Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = ultrasonic nozzle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2397 KiB  
Article
A Double Closed-Loop Process for Nanoparticle Synthesis via Aerosol Mixing and Venturi Jet Scrubbing
by Bruno Fabiano, Marco Salerno, Marco Vocciante, Omar Soda and Andrea Pietro Reverberi
Appl. Sci. 2025, 15(14), 7693; https://doi.org/10.3390/app15147693 - 9 Jul 2025
Viewed by 270
Abstract
Inorganic nanoparticles (NPs) have been synthesised via mixing and coalescence of droplets containing precursors and entrained by gaseous streams. The droplets have been generated by ultrasonic aerosolisation of two different liquid phases, each containing the respective reagent. The as-produced NPs are trapped by [...] Read more.
Inorganic nanoparticles (NPs) have been synthesised via mixing and coalescence of droplets containing precursors and entrained by gaseous streams. The droplets have been generated by ultrasonic aerosolisation of two different liquid phases, each containing the respective reagent. The as-produced NPs are trapped by mixing with a liquid phase in a Venturi nozzle, acting simultaneously as a collector and concentrator of the solid nanosized phase produced. Commercial electrically powered ultrasonic aerosolising devices have been adapted to atomise salt solutions characterised by high electrical conductivity. This process allowed the synthesis of calcium carbonate NPs with an average diameter in the range of (34–52) nm, according to the concentration of precursors in the aerosolised phases. This closed-loop method of synthesis, where neither capping agents were used nor demanding operating conditions were adopted, can represent a safe and viable eco-friendly technique for NP production free of undesirable compounds, as required for pharmaceutical preparations and theranostic uses. Full article
Show Figures

Figure 1

32 pages, 6074 KiB  
Review
High-Quality Manufacturing with Electrochemical Jet Machining (ECJM) for Processing Applications: A Comprehensive Review, Challenges, and Future Opportunities
by Yong Huang, Yi Hu, Xincai Liu, Xin Wang, Siqi Wu and Hanqing Shi
Micromachines 2025, 16(7), 794; https://doi.org/10.3390/mi16070794 - 7 Jul 2025
Viewed by 521
Abstract
The enduring manufacturing goals are increasingly shifting toward ultra-precision manufacturing and micro-nano fabrication, driven by the demand for sophisticated products. Unconventional machining processes such as electrochemical jet machining (ECJM), electrical discharge machining (EDM), electrochemical machining (ECM), abrasive water jet machining (AWJM), and laser [...] Read more.
The enduring manufacturing goals are increasingly shifting toward ultra-precision manufacturing and micro-nano fabrication, driven by the demand for sophisticated products. Unconventional machining processes such as electrochemical jet machining (ECJM), electrical discharge machining (EDM), electrochemical machining (ECM), abrasive water jet machining (AWJM), and laser beam machining (LBM) have been widely adopted as feasible alternatives to traditional methods, enabling the production of high-quality engineering components with specific characteristics. ECJM, a non-contact machining technology, employs electrodes on the nozzle and workpiece to establish an electrical circuit via the jet. As a prominent special machining technology, ECJM has demonstrated significant advantages, such as rapid, non-thermal, and stress-free machining capabilities, in past research. This review is dedicated to outline the research progress of ECJM, focusing on its fundamental concepts, material processing capabilities, technological advancements, and its variants (e.g., ultrasonic-, laser-, abrasive-, and magnetism-assisted ECJM) along with their applications. Special attention is given to the application of ECJM in the semiconductor and biomedical fields, where the demand for ultra-precision components is most pronounced. Furthermore, this review explores recent innovations in process optimization, significantly boosting machining efficiency and quality. This review not only provides a snapshot of the current status of ECJM technology, but also discusses the current challenges and possible future improvements of the technology. Full article
Show Figures

