Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (195)

Search Parameters:
Keywords = ultrasonic thickness measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3864 KiB  
Article
Sub-MHz EMAR for Non-Contact Thickness Measurement: How Ultrasonic Wave Directivity Affects Accuracy
by Alexander Siegl, David Auer, Bernhard Schweighofer, Andre Hochfellner, Gerald Klösch and Hannes Wegleiter
Sensors 2025, 25(15), 4746; https://doi.org/10.3390/s25154746 - 1 Aug 2025
Viewed by 242
Abstract
Electromagnetic acoustic resonance (EMAR) is a well-established non-contact method for ultrasonic thickness measurement, typically operated at frequencies above 1 MHz using an electromagnetic acoustic transducer (EMAT). This study successfully extends EMAR into the sub-MHz range, allowing supply voltages below 60 V and thus [...] Read more.
Electromagnetic acoustic resonance (EMAR) is a well-established non-contact method for ultrasonic thickness measurement, typically operated at frequencies above 1 MHz using an electromagnetic acoustic transducer (EMAT). This study successfully extends EMAR into the sub-MHz range, allowing supply voltages below 60 V and thus offering safer and more cost-effective operation. Experiments were conducted on copper blocks approximately 20 mm thick, where a relative thickness accuracy of better than 0.2% is obtained. Regarding this result, the research identifies a critical design principle: Stable thickness resonances and subsequently accurate thickness measurement are achieved when the ratio of ultrasonic wavelength to EMAT track width (λ/w) falls below 1. This minimizes the excitation and interactions with structural eigenmodes, ensuring consistent measurement reliability. To support this, the study introduces a system-based model to simulate the EMAR method. The model provides detailed insights into how wave propagation affects the accuracy of EMAR measurements. Experimental results align well with the simulation outcome and confirm the feasibility of EMAR in the sub-MHz regime without compromising precision. These findings highlight the potential of low-voltage EMAR as a safer, cost-effective, and highly accurate approach for industrial ultrasonic thickness measurements. Full article
(This article belongs to the Special Issue Electromagnetic Sensing and Its Applications)
Show Figures

Figure 1

15 pages, 5631 KiB  
Article
Design and Evaluation of a Capacitive Micromachined Ultrasonic Transducer(CMUT) Linear Array System for Thickness Measurement of Marine Structures Under Varying Environmental Conditions
by Changde He, Mengke Luo, Hanchi Chai, Hongliang Wang, Guojun Zhang, Renxin Wang, Jiangong Cui, Yuhua Yang, Wendong Zhang and Licheng Jia
Micromachines 2025, 16(8), 898; https://doi.org/10.3390/mi16080898 (registering DOI) - 31 Jul 2025
Viewed by 154
Abstract
This paper presents the design, fabrication, and experimental evaluation of a capacitive micromachined ultrasonic transducer (CMUT) linear array for non-contact thickness measurement of marine engineering structures. A 16-element CMUT array was fabricated using a silicon–silicon wafer bonding process, and encapsulated in polyurethane to [...] Read more.
This paper presents the design, fabrication, and experimental evaluation of a capacitive micromachined ultrasonic transducer (CMUT) linear array for non-contact thickness measurement of marine engineering structures. A 16-element CMUT array was fabricated using a silicon–silicon wafer bonding process, and encapsulated in polyurethane to ensure acoustic impedance matching and environmental protection in underwater conditions. The acoustic performance of the encapsulated CMUT was characterized using standard piezoelectric transducers as reference. The array achieved a transmitting sensitivity of 146.82 dB and a receiving sensitivity of −229.55 dB at 1 MHz. A complete thickness detection system was developed by integrating the CMUT array with a custom transceiver circuit and implementing a time-of-flight (ToF) measurement algorithm. To evaluate environmental robustness, systematic experiments were conducted under varying water temperatures and salinity levels. The results demonstrate that the absolute thickness measurement error remains within ±0.1 mm under all tested conditions, satisfying the accuracy requirements for marine structural health monitoring. The results validate the feasibility of CMUT-based systems for precise and stable thickness measurement in underwater environments, and support their application in non-destructive evaluation of marine infrastructure. Full article
(This article belongs to the Special Issue MEMS/NEMS Devices and Applications, 3rd Edition)
Show Figures

