Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (269)

Search Parameters:
Keywords = ultra-wideband (UWB) positioning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 21019 KiB  
Article
A UWB-AOA/IMU Integrated Navigation System for 6-DoF Indoor UAV Localization
by Pengyu Zhao, Hengchuan Zhang, Gang Liu, Xiaowei Cui and Mingquan Lu
Drones 2025, 9(8), 546; https://doi.org/10.3390/drones9080546 - 1 Aug 2025
Viewed by 269
Abstract
With the increasing deployment of unmanned aerial vehicles (UAVs) in indoor environments, the demand for high-precision six-degrees-of-freedom (6-DoF) localization has grown significantly. Ultra-wideband (UWB) technology has emerged as a key enabler for indoor UAV navigation due to its robustness against multipath effects and [...] Read more.
With the increasing deployment of unmanned aerial vehicles (UAVs) in indoor environments, the demand for high-precision six-degrees-of-freedom (6-DoF) localization has grown significantly. Ultra-wideband (UWB) technology has emerged as a key enabler for indoor UAV navigation due to its robustness against multipath effects and high-accuracy ranging capabilities. However, conventional UWB-based systems primarily rely on range measurements, operate at low measurement frequencies, and are incapable of providing attitude information. This paper proposes a tightly coupled error-state extended Kalman filter (TC–ESKF)-based UWB/inertial measurement unit (IMU) fusion framework. To address the challenge of initial state acquisition, a weighted nonlinear least squares (WNLS)-based initialization algorithm is proposed to rapidly estimate the UAV’s initial position and attitude under static conditions. During dynamic navigation, the system integrates time-difference-of-arrival (TDOA) and angle-of-arrival (AOA) measurements obtained from the UWB module to refine the state estimates, thereby enhancing both positioning accuracy and attitude stability. The proposed system is evaluated through simulations and real-world indoor flight experiments. Experimental results show that the proposed algorithm outperforms representative fusion algorithms in 3D positioning and yaw estimation accuracy. Full article
Show Figures

Figure 1

25 pages, 10205 KiB  
Article
RTLS-Enabled Bidirectional Alert System for Proximity Risk Mitigation in Tunnel Environments
by Fatima Afzal, Farhad Ullah Khan, Ayaz Ahmad Khan, Ruchini Jayasinghe and Numan Khan
Buildings 2025, 15(15), 2667; https://doi.org/10.3390/buildings15152667 - 28 Jul 2025
Viewed by 271
Abstract
Tunnel construction poses significant safety challenges due to confined spaces, limited visibility, and the dynamic movement of labourers and machinery. This study addresses a critical gap in real-time, bidirectional proximity monitoring by developing and validating a prototype early-warning system that integrates real-time location [...] Read more.
Tunnel construction poses significant safety challenges due to confined spaces, limited visibility, and the dynamic movement of labourers and machinery. This study addresses a critical gap in real-time, bidirectional proximity monitoring by developing and validating a prototype early-warning system that integrates real-time location systems (RTLS) with long-range (LoRa) wireless communication and ultra-wideband (UWB) positioning. The system comprises Arduino nano microcontrollers, organic light-emitting diode (OLED) displays, and piezo buzzers to detect and signal proximity breaches between workers and equipment. Using an action research approach, three pilot case studies were conducted in a simulated tunnel environment to test the system’s effectiveness in both static and dynamic risk scenarios. The results showed that the system accurately tracked proximity and generated timely alerts when safety thresholds were crossed, although minor delays of 5–8 s and slight positional inaccuracies were noted. These findings confirm the system’s capacity to enhance situational awareness and reduce reliance on manual safety protocols. The study contributes to the tunnel safety literature by demonstrating the feasibility of low-cost, real-time monitoring solutions that simultaneously track labour and machinery. The proposed RTLS framework offers practical value for safety managers and informs future research into automated safety systems in complex construction environments. Full article
(This article belongs to the Special Issue AI in Construction: Automation, Optimization, and Safety)
Show Figures

Figure 1

23 pages, 3210 KiB  
Article
Design and Optimization of Intelligent High-Altitude Operation Safety System Based on Sensor Fusion
by Bohan Liu, Tao Gong, Tianhua Lei, Yuxin Zhu, Yijun Huang, Kai Tang and Qingsong Zhou
Sensors 2025, 25(15), 4626; https://doi.org/10.3390/s25154626 - 25 Jul 2025
Viewed by 248
Abstract
In the field of high-altitude operations, the frequent occurrence of fall accidents is usually closely related to safety measures such as the incorrect use of safety locks and the wrong installation of safety belts. At present, the manual inspection method cannot achieve real-time [...] Read more.
In the field of high-altitude operations, the frequent occurrence of fall accidents is usually closely related to safety measures such as the incorrect use of safety locks and the wrong installation of safety belts. At present, the manual inspection method cannot achieve real-time monitoring of the safety status of the operators and is prone to serious consequences due to human negligence. This paper designs a new type of high-altitude operation safety device based on the STM32F103 microcontroller. This device integrates ultra-wideband (UWB) ranging technology, thin-film piezoresistive stress sensors, Beidou positioning, intelligent voice alarm, and intelligent safety lock. By fusing five modes, it realizes the functions of safety status detection and precise positioning. It can provide precise geographical coordinate positioning and vertical ground distance for the workers, ensuring the safety and standardization of the operation process. This safety device adopts multi-modal fusion high-altitude operation safety monitoring technology. The UWB module adopts a bidirectional ranging algorithm to achieve centimeter-level ranging accuracy. It can accurately determine dangerous heights of 2 m or more even in non-line-of-sight environments. The vertical ranging upper limit can reach 50 m, which can meet the maintenance height requirements of most transmission and distribution line towers. It uses a silicon carbide MEMS piezoresistive sensor innovatively, which is sensitive to stress detection and resistant to high temperatures and radiation. It builds a Beidou and Bluetooth cooperative positioning system, which can achieve centimeter-level positioning accuracy and an identification accuracy rate of over 99%. It can maintain meter-level positioning accuracy of geographical coordinates in complex environments. The development of this safety device can build a comprehensive and intelligent safety protection barrier for workers engaged in high-altitude operations. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

19 pages, 4251 KiB  
Article
A Complete Solution for Ultra-Wideband Based Real-Time Positioning
by Vlad Ratiu, Ovidiu Ratiu, Olivier Raphael Smeyers, Vasile Teodor Dadarlat, Stefan Vos and Ana Rednic
Sensors 2025, 25(15), 4620; https://doi.org/10.3390/s25154620 - 25 Jul 2025
Viewed by 199
Abstract
Real-time positioning is a technological field with a multitude of applications, which expand across many scopes: from positioning within a large area to localization within smaller spaces; from locating people to locating equipment; from large-scale industrial or military applications to commercially available solutions. [...] Read more.
Real-time positioning is a technological field with a multitude of applications, which expand across many scopes: from positioning within a large area to localization within smaller spaces; from locating people to locating equipment; from large-scale industrial or military applications to commercially available solutions. There are at least as many implementations of real-time positioning as there are applications and challenges. Within the domain of Radio Frequency (RF) systems, positioning has been approached from multiple angles. Some of the more common solutions involve using Time of Flight (ToF) and time difference of arrival (TDoA) technologies. Within TDoA-based systems, one common limitation stems from the computational power necessary to run the multi-lateration algorithms at a high enough speed to provide high-frequency refresh rates on the tag positions. The system presented in this study implements a complete hardware and software TDoA-based real-time positioning system, using wireless Ultra-Wideband (UWB) technology. This system demonstrates improvements in the state of the art by addressing the above limitations through the use of a hybrid Machine Learning solution combined with algorithmic fine tuning in order to reduce computational power while achieving the desired positioning accuracy. This study presents the design, implementation, verification and validation of the aforementioned system, as well as an overview of similar solutions. Full article
Show Figures

Figure 1

23 pages, 3554 KiB  
Article
Multi-Sensor Fusion Framework for Reliable Localization and Trajectory Tracking of Mobile Robot by Integrating UWB, Odometry, and AHRS
by Quoc-Khai Tran and Young-Jae Ryoo
Biomimetics 2025, 10(7), 478; https://doi.org/10.3390/biomimetics10070478 - 21 Jul 2025
Viewed by 492
Abstract
This paper presents a multi-sensor fusion framework for the accurate indoor localization and trajectory tracking of a differential-drive mobile robot. The proposed system integrates Ultra-Wideband (UWB) trilateration, wheel odometry, and Attitude and Heading Reference System (AHRS) data using a Kalman filter. This fusion [...] Read more.
This paper presents a multi-sensor fusion framework for the accurate indoor localization and trajectory tracking of a differential-drive mobile robot. The proposed system integrates Ultra-Wideband (UWB) trilateration, wheel odometry, and Attitude and Heading Reference System (AHRS) data using a Kalman filter. This fusion approach reduces the impact of noisy and inaccurate UWB measurements while correcting odometry drift. The system combines raw UWB distance measurements with wheel encoder readings and heading information from an AHRS to improve robustness and positioning accuracy. Experimental validation was conducted through repeated closed-loop trajectory trials. The results demonstrate that the proposed method significantly outperforms UWB-only localization, yielding reduced noise, enhanced consistency, and lower Dynamic Time Warping (DTW) distances across repetitions. The findings confirm the system’s effectiveness and suitability for real-time mobile robot navigation in indoor environments. Full article
(This article belongs to the Special Issue Advanced Intelligent Systems and Biomimetics)
Show Figures

Figure 1

15 pages, 3517 KiB  
Article
A High-Precision UWB-Based Indoor Positioning System Using Time-of-Arrival and Intersection Midpoint Algorithm
by Wen-Piao Lin and Yi-Shun Lu
Algorithms 2025, 18(7), 438; https://doi.org/10.3390/a18070438 - 17 Jul 2025
Viewed by 374
Abstract
This study develops a high-accuracy indoor positioning system using ultra-wideband (UWB) technology and the time-of-arrival (TOA) method. The system is built using Arduino Nano microcontrollers and DW1000 UWB chips to measure distances between anchor nodes and a mobile tag. Three positioning algorithms are [...] Read more.
This study develops a high-accuracy indoor positioning system using ultra-wideband (UWB) technology and the time-of-arrival (TOA) method. The system is built using Arduino Nano microcontrollers and DW1000 UWB chips to measure distances between anchor nodes and a mobile tag. Three positioning algorithms are tested: the triangle centroid algorithm (TCA), inner triangle centroid algorithm (ITCA), and the proposed intersection midpoint algorithm (IMA). Experiments conducted in a 732 × 488 × 220 cm indoor environment show that TCA performs well near the center but suffers from reduced accuracy at the edges. In contrast, IMA maintains stable and accurate positioning across all test points, achieving an average error of 12.87 cm. The system offers low power consumption, fast computation, and high positioning accuracy, making it suitable for real-time indoor applications such as hospital patient tracking and shopping malls where GPS is unavailable or unreliable. Full article
Show Figures

Figure 1

21 pages, 33900 KiB  
Article
Scalable, Flexible, and Affordable Hybrid IoT-Based Ambient Monitoring Sensor Node with UWB-Based Localization
by Mohammed Faeik Ruzaij Al-Okby, Thomas Roddelkopf, Jiahao Huang, Mohsin Bukhari and Kerstin Thurow
Sensors 2025, 25(13), 4061; https://doi.org/10.3390/s25134061 - 29 Jun 2025
Viewed by 474
Abstract
Ambient monitoring in chemical laboratories and industrial sites that use toxic, hazardous, or flammable materials is essential to protect the lives of workers, material resources, and infrastructure at these sites. In this research paper, we present an innovative approach for developing a low-cost [...] Read more.
Ambient monitoring in chemical laboratories and industrial sites that use toxic, hazardous, or flammable materials is essential to protect the lives of workers, material resources, and infrastructure at these sites. In this research paper, we present an innovative approach for developing a low-cost and portable sensor node that detects and warns of hazardous chemical gas and vapor leaks. The system also enables leak location tracking using an indoor tracking and positioning system operating in ultra-wideband (UWB) technology. An array of sensors is used to detect gases, vapors, and airborne particles, while the leak location is identified through a UWB unit integrated with an Internet of Things (IoT) processor. This processor transmits real-time location data and sensor readings via wireless fidelity (Wi-Fi). The real-time indoor positioning system (IPS) can automatically select a tracking area based on the distances measured from the three nearest anchors of the movable sensor node. The environmental sensor data and distances between the node and the anchors are transmitted to the cloud in JSON format via the user datagram protocol (UDP), which allows the fastest possible data rate. A monitoring server was developed in Python to track the movement of the portable sensor node and display live measurements of the environment. The system was tested by selecting different paths between several adjacent areas with a chemical leakage of different volatile organic compounds (VOCs) in the test path. The experimental tests demonstrated good accuracy in both hazardous gas detection and location tracking. The system successfully issued a leak warning for all tested material samples with volumes up to 500 microliters and achieved a positional accuracy of approximately 50 cm under conditions without major obstacles obstructing the UWB signal between the active system units. Full article
(This article belongs to the Special Issue Sensing and AI: Advancements in Robotics and Autonomous Systems)
Show Figures

Figure 1

25 pages, 5526 KiB  
Article
Implementation of Integrated Smart Construction Monitoring System Based on Point Cloud Data and IoT Technique
by Ju-Yong Kim, Suhyun Kang, Jungmin Cho, Seungjin Jeong, Sanghee Kim, Youngje Sung, Byoungkil Lee and Gwang-Hee Kim
Sensors 2025, 25(13), 3997; https://doi.org/10.3390/s25133997 - 26 Jun 2025
Viewed by 778
Abstract
This study presents an integrated smart construction monitoring system that combines point cloud data (PCD) from a 3D laser scanner with real-time IoT sensors and ultra-wideband (UWB) indoor positioning technology to enhance construction site safety and quality management. The system addresses the limitations [...] Read more.
This study presents an integrated smart construction monitoring system that combines point cloud data (PCD) from a 3D laser scanner with real-time IoT sensors and ultra-wideband (UWB) indoor positioning technology to enhance construction site safety and quality management. The system addresses the limitations of traditional BIM-based methods by leveraging high-precision PCD that accurately reflects actual site conditions. Field validation was conducted over 17 days at a residential construction site, focusing on two floors during concrete pouring. The concrete strength prediction model, based on the ASTM C1074 maturity method, achieved prediction accuracy within 1–2 MPa of measured values (e.g., predicted: 26.2 MPa vs. actual: 25.3 MPa at 14 days). The UWB-based worker localization system demonstrated a maximum positioning error of 1.44 m with 1 s update intervals, enabling real-time tracking of worker movements. Static accuracy tests showed localization errors of 0.80–0.94 m under clear line-of-sight and 1.14–1.26 m under partial non-line-of-sight. The integrated platform successfully combined PCD visualization with real-time sensor data, allowing construction managers to monitor concrete curing progress and worker safety simultaneously. Full article
Show Figures

Figure 1

19 pages, 2531 KiB  
Article
Fusion-Based Localization System Integrating UWB, IMU, and Vision
by Zhongliang Deng, Haiming Luo, Xiangchuan Gao and Peijia Liu
Appl. Sci. 2025, 15(12), 6501; https://doi.org/10.3390/app15126501 - 9 Jun 2025
Viewed by 769
Abstract
Accurate indoor positioning services have become increasingly important in modern applications. Various new indoor positioning methods have been developed. Among them, visual–inertial odometry (VIO)-based techniques are notably limited by lighting conditions, while ultrawideband (UWB)-based algorithms are highly susceptible to environmental interference. To address [...] Read more.
Accurate indoor positioning services have become increasingly important in modern applications. Various new indoor positioning methods have been developed. Among them, visual–inertial odometry (VIO)-based techniques are notably limited by lighting conditions, while ultrawideband (UWB)-based algorithms are highly susceptible to environmental interference. To address these limitations, this study proposes a hybrid indoor positioning algorithm that combines UWB and VIO. The method first utilizes a tightly coupled UWB/inertial measurement unit (IMU) fusion algorithm based on a sliding-window factor graph to obtain initial position estimates. These estimates are then combined with VIO outputs to formulate the system’s motion and observation models. Finally, an extended Kalman filter (EKF) is applied for data fusion to achieve optimal state estimation. The proposed hybrid positioning algorithm is validated on a self-developed mobile platform in an indoor environment. Experimental results show that, in indoor environments, the proposed method reduces the root mean square error (RMSE) by 67.6% and the maximum error by approximately 67.9% compared with the standalone UWB method. Compared with the stereo VIO model, the RMSE and maximum error are reduced by 55.4% and 60.4%, respectively. Furthermore, compared with the UWB/IMU fusion model, the proposed method achieves a 50.0% reduction in RMSE and a 59.1% reduction in maximum error. Full article
Show Figures

Figure 1

20 pages, 3891 KiB  
Article
Breast Cancer Detection Using a High-Performance Ultra-Wideband Vivaldi Antenna in a Radar-Based Microwave Breast Cancer Imaging Technique
by Şahin Yıldız and Muhammed Bahaddin Kurt
Appl. Sci. 2025, 15(11), 6015; https://doi.org/10.3390/app15116015 - 27 May 2025
Viewed by 783
Abstract
In this study, a novel improved ultra-wideband (UWB) antipodal Vivaldi antenna suitable for breast cancer detection via microwave imaging was designed. The antenna was made more directional by adding three pairs of nestings to the antenna fins by adding elliptical patches. The frequency [...] Read more.
In this study, a novel improved ultra-wideband (UWB) antipodal Vivaldi antenna suitable for breast cancer detection via microwave imaging was designed. The antenna was made more directional by adding three pairs of nestings to the antenna fins by adding elliptical patches. The frequency operating range of the proposed antenna is UWB 3.6–13 GHz, its directivity is 11 dB, and its gain is 9.27 dB. The antenna is designed with FR4 dielectric material and dimensions of 34.6 mm × 33 mm × 1.6 mm. It was demonstrated that the bandwidth, gain, and directivity of the proposed antenna meet the requirements for UWB radar applications. The Vivaldi antenna was tested on an imaging system developed using the CST Microwave Studio (CST MWS) program. In CST MWS, a hemispherical heterogeneous breast model with a radius of 50 mm was created and a spherical tumor with a diameter of 0.9 mm was placed inside. A Gaussian pulse was sent through Vivaldi antennas and the scattered signals were collected. Then, adaptive Wiener filter and image formation algorithm delay-multiply-sum (DMAS) steps were applied to the reflected signals. Using these steps, the tumor in the breast model was scanned at high resolution. In the simulation application, the tumor in the heterogeneous phantom was detected and imaged in the correct position. A monostatic radar-based system was implemented for scanning a breast phantom in the prone position in an experimental setting. For experimental measurements, homogeneous (fat and tumor) and heterogeneous (skin, fat, glandular, and tumor) breast phantoms were produced according to the electrical properties of the tissues. The phantoms were designed as hemispherical with a diameter of 100 mm. A spherical tumor tissue with a diameter of 16 mm was placed in the phantoms produced in the experimental environment. The dynamic range of the VNA device used allowed us to image a 16 mm diameter tumor in the experimental setting. The developed microwave imaging system shows that it is suitable for the early-stage detection of breast cancer by scanning the tumor in the correct location in breast phantoms. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

20 pages, 5940 KiB  
Article
Extending the Coverage of IEEE 802.15.4z HRP UWB Ranging
by Sumin Han and Byung-Jun Jang
Sensors 2025, 25(10), 3058; https://doi.org/10.3390/s25103058 - 12 May 2025
Cited by 1 | Viewed by 1147
Abstract
Currently, the ultra-wideband (UWB) technology commercialized in smartphones and smart keys is a high-rate pulse repetition frequency (HRP) UWB of the IEEE 802.15.4z standard, which aims to accurately determine the distance between UWB devices located within tens of meters using two-way ranging (TWR). [...] Read more.
Currently, the ultra-wideband (UWB) technology commercialized in smartphones and smart keys is a high-rate pulse repetition frequency (HRP) UWB of the IEEE 802.15.4z standard, which aims to accurately determine the distance between UWB devices located within tens of meters using two-way ranging (TWR). However, in order for UWB ranging technology to be spread to various location-based services or positioning services, it must be able to measure the distance between UWB devices that are hundreds of meters apart. Fortunately, UWB technology can freely change physical layer parameters, as long as they comply with the UWB local regulations worldwide. Therefore, in this study, we analyzed the method of configuring the packet structure, length, and transmission power from the link budget perspective to enable longer UWB ranging of hundreds of meters within UWB local regulations. As a result of the analysis, we theoretically confirmed that UWB ranging is possible even at hundreds of meters by selecting the optimal physical layer parameters. In addition, the experimental results using the Qorvo DW3000 module were confirmed to be consistent with the results analyzed in this study. The results of this study can be used as basic data for the introduction of wide-area UWB technology and services in the future. Full article
Show Figures

Figure 1

10 pages, 2834 KiB  
Proceeding Paper
UWB-Based Positioning Is Not Invulnerable from Spoofing Attacks: A Case Study of Crazyswarm
by Mahyar Shariat, Jelena Gabela Majić, Max Brandstätter and Wolfgang Kastner
Eng. Proc. 2025, 88(1), 43; https://doi.org/10.3390/engproc2025088043 - 7 May 2025
Viewed by 398
Abstract
Spoofing attacks pose a threat to drones, which can lead to their crash or takeover. As a countermeasure, the European Space Agency has implemented the Timed Efficient Loss-tolerant Authentication (TESLA) broadcast protocol in the Galileo Open Service Navigation Message Authentication (OSNMA) to detect [...] Read more.
Spoofing attacks pose a threat to drones, which can lead to their crash or takeover. As a countermeasure, the European Space Agency has implemented the Timed Efficient Loss-tolerant Authentication (TESLA) broadcast protocol in the Galileo Open Service Navigation Message Authentication (OSNMA) to detect such events. This study explores the application of TESLA in detecting spoofing attacks targeted at drone swarms that rely on positioning systems utilizing ultra-wideband (UWB) technology. The results of our experiments reaffirm that UWB-based positioning systems are not automatically invulnerable from spoofing attacks and that cryptographic methods such as TESLA are required to provide a layer of protection against spoofing attacks to detect them effectively. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

25 pages, 9042 KiB  
Article
A Study on the Living Behavior and Space Usage Preference of Residents in Traditional Huizhou Dwellings
by Xiang Gao, Zao Li, Qiang Wang, Geng Cheng, Mingfei Gao and Maosheng Ye
Buildings 2025, 15(9), 1488; https://doi.org/10.3390/buildings15091488 - 28 Apr 2025
Viewed by 556
Abstract
This study explores the challenges faced by traditional dwellings amid modernization and urbanization, with a particular focus on Huizhou dwellings, which struggle with issues such as inefficient space use and suboptimal spatial quality. This study employs UWB (ultra-wideband) indoor positioning technology to examine [...] Read more.
This study explores the challenges faced by traditional dwellings amid modernization and urbanization, with a particular focus on Huizhou dwellings, which struggle with issues such as inefficient space use and suboptimal spatial quality. This study employs UWB (ultra-wideband) indoor positioning technology to examine differences in residents’ production/living behaviors and their spatial usage preferences between two Huizhou traditional dwellings with distinct preservation statuses during both the summer and winter seasons. The study reveals the following findings: (1) The hall, courtyard, and kitchen spaces are the most frequently used living areas, followed by wing rooms and patio spaces. Differences in spatial organization patterns significantly influence residents’ preferences for alternating between various functional spaces. Residents tend to favor functional spaces centered around or adjacent to key circulation areas; (2) In summer, the patio space provides shade and ventilation, creating a cool and comfortable environment that supports a variety of living activities, resulting in high utilization rates. In winter, however, the patio space hinders heat retention for the inner facade, leading to lower temperatures and reduced usage; (3) The utilization rate of wing room spaces has significantly improved after simple renovations, whereas unrenovated wing rooms and side rooms exhibit relatively low utilization rates; (4) During fine weather in winter, the courtyard space maintains a relatively comfortable temperature, making it highly utilized. In contrast, the courtyard becomes excessively hot in summer, leading to significantly lower utilization rates compared with winter. By analyzing residents’ behavioral trajectories, the study explores the differences in living behaviors and their correlation with residential spaces across the different seasons and preservation states of traditional dwellings. These results offer important perspectives for the sustainable development of residential conservation and renewal efforts. Full article
Show Figures

Figure 1

14 pages, 1376 KiB  
Article
Ultra-Wideband Analog Radio-over-Fiber Communication System Employing Pulse-Position Modulation
by Sandis Migla, Kristaps Rubuls, Nikolajs Tihomorskis, Toms Salgals, Oskars Ozolins, Vjaceslavs Bobrovs, Sandis Spolitis and Arturs Aboltins
Appl. Sci. 2025, 15(8), 4222; https://doi.org/10.3390/app15084222 - 11 Apr 2025
Viewed by 697
Abstract
This research presents a novel approach to 28 GHz impulse radio ultra-wideband (IR-UWB) transmission using pulse position modulation (PPM) over an analog radio-over-fiber (ARoF) link, investigating the impact of fiber-based fronthaul on the overall performance of the communication system. In this setup, an [...] Read more.
This research presents a novel approach to 28 GHz impulse radio ultra-wideband (IR-UWB) transmission using pulse position modulation (PPM) over an analog radio-over-fiber (ARoF) link, investigating the impact of fiber-based fronthaul on the overall performance of the communication system. In this setup, an arbitrary waveform generator (AWG) is employed for PPM signal generation, while demodulation is performed with a commercial time-to-digital converter (TDC) based on an event timer. To enhance the reliability of transmitted reference PPM (TR-PPM) signals, the transmission system integrates Gray coding and Consultative Committee for Space Data Systems (CCSDS)-standard-compliant Reed-Solomon (RS) error correcting code (ECC). System performance was evaluated by transmitting pseudorandom binary sequences (PRBSs) and measuring the bit error ratio (BER) across a 5-m wireless link between two 20 dBi gain horn (Ka-band) antennas, with and without a 20 km single-mode optical fiber (SMF) link in transmitter side and ECC at the receiver side. The system achieved a BER of less than 8.17 × 10−7, using a time bin duration of 200 ps and a pulse duration of 100 ps, demonstrating robust performance and significant potential for space-to-ground telecommunication applications. Full article
(This article belongs to the Special Issue Recent Advances in Microwave Devices and Intelligent Systems)
Show Figures

Figure 1

20 pages, 3514 KiB  
Article
Optimization of a Time-of-Arrival-Ridge Estimation Iterative Model for Ultra-Wideband Positioning in a Long Linear Area
by Mengqian Li, Mingduo Li, Jinhua Wang, Aoze Duan, Haotian Sun and Qinggang Meng
Sensors 2025, 25(7), 2229; https://doi.org/10.3390/s25072229 - 2 Apr 2025
Cited by 1 | Viewed by 443
Abstract
Ultra-wideband (UWB) technology is widely used for high-precision indoor positioning due to its adaptability to various environments. However, in long linear areas, such as tunnels or corridors, the near-linear deployment of base stations caused by structural constraints significantly degrades UWB localization accuracy, rendering [...] Read more.
Ultra-wideband (UWB) technology is widely used for high-precision indoor positioning due to its adaptability to various environments. However, in long linear areas, such as tunnels or corridors, the near-linear deployment of base stations caused by structural constraints significantly degrades UWB localization accuracy, rendering conventional algorithms ineffective. To address this issue, this study proposes a high-precision UWB+TOA-R positioning algorithm that incorporates Ridge estimation as a constraint condition. The algorithm introduces equivalent weights to refine the iterative computation of Ridge estimation, establishing an iteratively computed TOA-RR solution model. Experiments were conducted in a long linear corridor to compare the performance of three UWB localization models: the TOA-Least Squares (TOA-LS) model, the TOA-Ridge estimation (TOA-R) model, and the proposed TOA-Ridge estimation iterative (TOA-RR) model. The results indicate that the TOA-LS model suffers from significant coordinate distortions due to abnormalities in the inverse matrix of the coefficient matrix, regardless of the initial tag coordinates. The TOA-R model demonstrates improved accuracy and stability, particularly in cases of significant initial deviations, but still exhibits residual errors. In contrast, the TOA-RR model achieves enhanced stability and accuracy, with a positioning error of approximately 0.5 m. This study resolves the challenge of inaccurate UWB localization in long linear areas, providing a robust solution for such environments. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

Back to TopTop