Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (87)

Search Parameters:
Keywords = ultra-high-temperature ceramics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 24404 KiB  
Article
Oxidation of HfB2-HfO2-SiC Ceramics Modified with Ti2AlC Under Subsonic Dissociated Airflow
by Elizaveta P. Simonenko, Aleksey V. Chaplygin, Nikolay P. Simonenko, Ilya V. Lukomskii, Semen S. Galkin, Anton S. Lysenkov, Ilya A. Nagornov, Artem S. Mokrushin, Tatiana L. Simonenko, Anatoly F. Kolesnikov and Nikolay T. Kuznetsov
Corros. Mater. Degrad. 2025, 6(3), 35; https://doi.org/10.3390/cmd6030035 - 1 Aug 2025
Viewed by 168
Abstract
Ultrahigh-temperature ceramic composites based on hafnium diboride have a wide range of applications, including as components for high-speed aircraft and energy generation and storage devices. Consequently, developing methodologies for their fabrication and studying their properties are of paramount importance, in particular in using [...] Read more.
Ultrahigh-temperature ceramic composites based on hafnium diboride have a wide range of applications, including as components for high-speed aircraft and energy generation and storage devices. Consequently, developing methodologies for their fabrication and studying their properties are of paramount importance, in particular in using them as an electrode material for energy storage devices with increased oxidation resistance. This study investigates the behavior of ceramic composites based on the HfB2-HfO2-SiC system, obtained using 15 vol% Ti2AlC MAX-phase as a sintering component, under the influence of subsonic flow of dissociated air. It was determined that incorporating the modifying component (Ti2AlC) altered the composition of the silicate melt formed on the surface during ceramic oxidation. This modification led to the observation of a protective antioxidant function. Consequently, liquation was observed in the silicate melt layer, resulting in the formation of spherical phase inhomogeneities in its volume with increased content of titanium, aluminum, and hafnium. It is hypothesized that the increase in the high-temperature viscosity of this melt prevents it from being carried away in the form of drops, even at a surface temperature of ~1900–2000 °C. Despite the established temperature, there is no sharp increase in its values above 2400–2500 °C. This is due to the evaporation of silicate melt from the surface. In addition, the electrochemical behavior of the obtained material in a liquid electrolyte medium (KOH, 3 mol/L) was examined, and it was shown that according to the value of electrical conductivity and specific capacitance, it is a promising electrode material for supercapacitors. Full article
Show Figures

Figure 1

22 pages, 3440 KiB  
Article
Probabilistic Damage Modeling and Thermal Shock Risk Assessment of UHTCMC Thruster Under Transient Green Propulsion Operation
by Prakhar Jindal, Tamim Doozandeh and Jyoti Botchu
Materials 2025, 18(15), 3600; https://doi.org/10.3390/ma18153600 - 31 Jul 2025
Viewed by 203
Abstract
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, [...] Read more.
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, and carbon fibers. Time-resolved thermal and structural simulations are conducted on a validated thruster geometry to characterize the severity of early-stage thermal shock, stress buildup, and potential degradation pathways. Unlike traditional fatigue studies that rely on empirical fatigue constants or Paris-law-based crack-growth models, this work introduces a simulation-derived stress-margin envelope methodology that incorporates ±20% variability in temperature-dependent material strength, offering a physically grounded yet conservative risk estimate. From this, a normalized risk index is derived to evaluate the likelihood of damage initiation in critical regions over the 0–10 s firing window. The results indicate that the convergent throat region experiences a peak thermal gradient rate of approximately 380 K/s, with the normalized thermal shock index exceeding 43. Stress margins in this region collapse by 2.3 s, while margin loss in the flange curvature appears near 8 s. These findings are mapped into green, yellow, and red risk bands to classify operational safety zones. All the results assume no active cooling, representing conservative operating limits. If regenerative or ablative cooling is implemented, these margins would improve significantly. The framework established here enables a transparent, reproducible methodology for evaluating lifetime safety in ceramic propulsion nozzles and serves as a foundational tool for fatigue-resilient component design in green space engines. Full article
Show Figures