Figure 1

35 pages, 8296 KiB  
Review
Bridging Additive Manufacturing and Electronics Printing in the Age of AI
by Jihua Chen, Yue Yuan, Qianshu Wang, Hanyu Wang and Rigoberto C. Advincula
Nanomaterials 2025, 15(11), 843; https://doi.org/10.3390/nano15110843 - 31 May 2025
Viewed by 1466
Abstract
Printing techniques have been instrumental in developing flexible and stretchable electronics, including organic light-emitting diode displays, organic thin film transistor arrays, electronic skins, organic electrochemical transistors for biosensors and neuromorphic computing, as well as flexible solar cells with low-cost processes such as inkjet [...] Read more.
Printing techniques have been instrumental in developing flexible and stretchable electronics, including organic light-emitting diode displays, organic thin film transistor arrays, electronic skins, organic electrochemical transistors for biosensors and neuromorphic computing, as well as flexible solar cells with low-cost processes such as inkjet printing, ultrasonic nozzle, roll-to-roll coating. The rise of additive manufacturing provides even more opportunities to print electronics in automated and customizable ways. In this work, we will review the current technologies of printing electronics (including printed batteries, supercapacitors, fuel cells, and sensors), especially with 3D printing. In this age of ongoing AI revolution, the application of AI algorithms is discussed in terms of combining them with 3D printing and electronics printing for a future with automated optimization, sustainable design, and customizable and scalable manufacturing. Full article
(This article belongs to the Special Issue The Future of Nanotechnology: Healthcare and Manufacturing)
Show Figures

Graphical abstract

24 pages, 5146 KiB  
Review
From Manual to Automated: Exploring the Evolution of Switchover Methods in Injection Molding Processes—A Review
by Christian Bielenberg, Markus Stommel and Peter Karlinger
Polymers 2025, 17(8), 1096; https://doi.org/10.3390/polym17081096 - 18 Apr 2025
Viewed by 860
Abstract
Thermoplastic injection molding is a widely used process for producing complex three-dimensional plastic parts with tight dimensional tolerances. A key determinant of part quality is the switchover point—the transition from velocity-controlled filling to pressure-controlled packing. This transition affects critical product attributes, such as [...] Read more.
Thermoplastic injection molding is a widely used process for producing complex three-dimensional plastic parts with tight dimensional tolerances. A key determinant of part quality is the switchover point—the transition from velocity-controlled filling to pressure-controlled packing. This transition affects critical product attributes, such as d imensional accuracy, weight consistency, and surface finish. Precise control of the switchover point enhances process stability, robustness, and adaptability. This review consolidates recent advancements in switchover methods and adaptive control techniques. Improvements in traditional methods include the use of pressure gradient detection to mitigate viscosity variations and adaptive control to refine stroke- and time-dependent switchovers. In addition, deformation-based strategies detect the mold-opening force associated with cavity pressure through clamping force, mold separation, or tie-bar elongation. The integration of machine learning and feature extraction techniques enables the real-time adjustment of the switchover point by mapping relationships between process parameters and quality criteria. In addition, ultrasonic sensors provide non-invasive melt front detection, reducing the risk of mold damage. Real-time simulations, updated through nozzle pressure feedback, complement these methods to achieve precise switchover timing. This review also identifies persistent challenges, such as sensitivity to material properties, machine wear, and environmental conditions, and it explores future directions for improving the accuracy and adaptability of switchover control in modern injection molding processes. Full article
Show Figures

