Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (288)

Search Parameters:
Keywords = unbalanced distribution networks

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2286 KB  
Article
Techno-Economic Analysis of Peer-to-Peer Energy Trading Considering Different Distributed Energy Resources Characteristics
by Morsy Nour, Mona Zedan, Gaber Shabib, Loai Nasrat and Al-Attar Ali
Electricity 2025, 6(4), 57; https://doi.org/10.3390/electricity6040057 - 4 Oct 2025
Abstract
Peer-to-peer (P2P) energy trading has emerged as a novel approach to enhancing the coordination and utilization of distributed energy resources (DERs) within modern power distribution networks. This study presents a techno-economic analysis of different DER characteristics, focusing on the integration of photovoltaic [...] Read more.
Peer-to-peer (P2P) energy trading has emerged as a novel approach to enhancing the coordination and utilization of distributed energy resources (DERs) within modern power distribution networks. This study presents a techno-economic analysis of different DER characteristics, focusing on the integration of photovoltaic (PV) systems and energy storage systems (ESS) within a community-based P2P energy trading framework in Aswan, Egypt, under a time-of-use (ToU) electricity tariff. Eight distinct cases are evaluated to assess the impact of different DER characteristics on P2P energy trading performance and an unbalanced low-voltage (LV) distribution network by varying the PV capacity, ESS capacity, and ESS charging power. To the best of the authors’ knowledge, this is the first study to comprehensively examine the effects of different DER characteristics on P2P energy trading and the associated impacts on an unbalanced distribution network. The findings demonstrate that integrating PV and ESS can substantially reduce operational costs—by 37.19% to 68.22% across the analyzed cases—while enabling more effective energy exchanges among peers and with the distribution system operator (DSO). Moreover, DER integration reduced grid energy imports by 30.09% to 63.21% and improved self-sufficiency, with 30.10% to 63.21% of energy demand covered by community DERs. However, the analysis also reveals that specific DER characteristics—particularly those with low PV capacity (1.5 kWp) and high ESS charging rates (e.g., ESS 13.5 kWh with 2.5 kW inverter)—can significantly increase transformer and line loading, reaching up to 19.90% and 58.91%, respectively, in Case 2. These setups also lead to voltage quality issues, such as increased voltage unbalance factors (VUFs), peaking at 1.261%, and notable phase voltage deviations, with the minimum Vb dropping to 0.972 pu and maximum Vb reaching 1.083 pu. These findings highlight the importance of optimal DER sizing and characteristics to balance economic benefits with technical constraints in P2P energy trading frameworks. Full article
21 pages, 3559 KB  
Article
A Multistage Algorithm for Phase Load Balancing in Low-Voltage Electricity Distribution Networks Operated in Asymmetrical Conditions
by Ovidiu Ivanov, Florin-Constantin Băiceanu, Ciprian-Mircea Nemeș, Gheorghe Grigoraș, Bianca-Elena Țuchendria and Mihai Gavrilaș
Symmetry 2025, 17(10), 1589; https://doi.org/10.3390/sym17101589 - 23 Sep 2025
Viewed by 210
Abstract
In many countries, most one-phase residential electricity consumers are supplied from three-phase, four-wire local networks operated in radial tree-like configurations. Uneven consumer placement on the wires of the three-phase circuit leads to unbalanced phase loads that break the voltage symmetry and increase the [...] Read more.
In many countries, most one-phase residential electricity consumers are supplied from three-phase, four-wire local networks operated in radial tree-like configurations. Uneven consumer placement on the wires of the three-phase circuit leads to unbalanced phase loads that break the voltage symmetry and increase the energy losses. One way to mitigate these problems is to balance the phase loads on the feeders by choosing the optimal phase of connection of the consumers. The authors proposed earlier a phase balancing algorithm based on metaheuristic optimization. For networks with a high number of supply nodes, this algorithm requires finding a solution for all the consumers simultaneously. Two alternative approaches are proposed in this paper that use the tree-like structure of the network to divide the optimization between a main distribution feeder and several branches, creating a multistage process, with the aim of minimizing energy losses. A case study is performed using a real low-voltage distribution network and a comparison is made between the three algorithms. The resulting losses have marginal variations between the proposed approaches, with a maximum of 1.3% difference. Full article
(This article belongs to the Special Issue Symmetry in Power System Dynamics and Control)
Show Figures