Figure 1

25 pages, 13994 KiB  
Article
A Semi-Autonomous Aerial Platform Enhancing Non-Destructive Tests
by Simone D’Angelo, Salvatore Marcellini, Alessandro De Crescenzo, Michele Marolla, Vincenzo Lippiello and Bruno Siciliano
Drones 2025, 9(8), 516; https://doi.org/10.3390/drones9080516 - 23 Jul 2025
Viewed by 518
Abstract
The use of aerial robots for inspection and maintenance in industrial settings demands high maneuverability, precise control, and reliable measurements. This study explores the development of a fully customized unmanned aerial manipulator (UAM), composed of a tilting drone and an articulated robotic arm, [...] Read more.
The use of aerial robots for inspection and maintenance in industrial settings demands high maneuverability, precise control, and reliable measurements. This study explores the development of a fully customized unmanned aerial manipulator (UAM), composed of a tilting drone and an articulated robotic arm, designed to perform non-destructive in-contact inspections of iron structures. The system is intended to operate in complex and potentially hazardous environments, where autonomous execution is supported by shared-control strategies that include human supervision. A parallel force–impedance control framework is implemented to enable smooth and repeatable contact between a sensor for ultrasonic testing (UT) and the inspected surface. During interaction, the arm applies a controlled push to create a vacuum seal, allowing accurate thickness measurements. The control strategy is validated through repeated trials in both indoor and outdoor scenarios, demonstrating consistency and robustness. The paper also addresses the mechanical and control integration of the complex robotic system, highlighting the challenges and solutions in achieving a responsive and reliable aerial platform. The combination of semi-autonomous control and human-in-the-loop operation significantly improves the effectiveness of inspection tasks in hard-to-reach environments, enhancing both human safety and task performance. Full article
(This article belongs to the Special Issue Unmanned Aerial Manipulation with Physical Interaction)
Show Figures

Figure 1

24 pages, 7263 KiB  
Article
Biocompatible and Hermetic Encapsulation of PMUTs: Effects of Parylene F-VT4 and ALD Stacks on Membrane Vibration and Acoustic Performance
by Esmaeil Afshari, Samer Houri, Rik Verplancke, Veronique Rochus, Maarten Cauwe, Pieter Gijsenbergh and Maaike Op de Beeck
Sensors 2025, 25(13), 4074; https://doi.org/10.3390/s25134074 - 30 Jun 2025
Viewed by 658
Abstract
The motivation of this work is to enable the use of piezoelectric micromachined ultrasonic transducer (PMUT)-based implants within the human body for biomedical applications, particularly for power and data transfer for implanted medical devices. To protect surrounding tissue and ensure PMUT functionality over [...] Read more.
The motivation of this work is to enable the use of piezoelectric micromachined ultrasonic transducer (PMUT)-based implants within the human body for biomedical applications, particularly for power and data transfer for implanted medical devices. To protect surrounding tissue and ensure PMUT functionality over time, biocompatible and hermetic encapsulation is essential. This study investigates the impact of Parylene F-VT4 layers of various thicknesses as well as the effect of multilayer stacks of Parylene F-VT4 combined with atomic layer-deposited nanolayers of Al2O3 and HfO2 on the mechanical and acoustic properties of PMUTs. PMUTs with various diameters (40 µm, 60 µm, and 80 µm) are fabricated and tested both as stand-alone devices and as arrays. The mechanical behavior of single stand-alone PMUT devices is characterized in air and in water using laser Doppler vibrometry (LDV), while the acoustic output of arrays is evaluated by pressure measurements in water. Experimental results reveal a non-monotonic change in resonance frequency as a function of increasing encapsulation thickness due to the competing effects of added mass and increased stiffness. The performance of PMUT arrays is clearly influenced by the encapsulation. For certain array designs, the encapsulation significantly improved the arrays’ pressure output, a change that is attributed to the change in the acoustic wavelength and inter-element coupling. These findings highlight the impact of encapsulation in modifying and potentially enhancing PMUT performance. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