Figure 1

22 pages, 5806 KiB  
Article
Sustainable Design and Wall Thickness Optimization for Enhanced Lifetime of Ultra-High Temperature Ceramic Matrix Composite Thruster for Use in Green Propulsion Systems
by Tamim Doozandeh, Prakhar Jindal and Jyoti Botchu
Materials 2025, 18(13), 3196; https://doi.org/10.3390/ma18133196 - 7 Jul 2025
Cited by 1 | Viewed by 336
Abstract
This study presents a comprehensive finite element investigation into the design optimization of an ultra-high temperature ceramic matrix composite thruster for green bipropellant systems. Focusing on ZrB2–SiC–Cfiber composites, it explores their thermal and mechanical response under realistic transient combustion conditions. Two [...] Read more.
This study presents a comprehensive finite element investigation into the design optimization of an ultra-high temperature ceramic matrix composite thruster for green bipropellant systems. Focusing on ZrB2–SiC–Cfiber composites, it explores their thermal and mechanical response under realistic transient combustion conditions. Two geometries, a simplified and a complex full-featured model, were evaluated to assess the impact of geometric fidelity on stress prediction. The complex thruster model (CTM) offered improved resolution of temperature gradients and stress concentrations, especially near flange and convergent regions, and was adopted for optimization. A parametric study with nine wall thickness profiles identified a 2 mm tapered configuration in both convergent and divergent sections that minimized mass while maintaining structural integrity. This optimized profile reduced peak thermal stress and overall mass without compromising safety margins. Transient thermal and strain analyses showed that thermal stress dominates initially (≤3 s), while thermal strain becomes critical later due to stiffness degradation. Damage risk was evaluated using temperature-dependent stress margins at four critical locations. Time-dependent failure maps revealed throat degradation for short burns and flange cracking for longer durations. All analyses were conducted under hot-fire conditions without cooling. The validated methodology supports durable, lightweight nozzle designs for future green propulsion missions. Full article
Show Figures

Figure 1

22 pages, 3063 KiB  
Article
High-Temperature Methane Sensors Based on ZnGa2O4:Er Ceramics for Combustion Monitoring
by Aleksei V. Almaev, Zhakyp T. Karipbayev, Askhat B. Kakimov, Nikita N. Yakovlev, Olzhas I. Kukenov, Alexandr O. Korchemagin, Gulzhanat A. Akmetova-Abdik, Kuat K. Kumarbekov, Amangeldy M. Zhunusbekov, Leonid A. Mochalov, Ekaterina A. Slapovskaya, Petr M. Korusenko, Aleksandra V. Koroleva, Evgeniy V. Zhizhin and Anatoli I. Popov
Technologies 2025, 13(7), 286; https://doi.org/10.3390/technologies13070286 - 4 Jul 2025
Viewed by 371
Abstract
The use of CH4 as an energy source is increasing every day. To increase the efficiency of CH4 combustion and ensure that the equipment meets ecological requirements, it is necessary to measure the CH4 concentration in the exhaust gases of [...] Read more.
The use of CH4 as an energy source is increasing every day. To increase the efficiency of CH4 combustion and ensure that the equipment meets ecological requirements, it is necessary to measure the CH4 concentration in the exhaust gases of combustion systems. To this end, sensors are required that can withstand extreme operating conditions, including temperatures of at least 600 °C, as well as high pressure and gas flow rate. ZnGa2O4, being an ultra-wide bandgap semiconductor with high chemical and thermal stability, is a promising material for such sensors. The synthesis and investigation of the structural and CH4 sensing properties of ceramic pellets made from pure and Er-doped ZnGa2O4 were conducted. Doping with Er leads to the formation of a secondary Er3Ga5O12 phase and an increase in the active surface area. This structural change significantly enhanced the CH4 response, demonstrating an 11.1-fold improvement at a concentration of 104 ppm. At the optimal response temperature of 650 °C, the Er-doped ZnGa2O4 exhibited responses of 2.91 a.u. and 20.74 a.u. to 100 ppm and 104 ppm of CH4, respectively. The Er-doped material is notable for its broad dynamic range for CH4 concentrations (from 100 to 20,000 ppm), low sensitivity to humidity variations within the 30–70% relative humidity range, and robust stability under cyclic gas exposure. In addition to CH4, the sensitivity of Er-doped ZnGa2O4 to other gases at a temperature of 650 °C was investigated. The samples showed strong responses to C2H4, C3H8, C4H10, NO2, and H2, which, at gas concentrations of 100 ppm, were higher than the response to CH4 by a factor of 2.41, 2.75, 3.09, 1.16, and 1.64, respectively. The study proposes a plausible mechanism explaining the sensing effect of Er-doped ZnGa2O4 and discusses its potential for developing high-temperature CH4 sensors for applications such as combustion monitoring systems and determining the ideal fuel/air mixture. Full article
(This article belongs to the Section Innovations in Materials Science and Materials Processing)
Show Figures

