stabilize DNA sequences capable of forming G4 structures mimicking the telomeric and oncogene regions, using spectroscopic, biochemical methods and in vitro assays. The tetracationic silver complex was compared with the free base, H2TMPyP, and the zincII complex, ZnTMPyP. The results obtained from UV-Vis and fluorescence methods pointed to a great affinity and good selectivity of AgTMPyP to G4 structures, especially for the oncogene MYC. In general, an increase in the ability of the studied ligands for 1O2 generation when interacting with oncogenic and telomeric G4 sequences was found. The results of the PCR stop assays proved that AgTMPyP has the ability to inhibit Taq polymerase. Additionally, in vitro assays demonstrated that the silverII complex exhibits low cytotoxicity against HaCaT— an immortalized, non-tumorigenic, skin keratinocytes cell line—and, although nonexclusive, AgTMPyP shows nuclear co-localization. Full article
(This article belongs to the Collection Feature Paper Collection in Biochemistry)
Show Figures

Figure 1

35 pages, 7102 KiB  
Review
Nanocarriers for Delivery of Anticancer Drugs: Current Developments, Challenges, and Perspectives
by Umme Hani, Vikram T. Choudhary, Mohammed Ghazwani, Yahia Alghazwani, Riyaz Ali M. Osmani, Gururaj S. Kulkarni, Hosakote G. Shivakumar, Shahid Ud Din Wani and Sathishbabu Paranthaman
Pharmaceutics 2024, 16(12), 1527; https://doi.org/10.3390/pharmaceutics16121527 - 27 Nov 2024
Cited by 3 | Viewed by 2125
Abstract
Cancer, the most common condition worldwide, ranks second in terms of the number of human deaths, surpassing cardiovascular diseases. Uncontrolled cell multiplication and resistance to cell death are the traditional features of cancer. The myriad of treatment options include surgery, chemotherapy, radiotherapy, and [...] Read more.
Cancer, the most common condition worldwide, ranks second in terms of the number of human deaths, surpassing cardiovascular diseases. Uncontrolled cell multiplication and resistance to cell death are the traditional features of cancer. The myriad of treatment options include surgery, chemotherapy, radiotherapy, and immunotherapy to treat this disease. Conventional chemotherapy drug delivery suffers from issues such as the risk of damage to benign cells, which can cause toxicity, and a few tumor cells withstand apoptosis, thereby increasing the likelihood of developing tolerance. The side effects of cancer chemotherapy are often more pronounced than its benefits. Regarding drugs used in cancer chemotherapy, their bioavailability and stability in the tumor microenvironment are the most important issues that need immediate addressing. Hence, an effective and reliable drug delivery system through which both rapid and precise targeting of treatment can be achieved is urgently needed. In this work, we discuss the development of various nanobased carriers in the advancement of cancer therapy—their properties, the potential of polymers for drug delivery, and recent advances in formulations. Additionally, we discuss the use of tumor metabolism-rewriting nanomedicines in strengthening antitumor immune responses and mRNA-based nanotherapeutics in inhibiting tumor progression. We also examine several issues, such as nanotoxicological studies, including their distribution, pharmacokinetics, and toxicology. Although significant attention is being given to nanotechnology, equal attention is needed in laboratories that produce nanomedicines so that they can record themselves in clinical trials. Furthermore, these medicines in clinical trials display overwhelming results with reduced side effects, as well as their ability to modify the dose of the drug. Full article
Show Figures

Figure 1

22 pages, 6785 KiB  
Article
BRAF-Mutated Melanoma Cell Lines Develop Distinct Molecular Signatures After Prolonged Exposure to AZ628 or Dabrafenib: Potential Benefits of the Antiretroviral Treatments Cabotegravir or Doravirine on BRAF-Inhibitor-Resistant Cells
by Valentina Zanrè, Francesco Bellinato, Alessia Cardile, Carlotta Passarini, Stefano Di Bella and Marta Menegazzi
Int. J. Mol. Sci. 2024, 25(22), 11939; https://doi.org/10.3390/ijms252211939 - 6 Nov 2024
Cited by 2 | Viewed by 1864
Abstract
Melanoma is an aggressive cancer characterized by rapid growth, early metastasis, and poor prognosis, with resistance to current therapies being a significant issue. BRAF mutations drive uncontrolled cell division by activating the MAPK pathway. In this study, A375 and FO-1, BRAF-mutated melanoma cell [...] Read more.
Melanoma is an aggressive cancer characterized by rapid growth, early metastasis, and poor prognosis, with resistance to current therapies being a significant issue. BRAF mutations drive uncontrolled cell division by activating the MAPK pathway. In this study, A375 and FO-1, BRAF-mutated melanoma cell lines, were treated for 4–5 months with RAF inhibitor dabrafenib or AZ628, leading to drug resistance over time. The resistant cells showed altered molecular signatures, with differences in cell cycle regulation and the propensity of cell death. Dabrafenib-resistant cells maintained high proliferative activity, while AZ628-resistant cells, especially A375 cells, exhibited slow-cycling, and a senescent-like phenotype with high susceptibility to ferroptosis, a form of cell death driven by iron. Antiretroviral drugs doravirine and cabotegravir, known for their effects on human endogenous retroviruses, were tested for their impact on these resistant melanoma cells. Both drugs reduced cell viability and colony formation in resistant cell lines. Doravirine was particularly effective in reactivating apoptosis and reducing cell growth in highly proliferative resistant cells by increasing tumor-suppressor proteins p16Ink4a and p27Kip1. These findings suggest that antiretroviral drugs can influence apoptosis and cell proliferation in RAF-inhibitor-resistant melanoma cells, offering potential therapeutic strategies for overcoming drug resistance. Full article
(This article belongs to the Special Issue Melanoma: From Molecular Pathology to Therapeutic Approaches)
Show Figures