12 pages, 3013 KiB  
Article
Investigation of Poling for Pb(Zr, Ti)O3/Pb(Zr, Ti)O3 Sol–Gel Composite
by Mako Nakamura, Ryota Ono and Makiko Kobayashi
Micromachines 2025, 16(7), 760; https://doi.org/10.3390/mi16070760 - 28 Jun 2025
Viewed by 485
Abstract
Phased-array ultrasonic transducers using sol–gel composites face challenges in terms of polarization uniformity when using conventional corona poling. Pb(Zr, Ti)O3 (PZT)/PZT composites with a thickness of 25 µm were fabricated on 3 mm thick titanium substrates, and the samples were poled by [...] Read more.
Phased-array ultrasonic transducers using sol–gel composites face challenges in terms of polarization uniformity when using conventional corona poling. Pb(Zr, Ti)O3 (PZT)/PZT composites with a thickness of 25 µm were fabricated on 3 mm thick titanium substrates, and the samples were poled by AC poling, DC poling, and corona discharge poling at RT. It was found that the polarization direction could be controlled by the voltage off-phase angle. When poling was performed with a voltage off-phase angle of 90°, applied voltage of 200 V (rms), 10 cycles, and frequency of 1 Hz, average values and standards of measured piezoelectric constant d33 of −35.1 ± 0.8 pC/N and ultrasonic sensitivity of 11.4 ± 0.1 dB were obtained. Furthermore, the AC-poled samples demonstrated smaller variations in d33 and ultrasonic sensitivity compared with the corona-poled samples, and higher values of d33 and ultrasonic sensitivity compared with the DC-poled samples, indicating the potential of AC poling for PZT/PZT sol–gel composites with large areas. Full article
(This article belongs to the Special Issue Acoustic Transducers and Their Applications, 2nd Edition)
Show Figures

Figure 1

14 pages, 4313 KiB  
Article
Metal Thickness Measurement Using an Ultrasonic Probe with a Linear Actuator for a Magnet-Type Climbing Robot: Design and Development
by Yuki Nishimura, Cheng Wang and Wei Song
Actuators 2025, 14(6), 299; https://doi.org/10.3390/act14060299 - 18 Jun 2025
Viewed by 355
Abstract
The inspection of oil storage tanks is a critical measure to prevent the risk of oil leakage. Therefore, research has focused on magnet-type climbing robots for automated tank inspections. While existing magnet-type climbing robots have demonstrated significant improvements in climbing steel structures, their [...] Read more.
The inspection of oil storage tanks is a critical measure to prevent the risk of oil leakage. Therefore, research has focused on magnet-type climbing robots for automated tank inspections. While existing magnet-type climbing robots have demonstrated significant improvements in climbing steel structures, their capability in terms of metal thickness measurement has not been previously evaluated. During thickness inspections, ultrasonic thickness sensors require a probe to be pressed against target surfaces. To automate metal thickness measurements, this pressing motion of the probe needs to be performed by the robot. This study introduces a novel metal thickness measurement device comprising an ultrasonic probe, a linear actuator, a gel pump, and a pressure sensor designed for a magnet-type climbing robot. The linear actuator moves the probe to its initial position, the gel pump injects a coupling gel, and then the actuator moves the probe to the surface and back. Finally, our prototype of an ultrasonic probe with a linear actuator was installed on a magnet-type climbing robot to demonstrate its functionality in a practical application regarding an oil storage tank inspection system. The prototype achieved a measurement success rate of 65.9% and an average error of 0.7% compared to a reference thickness. This article details the design and development of the ultrasonic probe with a linear actuator to enable the probe to make contact with the surface. It then details the experimental results and evaluation of metal thickness measurement performed using the prototype and the climbing robot. Full article
(This article belongs to the Special Issue Advanced Robots: Design, Control and Application—3rd Edition)
Show Figures