Figure 1

13 pages, 5967 KiB  
Article
Ultrasonic Spray Coating of Carbon Fibers for Composite Cathodes in Structural Batteries
by Thomas Burns, Liliana DeLatte, Gabriela Roman-Martinez, Kyra Glassey, Paul Ziehl, Monirosadat Sadati, Ralph E. White and Paul T. Coman
Electrochem 2025, 6(2), 13; https://doi.org/10.3390/electrochem6020013 - 1 Apr 2025
Viewed by 1058
Abstract
Structural batteries, also known as “massless batteries”, integrate energy storage directly into load-bearing materials, offering a transformative alternative to traditional Li-ion batteries. Unlike conventional systems that serve only as energy storage devices, structural batteries replace passive structural components, reducing overall weight while providing [...] Read more.
Structural batteries, also known as “massless batteries”, integrate energy storage directly into load-bearing materials, offering a transformative alternative to traditional Li-ion batteries. Unlike conventional systems that serve only as energy storage devices, structural batteries replace passive structural components, reducing overall weight while providing mechanical reinforcement. However, achieving uniform and efficient coatings of active materials on carbon fibers remains a major challenge, limiting their scalability and electrochemical performance. This study investigates ultrasonic spray coating as a precise and scalable technique for fabricating composite cathodes in structural batteries. Using a computer-controlled ultrasonic nozzle, this method ensures uniform deposition with minimal material waste while maintaining the mechanical integrity of carbon fibers. Compared to traditional techniques such as electrophoretic deposition, vacuum bag hot plate processing, and dip-coating, ultrasonic spray coating achieved superior coating consistency and reproducibility. Electrochemical testing revealed a specific capacity of 100 mAh/gLFP with 80% retention for more than 350 cycles at 0.5 C, demonstrating its potential as a viable coating solution. While structural batteries are not yet commercially viable, these findings represent a step toward their practical implementation. Further research and optimization will be essential in advancing this technology for next-generation aerospace and transportation applications. Full article
(This article belongs to the Special Issue Feature Papers in Electrochemistry)
Show Figures

Figure 1

17 pages, 4847 KiB  
Article
Ultrasonic Atomization—From Onset of Protruding Free Surface to Emanating Beads Fountain—Leading to Mist Spreading
by Katsumi Tsuchiya and Xiaolu Wang
Fluids 2025, 10(4), 89; https://doi.org/10.3390/fluids10040089 - 1 Apr 2025
Viewed by 524
Abstract
The process of ultrasonic atomization involves a series of dynamic/topological deformations of free surface, though not always, of a bulk liquid (initially) below the air. This study focuses on such dynamic interfacial alterations realized by changing some acousto-related operating conditions, including ultrasound excitation [...] Read more.
The process of ultrasonic atomization involves a series of dynamic/topological deformations of free surface, though not always, of a bulk liquid (initially) below the air. This study focuses on such dynamic interfacial alterations realized by changing some acousto-related operating conditions, including ultrasound excitation frequency, acoustic strength or input power density, and the presence/absence of a “stabilizing” nozzle. High-speed, high-resolution imaging made it possible to qualitatively identify four representative transitions/demarcations: (1) the onset of a protrusion on otherwise flat free surface; (2) the appearance of undulation along the growing protuberance; (3) the triggering of emanating beads fountain out of this foundation-like region; and (4) the induction of droplets bursting and/or mist spreading. Quantitatively examined were the two-parameters specifications—on the degrees as well as induction—of the periodicity in the protrusion-surface and beads-fountain oscillations, detected over wider ranges of driving/excitation frequency (0.43–3.0 MHz) and input power density (0.5–10 W/cm2) applied to the ultrasound transducer of flat surface on which the nozzle was either mounted or not. The resulting time sequence of images processed for the extended operating ranges, regarding the fountain structure pertaining, in particular, to recurring beads, confirms the wave-associated nature, i.e., their size “scalability” to the ultrasound wavelength, predictable from the traveling wave relationship. The thresholds in acoustic conditions for each of the four transition states of the fountain structure have been identified—notably, the onset of plausible “bifurcation” in the chain-beads’ diameter below a critical excitation frequency. Full article
(This article belongs to the Special Issue Advances in Multiphase Flow Science and Technology, 2nd Edition)
Show Figures

Graphical abstract

13 pages, 9227 KiB  
Article
Effect of Preheating Parameters on Extrusion Welding of High-Density Polyethylene Materials
by Chungwoo Lee, Suseong Woo, Sooyeon Kwon and Jisun Kim
Polymers 2024, 16(21), 2992; https://doi.org/10.3390/polym16212992 - 25 Oct 2024
Viewed by 1390
Abstract
High-density polyethylene (HDPE) has emerged as a promising alternative to fiber-reinforced plastic (FRP) for small vessel manufacturing due to its durability, chemical resistance, lightweight properties, and recyclability. However, while thermoplastic polymers like HDPE have been extensively used in gas and water pipelines, their [...] Read more.
High-density polyethylene (HDPE) has emerged as a promising alternative to fiber-reinforced plastic (FRP) for small vessel manufacturing due to its durability, chemical resistance, lightweight properties, and recyclability. However, while thermoplastic polymers like HDPE have been extensively used in gas and water pipelines, their application in large, complex marine structures remains underexplored, particularly in terms of joining methods. Existing techniques, such as ultrasonic welding, laser welding, and friction stir welding, are unsuitable for large-scale HDPE components, where extrusion welding is more viable. This study focuses on evaluating the impact of key process parameters, such as the preheating temperature, hot air movement speed, and nozzle distance, on the welding performance of HDPE. By analyzing the influence of these variables on heat distribution during the extrusion welding process, we aim to conduct basic research to derive optimal conditions for achieving strong and reliable joints. The results highlight the critical importance of a uniform temperature distribution in preventing defects such as excessive melting or thermal degradation, which could compromise weld integrity. This research provides valuable insights into improving HDPE joining techniques, contributing to its broader adoption in the marine and manufacturing industries. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

11 pages, 1980 KiB  
Article
Efficiency and Interference Verification of a HONO Collection System Using an Ultrasonic Nozzle Coupled with a Recirculating Spray Chamber for Ambient Air Monitoring
by Sea-Ho Oh, James J. Schauer, Hajeong Jeon, Dong-Hoon Ko, Seoyeong Choe and Min-Suk Bae
Appl. Sci. 2024, 14(19), 8930; https://doi.org/10.3390/app14198930 - 3 Oct 2024
Viewed by 1407
Abstract
This study explores the efficiency and applicability of a HONO collection system that incorporates an ultrasonic nozzle and spray chamber for the measurement of ambient air. The system demonstrates (1) a remarkable efficiency of 97.7% across two serial stages, (2) lower detection limits [...] Read more.
This study explores the efficiency and applicability of a HONO collection system that incorporates an ultrasonic nozzle and spray chamber for the measurement of ambient air. The system demonstrates (1) a remarkable efficiency of 97.7% across two serial stages, (2) lower detection limits of 0.15 ppbv for HONO, and (3) an absence of interference from NO2 or OH radicals. Practical ambient monitoring with the HONO collection system revealed typical diurnal variations in HONO, O3, and HNO3 concentrations, aligning with photolysis dynamics. Notably, HONO concentrations peaked at 0.37 ppb during nighttime and decreased to 0.27 ppb by midday. O3 demonstrated an inverse relationship with HONO, especially during ozone depletion phases, with r2 values of 0.94, 0.81, and 0.52 across various intervals. The HONO/NOx ratio during periods of enhanced HONO suggested the presence of additional formation mechanisms beyond heterogeneous NOx reactions. Moreover, ozone levels often fell below 20 ppb, indicating a consistent inverse correlation with HONO, thereby reaffirming further mechanisms of HONO formation beyond heterogeneous NOx reactions. The real-time atmospheric chemical reactions involving HONO, monitored concurrently with O3 and NOx, were effectively validated by the HONO collection system employed in this investigation. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

25 pages, 16876 KiB  
Article
Optimization of 3D Printing Parameters of High Viscosity PEEK/30GF Composites
by Dmitry Yu. Stepanov, Yuri V. Dontsov, Sergey V. Panin, Dmitry G. Buslovich, Vladislav O. Alexenko, Svetlana A. Bochkareva, Andrey V. Batranin and Pavel V. Kosmachev
Polymers 2024, 16(18), 2601; https://doi.org/10.3390/polym16182601 - 14 Sep 2024
Cited by 3 | Viewed by 2231
Abstract
The aim of this study was to optimize a set of technological parameters (travel speed, extruder temperature, and extrusion rate) for 3D printing with a PEEK-based composite reinforced with 30 wt.% glass fibers (GFs). For this purpose, both Taguchi and finite element methods [...] Read more.
The aim of this study was to optimize a set of technological parameters (travel speed, extruder temperature, and extrusion rate) for 3D printing with a PEEK-based composite reinforced with 30 wt.% glass fibers (GFs). For this purpose, both Taguchi and finite element methods (FEM) were utilized. The artificial neural networks (ANNs) were implemented for computer simulation of full-scale experiments. Computed tomography of the additively manufactured (AM) samples showed that the optimal 3D printing parameters were the extruder temperature of 460 °C, the travel speed of 20 mm/min, and the extrusion rate of 4 rpm (the microextruder screw rotation speed). These values correlated well with those obtained by computer simulation using the ANNs. In such cases, the homogeneous micro- and macro-structures were formed with minimal sample distortions and porosity levels within 10 vol.% of both structures. The most likely reason for porosity was the expansion of the molten polymer when it had been squeezed out from the microextruder nozzle. It was concluded that the mechanical properties of such samples can be improved both by changing the 3D printing strategy to ensure the preferential orientation of GFs along the building direction and by reducing porosity via post-printing treatment or ultrasonic compaction. Full article
(This article belongs to the Special Issue Additive Manufacturing of Fibre Reinforced Polymer Composites)
Show Figures

Figure 1

15 pages, 5704 KiB  
Article
Application of Ultrasonic Testing for Assessing the Elastic Properties of PLA Manufactured by Fused Deposition Modeling
by Mariya Pozhanka, Andrei Zagrai, Fidel Baez Avila and Borys Drach
Appl. Sci. 2024, 14(17), 7639; https://doi.org/10.3390/app14177639 - 29 Aug 2024
Cited by 1 | Viewed by 1591
Abstract
This study demonstrated the potential of a non-destructive evaluation (NDE) method to assess the elastic properties of materials printed under various parameters. A database was created documenting the relationship between the elastic properties (Young’s modulus, shear modulus, and Poisson’s ratio) of PLA (polylactic [...] Read more.
This study demonstrated the potential of a non-destructive evaluation (NDE) method to assess the elastic properties of materials printed under various parameters. A database was created documenting the relationship between the elastic properties (Young’s modulus, shear modulus, and Poisson’s ratio) of PLA (polylactic acid) materials and selected printing parameters such as temperature, speed, and layer height. PLA, which is widely used in additive manufacturing, offers convenient testing conditions due to its less demanding control compared to materials like metals. Ultrasonic testing was conducted on specimens printed under different nozzle temperatures, speeds, and layer heights. The results indicated that an increase in the printing temperature corresponded to an increase in material density and elastic properties of the material. In contrast, an increase in layer height led to a decrease in both density and the elastic properties of the material. Variations in the nozzle speed had a negligible effect on density and did not show a notable effect on the elastic moduli. This study demonstrated that ultrasonic testing is effective in measuring the elastic properties of PLA materials and shows the potential of real-time ultrasonic NDE. Full article
(This article belongs to the Special Issue Material Evaluation Methods of Additive-Manufactured Components)
Show Figures

Figure 1

12 pages, 2108 KiB  
Article
Study on Ship Exhaust Gas Denitrification Technology Based on Vapor-Phase Oxidation and Liquid-Phase Impingement Absorption
by Yuanqing Wang and Wenyao Ma
Processes 2024, 12(9), 1798; https://doi.org/10.3390/pr12091798 - 24 Aug 2024
Viewed by 928
Abstract
A system combining gas-phase oxidation and liquid-phase collision absorption for removing NO from marine diesel engine exhaust was proposed. This method was the first to utilize different physical states of the same mixed solution to achieve both pre-oxidation and impingement reduction absorption of [...] Read more.
A system combining gas-phase oxidation and liquid-phase collision absorption for removing NO from marine diesel engine exhaust was proposed. This method was the first to utilize different physical states of the same mixed solution to achieve both pre-oxidation and impingement reduction absorption of exhaust gases. During the pre-oxidation stage, a mixture of (NH4)2S2O8 and urea solution was atomized into a spray using an ultrasonic nebulizer to increase the contact area between the oxidant and the exhaust gas, thereby efficiently pre-oxidizing the exhaust gas in the gas phase. In the liquid-phase absorption stage, the (NH4)2S2O8 and urea solution was used in an impingement absorption process, which not only enhanced gas–liquid mass transfer efficiency but also effectively inhibited the formation of nitrates. Experimental results showed that, without increasing the amount of absorbent used, the maximum NO removal efficiency of this method reached 97% (temperature, 343 K; (NH4)2S2O8 concentration, 0.1 mol/L; urea concentration, 1.5 mol/L; NO concentration, 1000 ppm; pH, 7; impinging stream velocity, 15 m/s), compared to 72% using the conventional liquid-phase oxidation absorption method. Additionally, this method required only the addition of a nebulizer and two opposing nozzles to the existing desulfurization tower to achieve simultaneous removal of sulfur and nitrogen oxides from the exhaust gas, with low retrofitting costs making it favorable for practical engineering applications. Full article
(This article belongs to the Section Sustainable Processes)
Show Figures