Figure 1

15 pages, 1728 KiB  
Perspective
PANoptosis Regulation in Reservoir Hosts of Zoonotic Viruses
by Anantika Chandra and Sannula Kesavardhana
Viruses 2024, 16(11), 1733; https://doi.org/10.3390/v16111733 - 4 Nov 2024
Viewed by 2175
Abstract
Zoonotic viruses originating from reservoir hosts, such as bats and birds, often cause severe illness and outbreaks amongst humans. Upon zoonotic virus transmission, infected cells mount innate immune responses that include the activation of programmed cell death pathways to recruit innate immune cells [...] Read more.
Zoonotic viruses originating from reservoir hosts, such as bats and birds, often cause severe illness and outbreaks amongst humans. Upon zoonotic virus transmission, infected cells mount innate immune responses that include the activation of programmed cell death pathways to recruit innate immune cells to the site of infection and eliminate viral replication niches. Different inflammatory and non-inflammatory cell death pathways, such as pyroptosis, apoptosis, necroptosis, and PANoptosis can undergo concurrent activation in humans leading to mortality and morbidity during zoonosis. While controlled activation of PANoptosis is vital for viral clearance during infection and restoring tissue homeostasis, uncontrolled PANoptosis activation results in immunopathology during zoonotic virus infections. Intriguingly, animal reservoirs of zoonotic viruses, such as bats and birds, appear to have a unique immune tolerance adaptation, allowing them to host viruses without succumbing to disease. The mechanisms facilitating high viral tolerance in bats and birds are poorly understood. In this perspective review, we discuss the regulation of PANoptotic pathways in bats and birds and indicate how they co-exist with viruses with mild clinical signs and no immunopathology. Understanding the PANoptotic machinery of bats and birds may thus assist us in devising strategies to contain zoonotic outbreaks amongst humans. Full article
(This article belongs to the Special Issue PANoptosis in Viral Infection)
Show Figures

Figure 1

14 pages, 3499 KiB  
Article
High Mitophagy and Low Glycolysis Predict Better Clinical Outcomes in Acute Myeloid Leukemias
by Amreen Salwa, Alessandra Ferraresi, Letizia Vallino, Chinmay Maheshwari, Riccardo Moia, Gianluca Gaidano and Ciro Isidoro
Int. J. Mol. Sci. 2024, 25(21), 11527; https://doi.org/10.3390/ijms252111527 - 27 Oct 2024
Cited by 1 | Viewed by 1819
Abstract
Acute myeloid leukemia (AML) emerges as one of the most common and fatal leukemias. Treatment of the disease remains highly challenging owing to profound metabolic rewiring mechanisms that confer plasticity to AML cells, ultimately resulting in therapy resistance. Autophagy, a highly conserved lysosomal-driven [...] Read more.
Acute myeloid leukemia (AML) emerges as one of the most common and fatal leukemias. Treatment of the disease remains highly challenging owing to profound metabolic rewiring mechanisms that confer plasticity to AML cells, ultimately resulting in therapy resistance. Autophagy, a highly conserved lysosomal-driven catabolic process devoted to macromolecular turnover, displays a dichotomous role in AML by suppressing or promoting disease development and progression. Glycolytic metabolism represents a pivotal strategy for AML cells to sustain increasing energy needs related to uncontrolled growth during disease progression. In this study, we tested the hypothesis that a high glycolytic rate and low autophagy flux could represent an advantage for AML cell proliferation and thus be detrimental for patient’s prognosis, and vice versa. TCGA in silico analysis of the AML cohort shows that the high expression of MAP1LC3B (along with that of BECN1 and with low expression of p62/SQSTM1) and the high expression of BNIP3 (along with that of PRKN and of MAP1LC3B), which together are indicative of increased autophagy and mitophagy, correlate with better prognosis. On the other hand, the high expression of glycolytic markers HK2, PFKM, and PKM correlates with poor prognosis. Most importantly, the association of a low expression of glycolytic markers with a high expression of autophagy–mitophagy markers conferred the longest overall survival for AML patients. Transcriptomic analysis showed that this combined signature correlates with the downregulation of a subset of genes required for the differentiation of myeloid cells, lactate/pyruvate transporters, and cell cycle progression, in parallel with the upregulation of genes involved in autophagy/lysosomal trafficking and proteolysis, anti-tumor responses like beta-interferon production, and positive regulation of programmed cell death. Taken together, our data support the view that enhanced autophagy-mitophagy flux together with low glycolytic rate predisposes AML patients to a better clinical outcome, suggesting that autophagy inducers and glucose restrictors may hold potential as adjuvant therapeutics for improving AML management. Full article
Show Figures

Figure 1

Back to TopTop