Figure 1

20 pages, 2667 KiB  
Article
Sensor-Based Diagnostics for Conveyor Belt Condition Monitoring and Predictive Refurbishment
by Ryszard Błażej, Leszek Jurdziak and Aleksandra Rzeszowska
Sensors 2025, 25(11), 3459; https://doi.org/10.3390/s25113459 - 30 May 2025
Cited by 1 | Viewed by 802
Abstract
Rising raw material costs and complex global supply chains have reduced the durability and availability of conveyor belts. In response, condition-based maintenance (CBM) with in situ diagnostics has become essential. This case study from a Polish lignite mine shows how subjective visual inspections [...] Read more.
Rising raw material costs and complex global supply chains have reduced the durability and availability of conveyor belts. In response, condition-based maintenance (CBM) with in situ diagnostics has become essential. This case study from a Polish lignite mine shows how subjective visual inspections were replaced with objective, repeatable measurements of belt core condition and thickness. Shifting refurbishment decisions from the plant to the conveyor improved success rates from 70% to over 90% and optimized belt lifecycle management. Sensor-based monitoring enables predictive maintenance, reduces premature or delayed replacements, increases belt reuse, lowers costs, and supports the circular economy by extending belt core life and reducing raw material demand. The study demonstrates how real-time, sensor-based diagnostics using inductive and ultrasonic technologies supports predictive maintenance of conveyor belts, improving refurbishment efficiency and lifecycle management. Full article
Show Figures

Figure 1

20 pages, 7585 KiB  
Article
The Research on Path Planning Method for Detecting Automotive Steering Knuckles Based on Phased Array Ultrasound Point Cloud
by Yihao Mao, Jun Tu, Huizhen Wang, Yangfan Zhou, Qiao Wu, Xu Zhang and Xiaochun Song
Sensors 2025, 25(9), 2907; https://doi.org/10.3390/s25092907 - 4 May 2025
Viewed by 480
Abstract
To address the challenges of automatic detection caused by the variation of surface normal vectors in automotive steering knuckles, an automatic detection method based on ultrasonic phased array technology is herein proposed. First, a point cloud model of the workpiece was constructed using [...] Read more.
To address the challenges of automatic detection caused by the variation of surface normal vectors in automotive steering knuckles, an automatic detection method based on ultrasonic phased array technology is herein proposed. First, a point cloud model of the workpiece was constructed using ultrasonic distance measurement, and Gaussian-weighted principal component analysis was used to estimate the normal vectors of the point cloud. By utilizing the normal vectors, water layer thickness during detection, and the incident angle of the sound beam, the probe pose information corresponding to the detection point was precisely calculated, ensuring the stability of the sound beam incident angle during the detection process. At the same time, in the trajectory planning process, piecewise cubic Hermite interpolation was used to optimize the detection trajectory, ensuring continuity during probe movement. Finally, an automatic detection system was set up to test a steering knuckle specimen with surface circumferential cracks. The results show that the point cloud data of the steering knuckle specimen, obtained using phased array ultrasound, had a relative measurement error controlled within 1.4%, and the error between the calculated probe angle and the theoretical angle did not exceed 0.5°. The probe trajectory derived from these data effectively improved the B-scan image quality during the automatic detection of the steering knuckle and increased the defect signal amplitude by 5.6 dB, demonstrating the effectiveness of this method in the automatic detection of automotive steering knuckles. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

20 pages, 8464 KiB  
Article
Influence of Different Synthesis Methods on the Defect Structure, Morphology, and UV-Assisted Ozone Sensing Properties of Zinc Oxide Nanoplates
by Pedro P. Ortega, João V. N. Palma, Ana L. Doimo, Laura Líbero, Gabriel F. Yamakawa, Leonnam G. Merízio, Ederson C. Aguiar, Luís F. Silva and Elson Longo
Chemosensors 2025, 13(4), 152; https://doi.org/10.3390/chemosensors13040152 - 20 Apr 2025
Viewed by 867
Abstract
In this work, room-temperature UV-assisted ozone detection was investigated using ZnO nanoplates synthesized via precipitation, ultrasound-, ultrasonic tip-, and microwave-assisted hydrothermal (MAH) methods. X-ray diffraction confirmed the formation of crystalline phases with an ~3.3 eV band gap, independent of the synthesis used. Raman [...] Read more.
In this work, room-temperature UV-assisted ozone detection was investigated using ZnO nanoplates synthesized via precipitation, ultrasound-, ultrasonic tip-, and microwave-assisted hydrothermal (MAH) methods. X-ray diffraction confirmed the formation of crystalline phases with an ~3.3 eV band gap, independent of the synthesis used. Raman spectroscopy revealed oxygen-related defects. Plate-like morphologies were observed, with the ultrasonic tip-assisted synthesis yielding ~17 nm-thick plates. Electrical measurements showed 10–170 ppb ozone sensitivity under UV. The sample synthesized via the MAH method (ZM) demonstrated superior conductance, with a baseline resistance of ~1.2% for the ultrasound (ZU) sample and less than 50% for the precipitation (ZA) and ultrasonic tip (ZP) samples. Despite the appreciable response in dark mode, the recovery was slow (>>30 min), except for the UV illumination condition, which reduced the recovery response to ~2 min. With top areas of ~0.0122 µm2, ZP and ZU showed high specific surface areas (24.75 and 19.37 m2/g, respectively), in contrast to ZM, which exhibited the lowest value (15.32 m2/g) with a top area of ~0.0332 µm2 and a thickness of 26.0 nm. The superior performance of ZM was attributed to the larger nanoplate sizes and the lower baseline resistance. The ultrasound method showed the lowest sensitivity due to the higher resistance and the depletion layer effect. The results indicate that the synthesis methods presented herein for the production of reactive ZnO nanoplates using NaOH as a growth-directing agent are reliable, simple, and cost-effective, in addition to being capable of detecting ozone with high sensitivity and reproducibility at concentrations as low as 10 ppb. Full article
Show Figures