Figure 1

9 pages, 2249 KiB  
Article
ZrB2 Gear Fabrication by Spark Plasma Sintering Coupled to Interface 3D Printing
by Charles Manière and Claude Estournès
Ceramics 2025, 8(3), 81; https://doi.org/10.3390/ceramics8030081 - 28 Jun 2025
Viewed by 414
Abstract
The production of ultra-high-temperature ceramic parts, like ZrB2, is very challenging, as they cannot be conventionally sintered without using significant amounts of additives, which reduce their high-temperature properties. However, it is possible to sinter these ceramics using spark plasma sintering (SPS) [...] Read more.
The production of ultra-high-temperature ceramic parts, like ZrB2, is very challenging, as they cannot be conventionally sintered without using significant amounts of additives, which reduce their high-temperature properties. However, it is possible to sinter these ceramics using spark plasma sintering (SPS) without additives or with minimal amounts. The challenge, then, lies in obtaining complex shapes. In this work, we report a solution for the fabrication of ZrB2 gears through the use of PLA-printed interfaces and graphite powder. This process is relatively simple and utilizes a fused deposition modeling (FDM) printer. The pros and cons of this approach are discussed with the aim of identifying what shapes can be produced using this method. Full article
(This article belongs to the Special Issue Ceramic Materials for Industrial Decarbonization)
Show Figures

Figure 1

13 pages, 6606 KiB  
Article
Preparation and Properties of C/C-(TiZrHfNbTa)C Composites via Inorganic Salt Precursor Method
by Haibo Ouyang, Jiyong Liu, Cuiyan Li, Tianzhan Shen, Jiaqi Liu, Mengyao He, Yanlei Li and Leer Bao
C 2025, 11(3), 41; https://doi.org/10.3390/c11030041 - 25 Jun 2025
Viewed by 437
Abstract
Using low-cost transition-metal chlorides and furfuryl alcohol as raw materials, the (TiZrHfNbTa)C precursor was prepared, and a three-dimensional braided carbon fiber preform (C/C) coated with pyrolytic carbon (PyC) was used as the reinforcing material. A C/C-(TiZrHfNbTa)C composite was successfully fabricated through the precursor [...] Read more.
Using low-cost transition-metal chlorides and furfuryl alcohol as raw materials, the (TiZrHfNbTa)C precursor was prepared, and a three-dimensional braided carbon fiber preform (C/C) coated with pyrolytic carbon (PyC) was used as the reinforcing material. A C/C-(TiZrHfNbTa)C composite was successfully fabricated through the precursor impregnation pyrolysis (PIP) process. Under extreme oxyacetylene ablation conditions (2311 °C/60 s), this composite material demonstrated outstanding ablation resistance, with a mass ablation rate as low as 0.67 mg/s and a linear ablation rate of only 20 μm/s. This excellent performance can be attributed to the dense (HfZr)6(TaNb)2O17 oxide layer formed during ablation. This oxide layer not only has an excellent anti-erosion capability but also effectively acts as an oxygen diffusion barrier, thereby significantly suppressing further ablation and oxidation within the matrix. This study provides an innovative strategy for the development of low-cost ultra-high-temperature ceramic precursors and opens up a feasible path for the efficient preparation of C/C-(TiZrHfNbTa)C composites. Full article
(This article belongs to the Special Issue High-Performance Carbon Materials and Their Composites (2nd Edition))
Show Figures