Figure 1

39 pages, 1281 KB  
Article
Sustainable Metaheuristic-Based Planning of Rural Medium- Voltage Grids: A Comparative Study of Spanning and Steiner Tree Topologies for Cost-Efficient Electrification
by Lina María Riaño-Enciso, Brandon Cortés-Caicedo, Oscar Danilo Montoya, Luis Fernando Grisales-Noreña and Jesús C. Hernández
Sustainability 2025, 17(18), 8145; https://doi.org/10.3390/su17188145 - 10 Sep 2025
Viewed by 252
Abstract
This paper presents a heuristic methodology for the optimal expansion of unbalanced three-phase distribution systems in rural areas, simultaneously addressing feeder routing and conductor sizing to minimize the total annualized cost—defined as the sum of investments in conductors and operational energy losses. The [...] Read more.
This paper presents a heuristic methodology for the optimal expansion of unbalanced three-phase distribution systems in rural areas, simultaneously addressing feeder routing and conductor sizing to minimize the total annualized cost—defined as the sum of investments in conductors and operational energy losses. The planning strategy explores two radial topological models: the Minimum Spanning Tree (MST) and the Steiner Tree (ST). The latter incorporates auxiliary nodes to reduce the total line length. For each topology, an initial conductor sizing is performed based on three-phase power flow calculations using Broyden’s method, capturing the unbalanced nature of the rural networks. These initial solutions are refined via four metaheuristic algorithms—the Chu–Beasley Genetic Algorithm (CBGA), Particle Swarm Optimization (PSO), the Sine–Cosine Algorithm (SCA), and the Grey Wolf Optimizer (GWO)—under a master–slave optimization framework. Numerical experiments on 15-, 25- and 50-node rural test systems show that the ST combined with GWO consistently achieves the lowest total costs—reducing expenditures by up to 70.63% compared to MST configurations—and exhibits superior robustness across all performance metrics, including best-, average-, and worst-case solutions, as well as standard deviation. Beyond its technical contributions, the proposed methodology supports the United Nations Sustainable Development Goals by promoting universal energy access (SDG 7), fostering cost-effective rural infrastructure (SDG 9), and contributing to reductions in urban–rural inequalities in electricity access (SDG 10). All simulations were implemented in MATLAB 2024a, demonstrating the practical viability and scalability of the method for planning rural distribution networks under unbalanced load conditions. Full article
Show Figures

Figure 1

16 pages, 1551 KB  
Article
Probabilistic Estimation of During-Fault Voltages of Unbalanced Active Distribution: Methods and Tools
by Matteo Bartolomeo, Pietro Varilone and Paola Verde
Energies 2025, 18(18), 4791; https://doi.org/10.3390/en18184791 - 9 Sep 2025
Viewed by 371
Abstract
In low-voltage (LV) distribution networks, system operating conditions are always unbalanced due to the unpredictability of the load demand in each phase, coupled with a potentially asymmetrical network structure due to different phase conductors’ sizes and lengths. The widespread diffusion of distributed generators [...] Read more.
In low-voltage (LV) distribution networks, system operating conditions are always unbalanced due to the unpredictability of the load demand in each phase, coupled with a potentially asymmetrical network structure due to different phase conductors’ sizes and lengths. The widespread diffusion of distributed generators (DGs) among network users has significantly contributed to reducing the overall load of the electrical system, but at the cost of making voltages slightly more unbalanced. In this article, an LV distribution test network equipped with several single-phase DGs has been considered, and all During-Fault Voltages (DFVs) have been studied, according to each possible type of short circuit. To provide a measure of the asymmetry of unsymmetrical voltage dips, three different indices based on the symmetrical components of the voltages have been considered; moreover, the Monte Carlo simulation (MCS) method has allowed for studying faults and asymmetries in a probabilistic manner. Through the probability density functions (pdfs) of the DFVs, it has been possible to assess the impact of single-phase DGs on the asymmetry of bus voltages due to short-circuits. Full article
Show Figures

Figure 1

18 pages, 1084 KB  
Article
Tractor and Semitrailer Scheduling with Time Windows in Highway Ports with Unbalanced Demand Under Network Conditions
by Hongxia Guo, Fengjun Wang, Yuyan He and Yuyang Zhou
Mathematics 2025, 13(17), 2881; https://doi.org/10.3390/math13172881 - 6 Sep 2025
Viewed by 644
Abstract
To address the challenges of unbalanced demand and high operational costs in highway port logistics, this study investigates the scheduling of tractors and semitrailers under time window constraints in a networked environment, where geographically distributed ports are interconnected by fixed routes, and tractors [...] Read more.
To address the challenges of unbalanced demand and high operational costs in highway port logistics, this study investigates the scheduling of tractors and semitrailers under time window constraints in a networked environment, where geographically distributed ports are interconnected by fixed routes, and tractors dynamically transport semitrailers between ports to balance asymmetric demands. A mathematical optimization model is developed, incorporating multiple car yards, diverse transport demands, and temporal constraints. To solve the model efficiently, an Adaptive Large Neighborhood Search (ALNS) algorithm is proposed and benchmarked against an improved Ant Colony System (IACS). Simulation results show that, compared to traditional scheduling methods, the proposed approach reduces the number of required tractors by up to 61% and operational costs by up to 21%, depending on tractor working hours. The tractor-to-semitrailer ratio improves from 1.00:1.10 to 1.00:2.59, demonstrating the enhanced resource utilization enabled by the ALNS algorithm. These findings offer practical guidance for optimizing tractor and semitrailer configurations in highway port operations under varying conditions. Full article
Show Figures

Figure 1

16 pages, 3305 KB  
Article
A Continuous-Time Distributed Optimization Algorithm for Multi-Agent Systems with Parametric Uncertainties over Unbalanced Digraphs
by Qing Yang and Caiqi Jiang
Mathematics 2025, 13(16), 2692; https://doi.org/10.3390/math13162692 - 21 Aug 2025
Viewed by 482
Abstract
This paper investigates distributed optimization problems for multi-agent systems with parametric uncertainties over unbalanced directed communication networks. To settle this class of optimization problems, a continuous-time algorithm is proposed by integrating adaptive control techniques with an output feedback tracking protocol. By systematically employing [...] Read more.
This paper investigates distributed optimization problems for multi-agent systems with parametric uncertainties over unbalanced directed communication networks. To settle this class of optimization problems, a continuous-time algorithm is proposed by integrating adaptive control techniques with an output feedback tracking protocol. By systematically employing Lyapunov stability theory, perturbed system analysis, and input-to-state stability theory, we rigorously establish the asymptotic convergence property of the proposed algorithm. A numerical simulation further demonstrates the effectiveness of the algorithm in computing the global optimal solution. Full article
Show Figures

Figure 1

25 pages, 54500 KB  
Article
Parking Pattern Guided Vehicle and Aircraft Detection in Aligned SAR-EO Aerial View Images
by Zhe Geng, Shiyu Zhang, Yu Zhang, Chongqi Xu, Linyi Wu and Daiyin Zhu
Remote Sens. 2025, 17(16), 2808; https://doi.org/10.3390/rs17162808 - 13 Aug 2025
Viewed by 547
Abstract
Although SAR systems can provide high-resolution aerial view images all-day, all-weather, the aspect and pose-sensitivity of the SAR target signatures, which defies the Gestalt perceptual principles, sets a frustrating performance upper bound for SAR Automatic Target Recognition (ATR). Therefore, we propose a network [...] Read more.
Although SAR systems can provide high-resolution aerial view images all-day, all-weather, the aspect and pose-sensitivity of the SAR target signatures, which defies the Gestalt perceptual principles, sets a frustrating performance upper bound for SAR Automatic Target Recognition (ATR). Therefore, we propose a network to support context-guided ATR by using aligned Electro-Optical (EO)-SAR image pairs. To realize EO-SAR image scene grammar alignment, the stable context features highly correlated to the parking patterns of the vehicle and aircraft targets are extracted from the EO images as prior knowledge, which is used to assist SAR-ATR. The proposed network consists of a Scene Recognition Module (SRM) and an instance-level Cross-modality ATR Module (CATRM). The SRM is based on a novel light-condition-driven adaptive EO-SAR decision weighting scheme, and the Outlier Exposure (OE) approach is employed for SRM training to realize Out-of-Distribution (OOD) scene detection. Once the scene depicted in the cut of interest is identified with the SRM, the image cut is sent to the CATRM for ATR. Considering that the EO-SAR images acquired from diverse observation angles often feature unbalanced quality, a novel class-incremental learning method based on the Context-Guided Re-Identification (ReID)-based Key-view (CGRID-Key) exemplar selection strategy is devised so that the network is capable of continuous learning in the open-world deployment environment. Vehicle ATR experimental results based on the UNICORN dataset, which consists of 360-degree EO-SAR images of an army base, show that the CGRID-Key exemplar strategy offers a classification accuracy 29.3% higher than the baseline model for the incremental vehicle category, SUV. Moreover, aircraft ATR experimental results based on the aligned EO-SAR images collected over several representative airports and the Arizona aircraft boneyard show that the proposed network achieves an F1 score of 0.987, which is 9% higher than YOLOv8. Full article
(This article belongs to the Special Issue Applications of SAR for Environment Observation Analysis)
Show Figures

Figure 1

24 pages, 4549 KB  
Article
Research on the Choice of Strategy for Connecting Online Ride-Hailing to Rail Transit Based on GQL Algorithm
by Zhijian Wang, Qinghua Zhou, Yajie Song, Junwei Zhang and Jiuzeng Wang
Electronics 2025, 14(16), 3199; https://doi.org/10.3390/electronics14163199 - 12 Aug 2025
Viewed by 386
Abstract
As traditional connection studies ignore the unbalanced distribution of connection demand and the variability of connection situations, this results in a poor match between passenger demand and connection mode, increasing passenger travel costs. Combining the economic efficiency of metro network operations with the [...] Read more.
As traditional connection studies ignore the unbalanced distribution of connection demand and the variability of connection situations, this results in a poor match between passenger demand and connection mode, increasing passenger travel costs. Combining the economic efficiency of metro network operations with the unique accessibility advantages of ride-hailing services, this study clusters origin and destination points based on different travel needs and proposes four transfer strategies for integrating ride-hailing services with urban rail transit. Four nested strategies are developed based on the distance between the trip origin and the subway station’s service range. A reinforcement learning approach is employed to identify the optimal connection strategy by minimizing overall travel cost. The guided reinforcement learning principle is further introduced to accelerate convergence and enhance solution quality. Finally, this study takes the Fengtai area in Beijing as an example and deploys the Guided Q-Learning (GQL) algorithm based on extracting the hotspot passenger flow ODs and constructing the road network model in the area, searching for the optimal connecting modes and the shortest paths and carrying out the simulation validation of different travel modes. The results demonstrate that the GQL algorithm improves search performance by 25% compared to traditional Q-learning, reduces path length by 8%, and reduces minimum travel cost by 11%. Full article
Show Figures

Figure 1

23 pages, 4024 KB  
Article
WaveCORAL-DCCA: A Scalable Solution for Rotor Fault Diagnosis Across Operational Variabilities
by Nima Rezazadeh, Mario De Oliveira, Giuseppe Lamanna, Donato Perfetto and Alessandro De Luca
Electronics 2025, 14(15), 3146; https://doi.org/10.3390/electronics14153146 - 7 Aug 2025
Cited by 2 | Viewed by 473
Abstract
This paper presents WaveCORAL-DCCA, an unsupervised domain adaptation (UDA) framework specifically developed to address data distribution shifts and operational variabilities (OVs) in rotor fault diagnosis. The framework introduces the novel integration of discrete wavelet transformation for robust time–frequency feature extraction and an enhanced [...] Read more.
This paper presents WaveCORAL-DCCA, an unsupervised domain adaptation (UDA) framework specifically developed to address data distribution shifts and operational variabilities (OVs) in rotor fault diagnosis. The framework introduces the novel integration of discrete wavelet transformation for robust time–frequency feature extraction and an enhanced deep canonical correlation analysis (DCCA) network with correlation alignment (CORAL) loss for superior domain-invariant representation learning. This combination enables more effective alignment of source and target feature distributions without requiring any labelled data from the target domain. Comprehensive validation on both experimental and numerically simulated rotor datasets across three health conditions—i.e., normal, unbalanced, and misaligned—demonstrates that WaveCORAL-DCCA achieves an average diagnostic accuracy of 95%. Notably, it outperforms established UDA benchmarks by at least 5–17% in cross-domain scenarios. These results confirm that WaveCORAL-DCCA provides robust generalisation across machines, fault severities, and operational conditions, even with scarce target domain samples, offering a scalable and practical solution for industrial rotor fault diagnosis. Full article
Show Figures

Figure 1

21 pages, 2441 KB  
Article
Reliability Enhancement of Puducherry Smart Grid System Through Optimal Integration of Electric Vehicle Charging Station–Photovoltaic System
by M. A. Sasi Bhushan, M. Sudhakaran, Sattianadan Dasarathan and V. Sowmya Sree
World Electr. Veh. J. 2025, 16(8), 443; https://doi.org/10.3390/wevj16080443 - 6 Aug 2025
Viewed by 427
Abstract
Distributed generation strengthens distribution network reliability by placing generators close to load centers. The integration of electric vehicle charging stations (EVCSs) with PV systems mitigates the effects of EV charging burden. In this research, the objective is to combineEVCSs with distributed generation (DG) [...] Read more.
Distributed generation strengthens distribution network reliability by placing generators close to load centers. The integration of electric vehicle charging stations (EVCSs) with PV systems mitigates the effects of EV charging burden. In this research, the objective is to combineEVCSs with distributed generation (DG) units in the Puducherry smart grid system to obtain optimized locations and enhance their reliability. To determine the right nodes for DGs and EVCSs in an uneven distribution network, the modified decision-making (MDM) algorithm and the model predictive control (MPC) approach are used. The Indian utility 29-node distribution network (IN29NDN), which is an unbalanced network, is used for testing. The effects of PV systems and EVCS units are studied in several settings and at various saturation levels. This study validates the correctness of its findings by evaluating the outcomes of proposed methodological approaches. DIgSILENT Power Factory is used to conduct the simulation experiments. The results show that optimizing the location of the DG unit and the size of the PV system can significantly minimize power losses and make a distribution network (DN) more reliable. Full article
Show Figures

Figure 1

22 pages, 3301 KB  
Article
Parameter Identification of Distribution Zone Transformers Under Three-Phase Asymmetric Conditions
by Panrun Jin, Wenqin Song and Yankui Zhang
Eng 2025, 6(8), 181; https://doi.org/10.3390/eng6080181 - 2 Aug 2025
Viewed by 373
Abstract
As a core device in low-voltage distribution networks, the distribution zone transformer (DZT) is influenced by short circuits, overloads, and unbalanced loads, which cause thermal aging, mechanical stress, and eventually deformation of the winding, resulting in parameter deviations from nameplate values and impairing [...] Read more.
As a core device in low-voltage distribution networks, the distribution zone transformer (DZT) is influenced by short circuits, overloads, and unbalanced loads, which cause thermal aging, mechanical stress, and eventually deformation of the winding, resulting in parameter deviations from nameplate values and impairing system operation. However, existing identification methods typically require synchronized high- and low-voltage data and are limited to symmetric three-phase conditions, which limits their application in practical distribution systems. To address these challenges, this paper proposes a parameter identification method for DZTs under three-phase unbalanced conditions. Firstly, based on the transformer’s T-equivalent circuit considering the load, the power flow equations are derived without involving the synchronization issue of high-voltage and low-voltage side data, and the sum of the impedances on both sides is treated as an independent parameter. Then, a novel power flow equation under three-phase unbalanced conditions is established, and an adaptive recursive least squares (ARLS) solution method is constructed using the measurement data sequence provided by the smart meter of the intelligent transformer terminal unit (TTU) to achieve online identification of the transformer winding parameters. The effectiveness and robustness of the method are verified through practical case studies. Full article
Show Figures

Figure 1

24 pages, 74760 KB  
Article
The Application of Mobile Devices for Measuring Accelerations in Rail Vehicles: Methodology and Field Research Outcomes in Tramway Transport
by Michał Urbaniak, Jakub Myrcik, Martyna Juda and Jan Mandrysz
Sensors 2025, 25(15), 4635; https://doi.org/10.3390/s25154635 - 26 Jul 2025
Viewed by 2788
Abstract
Unbalanced accelerations occurring during tram travel have a significant impact on passenger comfort and safety, as well as on the rate of wear and tear on infrastructure and rolling stock. Ideally, these dynamic forces should be monitored continuously in real-time; however, traditional systems [...] Read more.
Unbalanced accelerations occurring during tram travel have a significant impact on passenger comfort and safety, as well as on the rate of wear and tear on infrastructure and rolling stock. Ideally, these dynamic forces should be monitored continuously in real-time; however, traditional systems require high-precision accelerometers and proprietary software—investments often beyond the reach of municipally funded tram operators. To this end, as part of the research project “Accelerometer Measurements in Rail Passenger Transport Vehicles”, pilot measurement campaigns were conducted in Poland on tram lines in Gdańsk, Toruń, Bydgoszcz, and Olsztyn. Off-the-shelf smartphones equipped with MEMS accelerometers and GPS modules, running the Physics Toolbox Sensor Suite Pro app, were used. Although the research employs widely known methods, this paper addresses part of the gap in affordable real-time monitoring by demonstrating that, in the future, equipment equipped solely with consumer-grade MEMS accelerometers can deliver sufficiently accurate data in applications where high precision is not critical. This paper presents an analysis of a subset of results from the Gdańsk tram network. Lateral (x) and vertical (z) accelerations were recorded at three fixed points inside two tram models (Pesa 128NG Jazz Duo and Düwag N8C), while longitudinal accelerations were deliberately omitted at this stage due to their strong dependence on driver behavior. Raw data were exported as CSV files, processed and analyzed in R version 4.2.2, and then mapped spatially using ArcGIS cartograms. Vehicle speed was calculated both via the haversine formula—accounting for Earth’s curvature—and via a Cartesian approximation. Over the ~7 km route, both methods yielded virtually identical results, validating the simpler approach for short distances. Acceleration histograms approximated Gaussian distributions, with most values between 0.05 and 0.15 m/s2, and extreme values approaching 1 m/s2. The results demonstrate that low-cost mobile devices, after future calibration against certified accelerometers, can provide sufficiently rich data for ride-comfort assessment and show promise for cost-effective condition monitoring of both track and rolling stock. Future work will focus on optimizing the app’s data collection pipeline, refining standard-based analysis algorithms, and validating smartphone measurements against benchmark sensors. Full article
(This article belongs to the Collection Sensors and Actuators for Intelligent Vehicles)
Show Figures

Figure 1

24 pages, 9664 KB  
Article
Frequency-Domain Collaborative Lightweight Super-Resolution for Fine Texture Enhancement in Rice Imagery
by Zexiao Zhang, Jie Zhang, Jinyang Du, Xiangdong Chen, Wenjing Zhang and Changmeng Peng
Agronomy 2025, 15(7), 1729; https://doi.org/10.3390/agronomy15071729 - 18 Jul 2025
Viewed by 587
Abstract
In rice detection tasks, accurate identification of leaf streaks, pest and disease distribution, and spikelet hierarchies relies on high-quality images to distinguish between texture and hierarchy. However, existing images often suffer from texture blurring and contour shifting due to equipment and environment limitations, [...] Read more.
In rice detection tasks, accurate identification of leaf streaks, pest and disease distribution, and spikelet hierarchies relies on high-quality images to distinguish between texture and hierarchy. However, existing images often suffer from texture blurring and contour shifting due to equipment and environment limitations, which affects the detection performance. In view of the fact that pests and diseases affect the whole situation and tiny details are mostly localized, we propose a rice image reconstruction method based on an adaptive two-branch heterogeneous structure. The method consists of a low-frequency branch (LFB) that recovers global features using orientation-aware extended receptive fields to capture streaky global features, such as pests and diseases, and a high-frequency branch (HFB) that enhances detail edges through an adaptive enhancement mechanism to boost the clarity of local detail regions. By introducing the dynamic weight fusion mechanism (CSDW) and lightweight gating network (LFFN), the problem of the unbalanced fusion of frequency information for rice images in traditional methods is solved. Experiments on the 4× downsampled rice test set demonstrate that the proposed method achieves a 62% reduction in parameters compared to EDSR, 41% lower computational cost (30 G) than MambaIR-light, and an average PSNR improvement of 0.68% over other methods in the study while balancing memory usage (227 M) and inference speed. In downstream task validation, rice panicle maturity detection achieves a 61.5% increase in mAP50 (0.480 → 0.775) compared to interpolation methods, and leaf pest detection shows a 2.7% improvement in average mAP50 (0.949 → 0.975). This research provides an effective solution for lightweight rice image enhancement, with its dual-branch collaborative mechanism and dynamic fusion strategy establishing a new paradigm in agricultural rice image processing. Full article
(This article belongs to the Collection AI, Sensors and Robotics for Smart Agriculture)
Show Figures

Figure 1

21 pages, 4238 KB  
Article
Fault Prediction of Hydropower Station Based on CNN-LSTM-GAN with Biased Data
by Bei Liu, Xiao Wang, Zhaoxin Zhang, Zhenjie Zhao, Xiaoming Wang and Ting Liu
Energies 2025, 18(14), 3772; https://doi.org/10.3390/en18143772 - 16 Jul 2025
Cited by 1 | Viewed by 365
Abstract
Fault prediction of hydropower station is crucial for the stable operation of generator set equipment, but the traditional method struggles to deal with data with an imbalanced distribution and untrustworthiness. This paper proposes a fault detection method based on a convolutional neural network [...] Read more.
Fault prediction of hydropower station is crucial for the stable operation of generator set equipment, but the traditional method struggles to deal with data with an imbalanced distribution and untrustworthiness. This paper proposes a fault detection method based on a convolutional neural network (CNNs) and long short-term memory network (LSTM) with a generative adversarial network (GAN). Firstly, a reliability mechanism based on principal component analysis (PCA) is designed to solve the problem of data bias caused by multiple monitoring devices. Then, the CNN-LSTM network is used to predict time series data, and the GAN is used to expand fault data samples to solve the problem of an unbalanced data distribution. Meanwhile, a multi-scale feature extraction network with time–frequency information is designed to improve the accuracy of fault detection. Finally, a dynamic multi-task training algorithm is proposed to ensure the convergence and training efficiency of the deep models. Experimental results show that compared with RNN, GRU, SVM, and threshold detection algorithms, the proposed fault prediction method improves the accuracy performance by 5.5%, 4.8%, 7.8%, and 9.3%, with at least a 160% improvement in the fault recall rate. Full article
(This article belongs to the Special Issue Optimal Schedule of Hydropower and New Energy Power Systems)
Show Figures

Figure 1

23 pages, 20707 KB  
Article
Research on Energy Storage-Based DSTATCOM for Integrated Power Quality Enhancement and Active Voltage Support
by Peng Wang, Jianxin Bi, Fuchun Li, Chunfeng Liu, Yuanhui Sun, Wenhuan Cheng, Yilong Wang and Wei Kang
Electronics 2025, 14(14), 2840; https://doi.org/10.3390/electronics14142840 - 15 Jul 2025
Viewed by 404
Abstract
With the increasing penetration of distributed generation and the diversification of electrical equipment, distribution networks face issues like three-phase unbalance and harmonic currents, while the voltage stability and inertia of the grid-connected system also decrease. A certain amount of energy storage is needed [...] Read more.
With the increasing penetration of distributed generation and the diversification of electrical equipment, distribution networks face issues like three-phase unbalance and harmonic currents, while the voltage stability and inertia of the grid-connected system also decrease. A certain amount of energy storage is needed in a Distribution Static Synchronous Compensator (DSTATCOM) to manage power quality and actively support voltage and inertia in the network. This paper first addresses the limitations of traditional dq0 compensation algorithms in effectively filtering out negative-sequence twice-frequency components. An improved dq0 compensation algorithm is proposed to reduce errors in detecting positive-sequence fundamental current under unbalanced three-phase conditions. Second, considering the impedance ratio characteristics of the distribution network, while reactive power voltage regulation is common, active power regulation is more effective in high-resistance distribution networks. A grid-forming model-based active and reactive power coordinated voltage regulation method is proposed. This method uses synchronous control to establish a virtual three-phase voltage internal electromotive force, forming a comprehensive compensation strategy that combines power quality improvement and active voltage support, exploring the potential of energy storage DSTATCOM applications in distribution networks. Finally, simulation and experimental results demonstrate the effectiveness of the proposed control method. Full article
Show Figures

Figure 1

Back to TopTop