Graphical abstract

19 pages, 13274 KiB  
Article
Prediction of Degradation of Concrete Surface Layer Using Neural Networks Applied to Ultrasound Propagation Signals
by Evgenia Kirillova, Alexey Tatarinov, Savva Kovalenko and Genadijs Shahmenko
Acoustics 2025, 7(2), 19; https://doi.org/10.3390/acoustics7020019 - 14 Apr 2025
Viewed by 1303
Abstract
The aim of this article is the development of a new artificial intelligence (AI) system for the condition assessment of concrete structures. To study the process of concrete degradation, the so-called spatiotemporal waveform profiles were obtained, which are sets of ultrasonic signals acquired [...] Read more.
The aim of this article is the development of a new artificial intelligence (AI) system for the condition assessment of concrete structures. To study the process of concrete degradation, the so-called spatiotemporal waveform profiles were obtained, which are sets of ultrasonic signals acquired by stepwise surface profiling of the concrete surface. The recorded signals at three frequencies, 50, 100 and 200 kHz, were analyzed and informative areas of the signals were identified. The type of the created neural network is a multilayer perceptron. Stochastic gradient descent was chosen as the learning algorithm. Measurement datasets (test, training and validation) were created to determine two factors of interest—the degree of material degradation (three gradations of material weakening) and the thickness (depth) of the degraded layer varied gradually from 3 to 40 mm from the surface. This article proves that the training datasets were sufficient to obtain acceptable results. The built networks correctly predicted the degree of degradation for all elements of the test dataset. The relative error in prediction of a thickness of degraded layer did not exceed 3% in the case of a thickness of 25 mm. It is shown that the results for the Fourier amplitude spectra are significantly worse than the results of neural networks built based on information about the measured signals themselves. Full article
Show Figures