Graphical abstract

15 pages, 5573 KiB  
Article
Surface Transformation of Ultrahigh-Temperature ZrB2–HfB2–SiC–CCNT Ceramics Under Exposure to Subsonic N2-CH4 Plasma Flow
by Elizaveta P. Simonenko, Aleksey V. Chaplygin, Nikolay P. Simonenko, Ilya V. Lukomskii, Semen S. Galkin, Anton S. Lysenkov, Ilya A. Nagornov, Artem S. Mokrushin, Anatoly F. Kolesnikov and Nikolay T. Kuznetsov
Ceramics 2025, 8(2), 67; https://doi.org/10.3390/ceramics8020067 - 2 Jun 2025
Viewed by 995
Abstract
The chemical and microstructural transformation of the surface of a 31.5 vol.% ZrB2-31.5 vol.% HfB2-27 vol.% SiC-10 vol.% CCNT ultrahigh-temperature ceramic sample (where CCNT refers to carbon nanotubes) was studied under the influence of a subsonic N [...] Read more.
The chemical and microstructural transformation of the surface of a 31.5 vol.% ZrB2-31.5 vol.% HfB2-27 vol.% SiC-10 vol.% CCNT ultrahigh-temperature ceramic sample (where CCNT refers to carbon nanotubes) was studied under the influence of a subsonic N2-plasma flow with the addition of 5 mol% methane, simulating aerodynamic heating in the atmosphere of Titan. As in the case of pure nitrogen flow, it was found that silicon carbide is removed from the surface. Zirconium and hafnium diborides are partially transformed into a Zr-Hf-B-C-N solid solution in the experiment conducted. XRD, Raman spectroscopy, and SEM-EDX analysis show that the presence of C2 in the N2-CH4 plasma flow leads to surface carbonization (formation of a graphite- and diamond-like coating with a high proportion of amorphous carbon), resulting in significant changes in the microstructure and emissivity, potentially affecting the catalytic properties of the surface. Full article
Show Figures

Figure 1

15 pages, 25065 KiB  
Article
The Impact of Cyclic Oxidation in Dissociated Air on the Mechanical Properties of Freeze-Cast ZrB2/MoSi2 Ceramics
by Ludovic Charpentier, Eric Bêche, Hervé Glénat, Álvaro Sández-Gómez and Pedro Miranda
Materials 2025, 18(8), 1815; https://doi.org/10.3390/ma18081815 - 15 Apr 2025
Viewed by 377
Abstract
Creating reusable thermal shields would decrease our carbon footprint by eliminating the need for the reapplication of single-use ablative alternatives. Our previous investigations identified ultra-high-temperature ZrB2 with 20 vol.% MoSi2 ceramics as a promising candidate for the fabrication of reusable thermal [...] Read more.
Creating reusable thermal shields would decrease our carbon footprint by eliminating the need for the reapplication of single-use ablative alternatives. Our previous investigations identified ultra-high-temperature ZrB2 with 20 vol.% MoSi2 ceramics as a promising candidate for the fabrication of reusable thermal shields. Therefore, in this study, this material was exposed to cyclic oxidation at 1800 and 2150 K in dissociated air in order to investigate how it might withstand multiple terrestrial re-entries. At 1800 K, we observed semi-parabolic oxidation kinetics with the growth of a protective oxide layer, the silica-based composition of which was determined using XRD and SEM (coupled with EDS). More dramatic damage was observed at 2150 K, with continuous linear oxidation kinetics seen. Cross-section hardness measurements using nanoindentation revealed that the oxidized part of the samples was the source of their mechanical weakness, suggesting that the material should be used below 1800 K to ensure its reusability. Full article
Show Figures

Figure 1

25 pages, 17504 KiB  
Article
The Influence of Rare Earth Metals on the Microstructure and Mechanical Properties of 220 and 356.1 Alloys for Automotive Industry
by Herbert W. Doty, Shimaa El-Hadad, Ehab Samuel, Agnes M. Samuel and Fawzy H. Samuel
Materials 2025, 18(5), 941; https://doi.org/10.3390/ma18050941 - 21 Feb 2025
Cited by 1 | Viewed by 601
Abstract
Application of rare earths (RE) as grain refiners is well-known in the technology of aluminum alloys for the automotive industry. In the current study, Al-2.4%Cu-0.4%Mg alloy (coded 220) and Al-7.5%Si-0.35%Mg alloy (coded 356.1), were prepared by melting each alloy in a resistance furnace. [...] Read more.
Application of rare earths (RE) as grain refiners is well-known in the technology of aluminum alloys for the automotive industry. In the current study, Al-2.4%Cu-0.4%Mg alloy (coded 220) and Al-7.5%Si-0.35%Mg alloy (coded 356.1), were prepared by melting each alloy in a resistance furnace. Strontium (Sr) was used as a modifier, while titanium boride (TiB2) was added as a grain refiner. Measured amounts of Ce and La were added to both alloys (max. 1 wt.%). The alloy melts were poured in a preheated metallic mold. The main part of the study was conducted on tensile testing at room temperature. The results show that although RE would cause grain refining to be about 30–40% through the constitutional undercooling mechanism, grain refining with TiB2 would lead to approximately 90% refining (heterogenous nucleation mechanism). The addition of high purity Ce or La (99.9% purity) has no modification effect regardless of the alloy composition or the concentration of RE. Depending on the alloy ductility, the addition of 0.2 wt.%RE has a hardening effect that causes precipitation of RE in the form of dispersoids (300–700 nm). However, this increase vanishes with the decrease in alloy ductility, i.e., with T6 treatment, due to intensive precipitation of ultra-fine coherent Mg2Si-phase particles. There is no definite distinction in the behavior of Ce or La in terms of their high affinity to interact with other transition elements in the matrix, particularly Ti, Fe, Cu, and Sr. When the melt was properly degassed using high-purity argon and filtered using a 20 ppi ceramic foam filter, prior to pouring the liquid metal into the mold sprue, no measurable number of RE oxides was observed. In conclusion, the application of RE to aluminum castings would only lead to formation of a significant volume fraction of brittle intermetallics. In Ti-free alloys, identification of Ce- or La-intermetallics is doubtful due to the fairly thin thickness of the precipitated platelets (about 1 µm) and the possibility that most of the reported Al, Si, and other elements make the reported values for RE rather ambiguous. Full article
Show Figures

Figure 1

18 pages, 11211 KiB  
Article
Mix Design Optimization and Performance Evaluation of Ultra-Thin Wearing Courses Incorporating Ceramic Grains as Aggregate
by Hanjun Li, Ming Cheng, Xiaoguang Xie and Tianxu Zhang
Coatings 2025, 15(2), 249; https://doi.org/10.3390/coatings15020249 - 19 Feb 2025
Viewed by 810
Abstract
The impact of ice and snow in seasonally frozen regions has led to a significant decline in the flatness and skid resistance of highway pavements, creating severe traffic safety hazards. With economic development driving the transition from road construction to maintenance, this study [...] Read more.
The impact of ice and snow in seasonally frozen regions has led to a significant decline in the flatness and skid resistance of highway pavements, creating severe traffic safety hazards. With economic development driving the transition from road construction to maintenance, this study proposes enhancing Ultra-Thin Wearing Course (UTWC) maintenance materials with anti-icing performance and snow-melting properties. The study first employed the Marshall mix design method to develop gradations for two common types of UTWC asphalt mixtures: the dense-graded GT-8 and the open-graded NovaChip® Type-B. Using the volume substitution method, aggregates were replaced with equivalent volumes of ceramic grains. The optimal asphalt–aggregate ratios for the mixtures with varying ceramic grain contents were determined, and the influence of ceramic grains content on the asphalt–aggregate ratio was analyzed. The results indicate that the optimal asphalt–aggregate ratio increases with higher ceramic grains content. Subsequently, the high-temperature performance, low-temperature performance, and water stability of UTWC with varying ceramic grain contents were evaluated. Overall, NovaChip® gradation mixtures demonstrated superior road performance compared to GT-8 gradation mixtures. Moreover, an increase in ceramic grains content enhanced the high-temperature performance of UTWC but moderately reduced its low-temperature performance and water stability. Finally, the effects of different ceramic grain contents and snowmelt agent types on the anti-icing and snowmelt properties of UTWC were examined. The results revealed that higher ceramic grains content improved snowmelt effectiveness. Considering the road performance of the specimens, a ceramic grains content of 40% was recommended. Furthermore, calcium chloride (CaCl2) exhibited superior anti-icing performance compared to other snowmelt agents. Full article
Show Figures

Figure 1

11 pages, 5433 KiB  
Article
Thermodynamic Analysis on Complex Oxides Formed by Aerodynamic Heating for Ultrahigh-Temperature Ceramic Matrix Composites
by Mizuki Tsuganezawa, Yutaro Arai and Ryo Inoue
J. Compos. Sci. 2025, 9(2), 87; https://doi.org/10.3390/jcs9020087 - 13 Feb 2025
Viewed by 845
Abstract
The oxidation and recession of carbon-fiber-reinforced ultrahigh-temperature ceramic matrix composites (C/UHTCMCs) fabricated via reactive melt infiltration (RMI) using Zr-Ti alloys with three different compositions are evaluated via an arc-jet tunnel test at temperatures above 2000 °C for 60 s. Thermodynamic evaluations show that [...] Read more.
The oxidation and recession of carbon-fiber-reinforced ultrahigh-temperature ceramic matrix composites (C/UHTCMCs) fabricated via reactive melt infiltration (RMI) using Zr-Ti alloys with three different compositions are evaluated via an arc-jet tunnel test at temperatures above 2000 °C for 60 s. Thermodynamic evaluations show that the recession of the UHTCMCs is prevented by the formation of a solid solution of ZrTiO4 on their exposed surface. Because an increase in the Zr content increases the melting temperature of ZrTiO4, the recession of the composites increases as the Zr content in the infiltrated alloys decreases. UHTCMCs fabricated with Zr-20at%Ti showed the least recession (<5%). Full article
Show Figures

Figure 1

21 pages, 16522 KiB  
Article
Development and Research of New Hybrid Composites with Increased Requirements for Heat and Wear Resistance
by Peter Rusinov, Chao Zhang, Polina Sereda, Anastasia Rusinova, George Kurapov and Maxim Semadeni
Ceramics 2025, 8(1), 8; https://doi.org/10.3390/ceramics8010008 - 18 Jan 2025
Viewed by 1082
Abstract
Hybrid layered reinforced materials are able to increase the reliability, durability, and expand the functionality of high-temperature components in supercritical and ultra-supercritical power plants and in oil, gas, and petrochemical equipment operating under conditions with multifactorial influences (temperature, force, deformation). As a result [...] Read more.
Hybrid layered reinforced materials are able to increase the reliability, durability, and expand the functionality of high-temperature components in supercritical and ultra-supercritical power plants and in oil, gas, and petrochemical equipment operating under conditions with multifactorial influences (temperature, force, deformation). As a result of this research, surface reinforced ceramic composite materials with a gradient distribution of properties have been developed. These materials include thermal barrier layers (Gd2O3-Yb2O3-Y2O3-ZrO2) and Ni-based layers reinforced with ceramic carbide and oxide particles. They are strong, have a high heat and wear resistance, and provide the specified functional and mechanical properties. The formation technology for the hybrid composites has also been developed. This technology includes the mechanical alloying of powder compositions, which is followed by vacuum plasma spraying. The structure of the powder compositions and composite layers, the density of the obtained composite materials, and the heat and wear resistance of the composites have also been investigated. The microhardness of the alloy layers of the hybrid composite materials Hastelloy X–GYYZO–material 1 and Hastelloy X–GYYZO–material 2 was as follows: super alloy Hastelloy X, HV0.2 = 3.8–3.95 GPa; layer GYYZO, HV0.3 = 16.1–16.7 GPa; layer material 1, HV0.3 =18.3–18.8 GPa; layer material 2, HV0.3 =19.1–19.6 GPa. The influence of the refractory phase of HfC and TaC on the strength of the composites was studied. It was found that the maximum strength (710–715 MPa) in the composites Hastelloy X—GYYZO—material 1 and Hastelloy X–GYYZO–material 2 is achieved with a content of HfC and TaC–27–28%. Full article
Show Figures

Graphical abstract

12 pages, 4650 KiB  
Article
Scratch-Induced Wear Behavior of Multi-Component Ultra-High-Temperature Ceramics
by Gia Garino, Ambreen Nisar, Abhijith K. Sukumaran and Arvind Agarwal
Ceramics 2024, 7(4), 1658-1669; https://doi.org/10.3390/ceramics7040106 - 8 Nov 2024
Viewed by 1304
Abstract
Multi-component ultra-high-temperature ceramics (MC-UHTCs) are promising for high-temperature applications due to exceptional thermo-mechanical properties, yet their wear characteristics remain unexplored. Herein, the wear behavior of binary (Ta, Nb)C, ternary (Ta, Nb, Hf)C, and quaternary (Ta, Nb, Hf, Ti)C UHTCs synthesized via spark plasma [...] Read more.
Multi-component ultra-high-temperature ceramics (MC-UHTCs) are promising for high-temperature applications due to exceptional thermo-mechanical properties, yet their wear characteristics remain unexplored. Herein, the wear behavior of binary (Ta, Nb)C, ternary (Ta, Nb, Hf)C, and quaternary (Ta, Nb, Hf, Ti)C UHTCs synthesized via spark plasma sintering (SPS) is investigated. Gradual addition of equimolar UHTC components improves the wear resistance of MC-UHTCs, respectively, by ~29% in ternary UHTCs and ~49% in quaternary UHTCs when compared to binary UHTCs. Similarly, the penetration depth decreased from 115.14 mm in binary UHTCs to 73.48 mm in ternary UHTCs and 44.41 mm in quaternary UHTCs. This has been attributed to the complete solid solutioning, near-full densification and higher hardness (~up to 30%) in quaternary UHTCs. Analysis of the worn-out surface suggests pull-out, radial, and edge micro-cracking and delamination as the dominant wear mechanisms in binary and ternary UHTCs. However, grain deformation and minor delamination are the dominant wear mechanisms in quaternary UHTCs. This study underscores the potential of MC-UHTCs for tribological applications where material experiences removal and inelastic deformation under high mechanical loading. Full article
(This article belongs to the Special Issue Mechanical Behavior and Reliability of Engineering Ceramics)
Show Figures

Figure 1

19 pages, 19095 KiB  
Article
Reactive Spark Plasma Sintering and Oxidation of ZrB2-SiC and ZrB2-HfB2-SiC Ceramic Materials
by Elizaveta P. Simonenko, Eugeniy K. Papynov, Oleg O. Shichalin, Anton A. Belov, Ilya A. Nagornov, Tatiana L. Simonenko, Philipp Yu. Gorobtsov, Maria A. Teplonogova, Artem S. Mokrushin, Nikolay P. Simonenko and Nikolay T. Kuznetsov
Ceramics 2024, 7(4), 1566-1583; https://doi.org/10.3390/ceramics7040101 - 29 Oct 2024
Cited by 3 | Viewed by 1944
Abstract
This study presents the fabrication possibilities of ultra-high-temperature ceramics of ZrB2-30 vol.%SiC and (ZrB2-HfB2)-30 vol.% SiC composition using the reaction spark plasma sintering of composite powders ZrB2(HfB2)-(SiO2-C) under two-stage heating conditions. [...] Read more.
This study presents the fabrication possibilities of ultra-high-temperature ceramics of ZrB2-30 vol.%SiC and (ZrB2-HfB2)-30 vol.% SiC composition using the reaction spark plasma sintering of composite powders ZrB2(HfB2)-(SiO2-C) under two-stage heating conditions. The phase composition and microstructure of the obtained ceramic materials have been subjected to detailed analysis, their electrical conductivity has been evaluated using the four-contact method, and the electron work function has been determined using Kelvin probe force microscopy. The thermal analysis in the air, as well as the calcination of the samples at temperatures of 800, 1000, and 1200 °C in the air, demonstrated a comparable behavior of the materials in general. However, based on the XRD data and mapping of the distribution of elements on the oxidized surface (EDX), a slightly higher oxidation resistance of the ceramics (ZrB2-HfB2)-30 vol.% SiC was observed. The I-V curves of the sample surfaces recorded with atomic force microscopy demonstrated that following oxidation in the air at 1200 °C, the surfaces of the materials exhibited a marked reduction in current conductivity due to the formation of a dielectric layer. However, data obtained from Kelvin probe force microscopy indicated that (ZrB2-HfB2)-30 vol.% SiC ceramics also demonstrated enhanced resistance to oxidation. Full article
Show Figures

Figure 1

12 pages, 4379 KiB  
Article
Improving the Energy Storage Performance in Bi0.5Na0.5TiO3-Based Ceramics by Combining Relaxor and Antiferroelectric Properties
by Srinivas Pattipaka, Yeseul Lim, Yundong Jeong, Mahesh Peddigari, Yuho Min, Jae Won Jeong, Jongmoon Jang, Sung-Dae Kim and Geon-Tae Hwang
Materials 2024, 17(20), 5044; https://doi.org/10.3390/ma17205044 - 15 Oct 2024
Viewed by 1375
Abstract
Ceramic capacitors have received great attention for use in pulse power systems owing to their ultra-fast charge–discharge rate, good temperature stability, and excellent fatigue resistance. However, the low energy storage density and low breakdown strength (BDS) of ceramic capacitors limit the practical applications [...] Read more.
Ceramic capacitors have received great attention for use in pulse power systems owing to their ultra-fast charge–discharge rate, good temperature stability, and excellent fatigue resistance. However, the low energy storage density and low breakdown strength (BDS) of ceramic capacitors limit the practical applications of energy storage technologies. In this work, we present a series of relaxor ferroelectric ceramics (1−x) [0.94 Bi0.5Na0.5TiO3 –0.06BaTiO3]– x Sr0.7Bi0.2TiO3 (1-x BNT-BT- x SBT; x = 0, 0.20, 0.225, 0.25, 0.275 and 0.30) with improved energy storage performances by combining relaxor and antiferroelectric properties. XRD, Raman spectra, and SEM characterizations of BNT-BT-SBT ceramics revealed a rhombohedral–tetragonal phase, highly dynamic polar nanoregions, and a reduction in grain size with a homogeneous and dense microstructure, respectively. A high dielectric constant of 1654 at 1 kHz and low remnant polarization of 1.39 µC/cm2 were obtained with the addition of SBT for x = 0.275; these are beneficial for improving energy storage performance. The diffuse phase transition of these ceramics displays relaxor behavior, which is improved with SBT and confirmed by modified the Curie–Weiss law. The combining relaxor and antiferroelectric properties with fine grain size by the incorporation of SBT enables an enhanced maximum polarization of a minimized P-E loop, leading to an improved BDS. As a result, a high recoverable energy density Wrec of 1.02 J/cm3 and a high energy efficiency η of 75.98% at 89 kV/cm were achieved for an optimum composition of 0.725 [0.94BNT-0.06BT]-0.275 SBT. These results demonstrate that BNT-based relaxor ferroelectric ceramics are good candidates for next-generation ceramic capacitors and offer a potential strategy for exploiting novel high-performance ceramic materials. Full article
Show Figures

Figure 1

Back to TopTop