Figure 1

16 pages, 7929 KiB  
Article
Mitigation of Aerosol and Microbial Concentration in a Weaning Piggery by Spraying Nanobubble Ozone Water with an Ultrasonic Sprayer
by Takumi Yoshino and Atuso Ikeguchi
Animals 2024, 14(5), 657; https://doi.org/10.3390/ani14050657 - 20 Feb 2024
Cited by 2 | Viewed by 1439
Abstract
Enhancing biosecurity measures in livestock is an essential prerequisite for producing animal products with the highest levels of safety and quality. In Japan, 70% of the mortalities post-weaning are attributed to respiratory pathogens. The research has shown that microorganisms, including both viruses and [...] Read more.
Enhancing biosecurity measures in livestock is an essential prerequisite for producing animal products with the highest levels of safety and quality. In Japan, 70% of the mortalities post-weaning are attributed to respiratory pathogens. The research has shown that microorganisms, including both viruses and bacteria, do not merely float in the air independently. Instead, they spread by adhering to aerosols. Therefore, improving the control of aerosol dissemination becomes a critical strategy for reducing pathogenic loads and boosting the overall efficiency of livestock production. This study focused on reducing concentrations of aerosol particles, airborne microbial concentrations, and airborne mass concentrations by spraying ozone solution with an ultrasonic sprayer. The experiments were conducted at a farm in Fukushima Prefecture, Japan, known for its integrated management system, overseeing a herd of 200 sows. Nanobubble ozone water particles were dispersed using an ultrasonic sprayer, which allowed the particles to remain airborne significantly longer than those dispersed using a standard nozzle, at a rate of 30 mL per weaning pig 49 days old, for a 10 min period. This procedure was followed by a 10 min pause, and the cycle was repeated for 17 days. Measurements included concentrations of airborne bacteria, aerosol mass, and aerosol particles. The findings demonstrated a substantial reduction in airborne microbial concentrations of Escherichia coli and Staphylococcus aureus in the treated area compared to the control, with reductions reaching a peak of 85.7% for E. coli and 69.5% for S. aureus. Aerosol particle sizes ranging from 0.3–0.5 µm, 0.5–1.0 µm, 1.0–2.0 µm, 2.0–5.0 µm, to 5.0–10.0 µm were monitored, with a notable decrease in concentrations among larger particles. The average aerosol mass concentration in the test area was over 50% lower than in the control area. Full article
Show Figures

Figure 1

18 pages, 6626 KiB  
Article
Design and Test of a Tree-Whitening Machine Based on a Multi-Nozzle Holder
by Shaomin Teng, Yangfan Cao, Ying Zhao, Liqi Qiu, Xieliang Zhang, Penghui Yao and Decheng Wang
Appl. Sci. 2023, 13(22), 12469; https://doi.org/10.3390/app132212469 - 18 Nov 2023
Viewed by 1633
Abstract
In this study, a tree-whitening machine was designed based on the collaborative operation of multiple spray nozzles. This research utilized infrared ranging, ultrasonic detection, and spraying devices in order to realize the accurate spraying of trees and improve the efficiency and quality of [...] Read more.
In this study, a tree-whitening machine was designed based on the collaborative operation of multiple spray nozzles. This research utilized infrared ranging, ultrasonic detection, and spraying devices in order to realize the accurate spraying of trees and improve the efficiency and quality of spraying. The test results show that the working efficiency of the machine is 300 trees/h, the spraying coverage is up to 96.5%, and the applicable trunk circumference range is 500–1250 mm, which is more advantageous than the American UltraMaxII695 high-pressure electric spraying machine, the domestic HT20 machine, etc. Furthermore, it improves the working efficiency by 7.1%, the spraying coverage by 6.7%, and the expansion of the adaptable trunk circumference range by 20%, as well as having further advantages. Full article
Show Figures

Figure 1

15 pages, 7117 KiB  
Article
Innovative Acoustic-Hydraulic Method for High-Performance Fine Liquid Atomization
by Olga Kudryashova, Andrey Shalunov, Dmitry Genne, Roman Dorovskikh and Sergey Titov
Appl. Sci. 2023, 13(22), 12330; https://doi.org/10.3390/app132212330 - 15 Nov 2023
Cited by 4 | Viewed by 1259
Abstract
Spray technology is widely used in various industries, including medicine, food production, mechanical engineering, and nanopowder manufacturing. Achieving high dispersion and a narrow particle size distribution is crucial for many applications. Ultrasonic spraying is commonly used to achieve this. On the other hand, [...] Read more.
Spray technology is widely used in various industries, including medicine, food production, mechanical engineering, and nanopowder manufacturing. Achieving high dispersion and a narrow particle size distribution is crucial for many applications. Ultrasonic spraying is commonly used to achieve this. On the other hand, hydraulic nozzles provide high atomization performance. Combining these two technologies promises to offer significant benefits, but the complex processes that occur simultaneously in such a device require careful study. This work proposes a fundamental design for an acoustic-hydraulic nozzle and investigates the physical processes when a liquid is sprayed using this nozzle, both theoretically and experimentally. The study identifies the critical modes of spraying and confirms that the simultaneous use of ultrasound and hydraulic pressure can produce a fine spray (droplet size less than 50 μm vs. 150–500 μm for hydrodynamic spray) with high productivity (5–10 mL/s vs. 0.5 mL/min for ultrasonic spray). This approach has significant potential for modern industries and technologies. Full article
(This article belongs to the Section Acoustics and Vibrations)
Show Figures

Figure 1

17 pages, 3858 KiB  
Article
Selection of Excipients for the Preparation of Vancomycin-Loaded Poly(D,L-lactide-co-glycolide) Microparticles with Extended Release by Emulsion Spray Drying
by Ana Jurić Simčić, Iva Erak, Biserka Cetina Čižmek, Anita Hafner and Jelena Filipović-Grčić
Pharmaceutics 2023, 15(10), 2438; https://doi.org/10.3390/pharmaceutics15102438 - 9 Oct 2023
Cited by 2 | Viewed by 1745
Abstract
The aim of this study was to relate the composition of the W/O emulsion used as a starting fluid in the spray-drying process to the quality of the dry polymer particles obtained in terms of physical–chemical properties, compatibility and drug release performance. Four [...] Read more.
The aim of this study was to relate the composition of the W/O emulsion used as a starting fluid in the spray-drying process to the quality of the dry polymer particles obtained in terms of physical–chemical properties, compatibility and drug release performance. Four W/O emulsions containing vancomycin hydrochloride (VAN), an encapsulating PLGA polymer and Poloxamer® 407, chitosan and/or sorbitan monooleate as stabilisers were spray-dried using an ultrasonic atomising nozzle. The microparticles obtained were micron-sized, with a volume mean diameter between 43.2 ± 0.3 and 64.0 ± 12.6 µm, and spherical with a mostly smooth, non-porous surface and with high drug loading (between 14.5 ± 0.6 and 17.1 ± 1.9% w/w). All formulations showed a prolonged and biphasic VAN release profile, with diffusion being the primary release mechanism. Microparticles prepared from the emulsions with Poloxamer® 407 and sorbitan monooleate released VAN rapidly and completely within one day. The release of VAN from microparticles prepared from the emulsion without additives or with chitosan in the inner aqueous phase was significantly decreased; after four days, a cumulative release of 65% and 61%, respectively, was achieved. Microparticles with encapsulated chitosan had the largest mean particle diameter and the slowest release of VAN. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

Back to TopTop