Figure 1

11 pages, 251 KiB  
Article
Comparative Evaluation of Selected Methods for Assessing Gingival Phenotype
by Anna Dziewulska, Luiza Czerniawska-Kliman, Agnieszka Droździk and Katarzyna Grocholewicz
J. Clin. Med. 2025, 14(8), 2669; https://doi.org/10.3390/jcm14082669 - 14 Apr 2025
Viewed by 713
Abstract
Background/Objectives: The diagnostic assessment of soft and hard tissues surrounding the teeth, including gingival phenotype analysis, is critical for clinicians. Since multiple methods for evaluating gingival phenotype have been reported, determining the optimal approach for dental practitioners is essential. This study aimed to [...] Read more.
Background/Objectives: The diagnostic assessment of soft and hard tissues surrounding the teeth, including gingival phenotype analysis, is critical for clinicians. Since multiple methods for evaluating gingival phenotype have been reported, determining the optimal approach for dental practitioners is essential. This study aimed to evaluate gingival phenotype using visual assessment (VA) and the periodontal probe transparency method (PTM) in the maxillary central incisors to confirm the superiority of the latter. Methods: This study included 103 individuals aged 22 to 29 years, all with a healthy periodontium, no history of medications, and no prior treatment affecting the gingiva. Two examiners assessed gingival phenotype using VA and the PTM with color-coded probes. Additionally, direct measurement (DM) with biometric ultrasonography was performed. Results: The correlations among VA, the PTM, and DM (Spearman’s rank correlation test) demonstrated robust consistency (r = 0.62–0.76, p < 0.001). There was medium to high agreement between VA and DM (r = 0.62–0.74, p < 0.001), as well as a medium to strong correlation between VA and the PTM (r = 0.63–0.76, p < 0.001), indicating no superiority of the color-coded probe transparency method. Conclusions: Both VA and the PTM with a color-coded probe are reliable for identifying the gingival phenotype in the maxillary anterior region when compared to direct biometric measurement. Full article
(This article belongs to the Section Dentistry, Oral Surgery and Oral Medicine)
13 pages, 6013 KiB  
Article
Experimental Study on Anti-Wrinkling Performance of TA1 Titanium Thin Sheet Assisted by Ultrasonic Vibration
by Jiayi Ma, Yucheng Wang, Chunju Wang, Haidong He, Feng Chen and Lining Sun
Materials 2025, 18(7), 1439; https://doi.org/10.3390/ma18071439 - 24 Mar 2025
Viewed by 354
Abstract
TA1 titanium bipolar plates for hydrogen fuel cells are prone to plastic instability phenomena such as wrinkling during the stamping process, which adversely affects the forming quality. This study applies an ultrasonic-vibration energy field, aligned with the direction of stretching, in a plate [...] Read more.
TA1 titanium bipolar plates for hydrogen fuel cells are prone to plastic instability phenomena such as wrinkling during the stamping process, which adversely affects the forming quality. This study applies an ultrasonic-vibration energy field, aligned with the direction of stretching, in a plate diagonal tensile testing scenario based on the Blaha effect. The impact of varying thicknesses and vibration amplitudes on the anti-wrinkling performance of TA1 titanium sheets is investigated. Through a combined analysis of load–displacement curves and wrinkle height measurements using a super-depth-of-field microscope, by examining the forming load, the onset of wrinkling, and the wrinkle height at buckling locations, this study explores the deformation behavior of the thin sheet and the wrinkle suppression mechanism under the coupled effects of the ultrasonic-vibration field and scale. The results show that as the thickness decreases, the anti-wrinkling ability of the TA1 titanium sheet diminishes. The ultrasonic-vibration energy field reduces the yield stress and flow stress of the material, promoting wrinkling during the elastic deformation stage. Moreover, the 0.075 mm thick TA1 titanium sheet experiences local secondary wrinkling during the plastic deformation stage. Additionally, the ultrasonic-vibration energy field effectively reduces the forming load of the sheet and suppresses wrinkling within a certain range of amplitudes. These findings provide experimental evidence for the ultrasonic-vibration-assisted stamping process of titanium bipolar plates. Full article
Show Figures

Figure 1

20 pages, 7983 KiB  
Article
Ultrasonic Signal Processing Method for Dynamic Burning Rate Measurement Based on Improved Wavelet Thresholding and Extreme Value Feature Fitting
by Wenlong Wei, Xiaolong Yan, Juan Cui, Ruizhi Wang, Yongqiu Zheng and Chenyang Xue
Micromachines 2025, 16(3), 290; https://doi.org/10.3390/mi16030290 - 28 Feb 2025
Viewed by 710
Abstract
Ultrasonic measurement techniques are increasingly used to measure the burning rates of solid rocket fuel, but challenges arise due to noise and signal attenuation caused by the motor’s multi-layered structure. This paper proposes an adaptive thresholding method combined with a wavelet threshold function [...] Read more.
Ultrasonic measurement techniques are increasingly used to measure the burning rates of solid rocket fuel, but challenges arise due to noise and signal attenuation caused by the motor’s multi-layered structure. This paper proposes an adaptive thresholding method combined with a wavelet threshold function for effective ultrasonic signal denoising. Additionally, an extreme value feature fitting algorithm is introduced for accurate echo signal localization, even in low signal-to-noise ratio (SNR) conditions. Numerical simulations show a 10 dB improvement in SNR at −20 dB, with a correlation coefficient of 0.83 between the denoised and true signals. Echo localization tests across 12 SNR levels demonstrate a consistent error below 1 μs. Compared to other algorithms, the proposed method achieves higher precision, with a maximum displacement error of 0.74 mm. Hardware-in-the-loop experiments show an increase in SNR from −15 dB to 5.78 dB, with maximum displacement and rate errors of 0.9239 mm and 0.781 mm/s. In fuel-burning experiments, the burning rate curve closely matches the theoretical curve, with an initial fuel thickness error of only 0.12 mm, confirming the method’s effectiveness in complex environments. Full article
(This article belongs to the Section A:Physics)
Show Figures

Figure 1

17 pages, 10151 KiB  
Article
Study on the Relationship Between WC Coating Thickness and Residual Stress Using Critical Refracted Ultrasonic Longitudinal Waves
by Darui Xu, Xiangyu Zhang, Vasiliy O. Pelenovich, Oleksandr Pohrebniak, Bing Yang, Jun Zhang and Yanming Chen
Coatings 2025, 15(3), 264; https://doi.org/10.3390/coatings15030264 - 23 Feb 2025
Viewed by 753
Abstract
Tungsten carbide (WC) coatings of varying thicknesses were prepared using electrical discharge deposition technology. Relevant characterizations were conducted to analyze the residual stress in the WC coatings from a microscopic perspective, and this residual stress was measured using X-ray diffraction technology. Under isothermal [...] Read more.
Tungsten carbide (WC) coatings of varying thicknesses were prepared using electrical discharge deposition technology. Relevant characterizations were conducted to analyze the residual stress in the WC coatings from a microscopic perspective, and this residual stress was measured using X-ray diffraction technology. Under isothermal conditions, a novel method for detecting the residual stress of the coatings utilizing critical refractive longitudinal (LCR) waves was employed to investigate the relationship between the residual stress of the WC coatings and their thickness. According to acoustic elastic theory, LCR stress measurement is based on the principle that stress within the material alters the propagation characteristics of ultrasonic waves. After correcting the effect of coating thickness on LCR propagation, the detection results of the LCR wave indicate that the compressive stress present in the coating may cause the substrate to exhibit a certain degree of tensile stress. At a coating thickness of 6–13 µm, as the thickness of the WC coating increases, the residual compressive stress within the coating gradually rises, leading to an increase in tensile stress on the substrate. However, at coating thicknesses of 13–16 µm, the changes in tensile stress on the substrate become minimal or even decrease, despite the continued increase in compressive stress within the WC coating. The relationship curve derived from the matrix surface aligns more closely with a quadratic function, while the curve obtained from the coating surface corresponds more to a linear function. This study employs LCR waves to detect residual stress in coatings, and the results indicate that LCR waves hold significant potential for application in the field of residual stress detection in coatings. Full article
Show Figures

Figure 1

16 pages, 8284 KiB  
Article
Development and Performance Comparison of a 64-Channel Annular Array Probe Excited Simultaneously by Shorted Symmetrically Positioned Elements
by Shintaro Fukumoto and Takahiro Arakawa
Sensors 2025, 25(4), 1221; https://doi.org/10.3390/s25041221 - 17 Feb 2025
Viewed by 535
Abstract
Ultrasonic testing technology is used to inspect pipe welds in nuclear and thermal power plants. This paper proposes a new method to measure weld defects in thick-walled pipes of about 100 mm using ultrasonic phased array technology. The effectiveness of annular arrays is [...] Read more.
Ultrasonic testing technology is used to inspect pipe welds in nuclear and thermal power plants. This paper proposes a new method to measure weld defects in thick-walled pipes of about 100 mm using ultrasonic phased array technology. The effectiveness of annular arrays is confirmed by numerical simulations, and element arrangements that enable point focusing and sector scanning are considered. The energy concentration of annular arrays is 7% higher than that of linear arrays and 3% higher than that of matrix arrays. Similarly, the sound pressure ratio of grating lobes is equivalent to that of linear arrays and 20% lower than that of matrix arrays. This array probe is driven by 64 channels by dividing the ring of an 8-element annular array probe in parallel and shorting the elements at symmetrical positions. The effectiveness is examined by measuring specimens with flat-bottom holes and simulated spherical defects. The authors confirmed peaks in the echo intensity of a φ1 mm flat-bottom hole and a φ3 mm pseudo-spherical defect arranged at 5 mm intervals. Comparing the measured results with a conventional linear array transducer, the results from the proposed method show that the number and size of defects can be accurately measured. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop