Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = ultra-fast pump–probe spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4875 KiB  
Article
Probing Non-Equilibrium Pair-Breaking and Quasiparticle Dynamics in Nb Superconducting Resonators Under Magnetic Fields
by Joong-Mok Park, Zhi Xiang Chong, Richard H. J. Kim, Samuel Haeuser, Randy Chan, Akshay A. Murthy, Cameron J. Kopas, Jayss Marshall, Daniel Setiawan, Ella Lachman, Joshua Y. Mutus, Kameshwar Yadavalli, Anna Grassellino, Alex Romanenko and Jigang Wang
Materials 2025, 18(3), 569; https://doi.org/10.3390/ma18030569 - 27 Jan 2025
Cited by 1 | Viewed by 1264
Abstract
We conducted a comprehensive study of the non-equilibrium dynamics of Cooper pair breaking, quasiparticle (QP) generation, and relaxation in niobium (Nb) cut from superconducting radio-frequency (SRF) cavities, as well as various Nb resonator films from transmon qubits. Using ultrafast pump–probe spectroscopy, we were [...] Read more.
We conducted a comprehensive study of the non-equilibrium dynamics of Cooper pair breaking, quasiparticle (QP) generation, and relaxation in niobium (Nb) cut from superconducting radio-frequency (SRF) cavities, as well as various Nb resonator films from transmon qubits. Using ultrafast pump–probe spectroscopy, we were able to isolate the superconducting coherence and pair-breaking responses. Our results reveal both similarities and notable differences in the temperature- and magnetic-field-dependent dynamics of the SRF cavity and thin-film resonator samples. Moreover, femtosecond-resolved QP generation and relaxation under an applied magnetic field reveals a clear correlation between non-equilibrium QPs and the quality factor of resonators fabricated by using different deposition methods, such as DC sputtering and high-power impulse magnetron sputtering. These findings highlight the pivotal influence of fabrication techniques on the coherence and performance of Nb-based quantum devices, which are vital for applications in superconducting qubits and high-energy superconducting radio-frequency applications. Full article
Show Figures

Figure 1

20 pages, 2719 KiB  
Article
The Liquid Jet Endstation for Hard X-ray Scattering and Spectroscopy at the Linac Coherent Light Source
by Cali Antolini, Victor Sosa Alfaro, Marco Reinhard, Gourab Chatterjee, Ryan Ribson, Dimosthenis Sokaras, Leland Gee, Takahiro Sato, Patrick L. Kramer, Sumana Laxmi Raj, Brandon Hayes, Pamela Schleissner, Angel T. Garcia-Esparza, Jinkyu Lim, Jeffrey T. Babicz, Alec H. Follmer, Silke Nelson, Matthieu Chollet, Roberto Alonso-Mori and Tim B. van Driel
Molecules 2024, 29(10), 2323; https://doi.org/10.3390/molecules29102323 - 15 May 2024
Cited by 4 | Viewed by 2395
Abstract
The ability to study chemical dynamics on ultrafast timescales has greatly advanced with the introduction of X-ray free electron lasers (XFELs) providing short pulses of intense X-rays tailored to probe atomic structure and electronic configuration. Fully exploiting the full potential of XFELs requires [...] Read more.
The ability to study chemical dynamics on ultrafast timescales has greatly advanced with the introduction of X-ray free electron lasers (XFELs) providing short pulses of intense X-rays tailored to probe atomic structure and electronic configuration. Fully exploiting the full potential of XFELs requires specialized experimental endstations along with the development of techniques and methods to successfully carry out experiments. The liquid jet endstation (LJE) at the Linac Coherent Light Source (LCLS) has been developed to study photochemistry and biochemistry in solution systems using a combination of X-ray solution scattering (XSS), X-ray absorption spectroscopy (XAS), and X-ray emission spectroscopy (XES). The pump–probe setup utilizes an optical laser to excite the sample, which is subsequently probed by a hard X-ray pulse to resolve structural and electronic dynamics at their intrinsic femtosecond timescales. The LJE ensures reliable sample delivery to the X-ray interaction point via various liquid jets, enabling rapid replenishment of thin samples with millimolar concentrations and low sample volumes at the 120 Hz repetition rate of the LCLS beam. This paper provides a detailed description of the LJE design and of the techniques it enables, with an emphasis on the diagnostics required for real-time monitoring of the liquid jet and on the spatiotemporal overlap methods used to optimize the signal. Additionally, various scientific examples are discussed, highlighting the versatility of the LJE. Full article
(This article belongs to the Special Issue Photochemical Studies of Metal Complexes)
Show Figures

Graphical abstract

7 pages, 506 KiB  
Article
Ultrafast Pump–Probe Spectroscopy in Organic Dirac Electron Candidate α-(BETS)2I3
by Satoshi Tsuchiya, Masato Katsumi, Ryuhei Oka, Toshio Naito and Yasunori Toda
Condens. Matter 2023, 8(4), 88; https://doi.org/10.3390/condmat8040088 - 10 Oct 2023
Cited by 1 | Viewed by 1871
Abstract
Photo-induced carrier dynamics were measured in the organic Dirac electron candidate α-(BETS)2I3 to investigate why resistivity increases below TMI = 50 K. We found a change in carrier dynamics due to an insulating gap formation below T [...] Read more.
Photo-induced carrier dynamics were measured in the organic Dirac electron candidate α-(BETS)2I3 to investigate why resistivity increases below TMI = 50 K. We found a change in carrier dynamics due to an insulating gap formation below T = 50 K. On the other hand, the relaxation time and polarization anisotropy of the observed dynamics differ from those in the charge-ordering (CO) state of the isostructural salt α-(ET)2I3. Based on the difference, it can be concluded that the insulating phase has a different origin than the CO state. Full article
(This article belongs to the Special Issue Superstripes Physics, 2nd Edition)
Show Figures

Figure 1

9 pages, 549 KiB  
Communication
Ultrafast Charge Dynamics in Bulk Zinc Oxide under Intense Photoexcitation
by Andrea Rubano and Domenico Paparo
Photonics 2023, 10(7), 761; https://doi.org/10.3390/photonics10070761 - 1 Jul 2023
Cited by 1 | Viewed by 1860
Abstract
The photo-induced charge dynamics of textbook wide-bandgap semiconductor ZnO have been investigated on the picosecond time-scale. We performed optical Pump-THz Probe experiments in order to measure the dielectric constant of the material after high-fluence photo-excitation of charge carriers. The technique allows access to [...] Read more.
The photo-induced charge dynamics of textbook wide-bandgap semiconductor ZnO have been investigated on the picosecond time-scale. We performed optical Pump-THz Probe experiments in order to measure the dielectric constant of the material after high-fluence photo-excitation of charge carriers. The technique allows access to both carrier lifetime and scattering rates, and it provides direct access to the intrinsic dielectric function changes upon excitation. A complex dynamic is unveiled in the high-fluence pumping regime, where the relaxation time is in the hundreds of picoseconds range and increases with increasing Pump fluence, while the onset of photoconductivity takes place in a few picoseconds. The plasma frequency and the relaxation time dependence on the Pump fluence are discussed. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

29 pages, 7072 KiB  
Article
Photogrammetry of Ultrafast Excited-State Intramolecular Proton Transfer Pathways in the Fungal Pigment Draconin Red
by Janak Solaris, Taylor D. Krueger, Cheng Chen and Chong Fang
Molecules 2023, 28(8), 3506; https://doi.org/10.3390/molecules28083506 - 16 Apr 2023
Cited by 2 | Viewed by 2690
Abstract
Proton transfer processes of organic molecules are key to charge transport and photoprotection in biological systems. Among them, excited-state intramolecular proton transfer (ESIPT) reactions are characterized by quick and efficient charge transfer within a molecule, resulting in ultrafast proton motions. The ESIPT-facilitated interconversion [...] Read more.
Proton transfer processes of organic molecules are key to charge transport and photoprotection in biological systems. Among them, excited-state intramolecular proton transfer (ESIPT) reactions are characterized by quick and efficient charge transfer within a molecule, resulting in ultrafast proton motions. The ESIPT-facilitated interconversion between two tautomers (PS and PA) comprising the tree fungal pigment Draconin Red in solution was investigated using a combination of targeted femtosecond transient absorption (fs-TA) and excited-state femtosecond stimulated Raman spectroscopy (ES-FSRS) measurements. Transient intensity (population and polarizability) and frequency (structural and cooling) dynamics of –COH rocking and –C=C, –C=O stretching modes following directed stimulation of each tautomer elucidate the excitation-dependent relaxation pathways, particularly the bidirectional ESIPT progression out of the Franck–Condon region to the lower-lying excited state, of the intrinsically heterogeneous chromophore in dichloromethane solvent. A characteristic overall excited-state PS-to-PA transition on the picosecond timescale leads to a unique “W”-shaped excited-state Raman intensity pattern due to dynamic resonance enhancement with the Raman pump–probe pulse pair. The ability to utilize quantum mechanics calculations in conjunction with steady-state electronic absorption and emission spectra to induce disparate excited-state populations in an inhomogeneous mixture of similar tautomers has broad implications for the modeling of potential energy surfaces and delineation of reaction mechanisms in naturally occurring chromophores. Such fundamental insights afforded by in-depth analysis of ultrafast spectroscopic datasets are also beneficial for future development of sustainable materials and optoelectronics. Full article
(This article belongs to the Special Issue Dynamics of Chemical and Biological Systems)
Show Figures

Figure 1

21 pages, 3136 KiB  
Article
Ultrafast Photo-Ion Probing of the Relaxation Dynamics in 2-Thiouracil
by Matthew Scott Robinson, Mario Niebuhr and Markus Gühr
Molecules 2023, 28(5), 2354; https://doi.org/10.3390/molecules28052354 - 3 Mar 2023
Cited by 6 | Viewed by 2284
Abstract
In this work, we investigate the relaxation processes of 2-thiouracil after UV photoexcitation to the S2 state through the use of ultrafast, single-colour, pump-probe UV/UV spectroscopy. We place focus on investigating the appearance and subsequent decay signals of ionized fragments. We complement [...] Read more.
In this work, we investigate the relaxation processes of 2-thiouracil after UV photoexcitation to the S2 state through the use of ultrafast, single-colour, pump-probe UV/UV spectroscopy. We place focus on investigating the appearance and subsequent decay signals of ionized fragments. We complement this with VUV-induced dissociative photoionisation studies collected at a synchrotron, allowing us to better understand and assign the ionisation channels involved in the appearance of the fragments. We find that all fragments appear when single photons with energy > 11 eV are used in the VUV experiments and hence appear through 3+ photon-order processes when 266 nm light is used. We also observe three major decays for the fragment ions: a sub-autocorrelation decay (i.e., sub-370 fs), a secondary ultrafast decay on the order of 300–400 fs, and a long decay on the order of 220 to 400 ps (all fragment dependent). These decays agree well with the previously established S2 → S1 → Triplet → Ground decay process. Results from the VUV study also suggest that some of the fragments may be created by dynamics occurring in the excited cationic state. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Figure 1

10 pages, 1977 KiB  
Article
Ultrafast Photocarrier Dynamics in Vertically Aligned SnS2 Nanoflakes Probing with Transient Terahertz Spectroscopy
by Wenjie Zhang, Kaiwen Sun, Peng Suo, Xiaona Yan, Xian Lin, Zuanming Jin and Guohong Ma
Nanomaterials 2023, 13(1), 5; https://doi.org/10.3390/nano13010005 - 20 Dec 2022
Cited by 2 | Viewed by 2138
Abstract
By employing optical pump Terahertz (THz) probe spectroscopy, ultrafast photocarrier dynamics of a two-dimensional (2D) semiconductor, SnS2 nanoflake film, has been investigated systematically at room temperature. The dynamics of photoexcitation is strongly related to the density of edge sites and defects in [...] Read more.
By employing optical pump Terahertz (THz) probe spectroscopy, ultrafast photocarrier dynamics of a two-dimensional (2D) semiconductor, SnS2 nanoflake film, has been investigated systematically at room temperature. The dynamics of photoexcitation is strongly related to the density of edge sites and defects in the SnS2 nanoflakes, which is controllable by adjusting the height of vertically aligned SnS2 during chemical vapor deposition growth. After photoexcitation at 400 nm, the transient THz photoconductivity response of the films can be well fitted with bi-exponential decay function. The fast and slow processes are shorter in the thinner film than in the thicker sample, and both components are independent on the pump fluence. Hereby, we propose that edge-site trapping as well as defect-assisted electron-hole recombination are responsible for the fast and slow decay progress, respectively. Our experimental results demonstrate that the edge sites and defects in SnS2 nanoflakes play a dominant role in photocarrier relaxation, which is crucial in understanding the photoelectrochemical performance of SnS2 nanoflakes. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

16 pages, 2147 KiB  
Review
Progress and Perspectives of Spectroscopic Studies on Carbon K-Edge Using Novel Soft X-ray Pulsed Sources
by Zeinab Ebrahimpour, Marcello Coreno, Luca Giannessi, Massimo Ferrario, Augusto Marcelli, Federico Nguyen, Seyed Javad Rezvani, Francesco Stellato and Fabio Villa
Condens. Matter 2022, 7(4), 72; https://doi.org/10.3390/condmat7040072 - 6 Dec 2022
Cited by 2 | Viewed by 3236
Abstract
The development of novel coherent and brilliant sources, such as soft X-ray free electron laser (FEL) and high harmonic generation (HHG), enables new ultrafast analysis of the electronic and structural dynamics of a wide variety of materials. Soft X-ray FEL delivers high-brilliance beams [...] Read more.
The development of novel coherent and brilliant sources, such as soft X-ray free electron laser (FEL) and high harmonic generation (HHG), enables new ultrafast analysis of the electronic and structural dynamics of a wide variety of materials. Soft X-ray FEL delivers high-brilliance beams with a short pulse duration, high spatial coherence and photon energy tunability. In comparison with FELs, HHG X-ray sources are characterized by a wide spectral bandwidth and few- to sub-femtosecond pulses. The approach will lead to the time-resolved reconstruction of molecular dynamics, shedding light on different photochemical pathways. The high peak brilliance of soft X-ray FELs facilitates investigations in a nonlinear regime, while the broader spectral bandwidth of the HHG sources may provide the simultaneous probing of multiple components. Significant technical breakthroughs in these novel sources are under way to improve brilliance, pulse duration, and to control spectral bandwidth, spot size, and energy resolution. Therefore, in the next few years, the new generation of soft X-ray sources combined with novel experimental techniques, new detectors, and computing capabilities will allow for the study of several extremely fast dynamics, such as vibronic dynamics. In the present review, we discuss recent developments in experiments, performed with soft X-ray FELs and HHG sources, operating near the carbon K-absorption edge, being a key atomic component in biosystems and soft materials. Different spectroscopy methods such as time-resolved pump-probe techniques, nonlinear spectroscopies and photoelectron spectroscopy studies have been addressed in an attempt to better understand fundamental physico-chemical processes. Full article
Show Figures

Figure 1

7 pages, 1539 KiB  
Article
Ultrafast Continuum IR Generation and Its Application in IR Spectroscopy
by Chaiho Lim, Kwanghee Park, Yeongseok Chae, Kyungwon Kwak and Minhaeng Cho
Int. J. Mol. Sci. 2022, 23(21), 13245; https://doi.org/10.3390/ijms232113245 - 31 Oct 2022
Cited by 2 | Viewed by 3244
Abstract
The spectral range of femtosecond time-resolved infrared spectroscopy is limited by the bandwidth of mid-IR pulses (100~400 cm−1) generated from the combination of Ti:Sapphire amplifier, Optical Parametric Amplifier (OPA), and Difference Frequency Generation (DFG). To overcome this limitation, we implement a [...] Read more.
The spectral range of femtosecond time-resolved infrared spectroscopy is limited by the bandwidth of mid-IR pulses (100~400 cm−1) generated from the combination of Ti:Sapphire amplifier, Optical Parametric Amplifier (OPA), and Difference Frequency Generation (DFG). To overcome this limitation, we implement a compact continuum mid-IR source producing ultrafast pulses that span the frequency range from 1000 to 4200 cm−1 (from 10 to 2.4 μm), which utilize the mixing of fundamental, second-harmonic, and third-harmonic of 800 nm pulse in the air. After building an IR spectrometer with continuum IR and a monochromator, we found that the distortion of the measured IR spectrum originated from the contamination of higher-order diffraction. We used bandpass filters to eliminate the higher-order contributions and correct the measured IR spectrum. We further characterized the spectral properties of fundamental, second-harmonic, and third-harmonic fields after the plasmonic filamentation process, which helps to improve the efficiency of the continuum IR generation. Using the generated continuum IR pulses, we measured the IR absorption spectrum of a water–benzonitrile mixture, which was found to be consistent with the spectrum obtained with a commercial FT-IR spectrometer. The present work will be useful for the efficient generation of continuum IR pulses for IR pump-probe and two-dimensional IR spectroscopy experiments in the future. Full article
(This article belongs to the Special Issue State-of-the-Art Physical Chemistry and Chemical Physics in Korea)
Show Figures

Figure 1

11 pages, 2051 KiB  
Article
Ultrafast Studies of ZrTe3 by Transient Absorption Spectrometer
by Shakeel Ahmed, Wang Rui, Faizah Altaf, Jahanzeb Khan, Patrizia Bocchetta and Han Zhang
Materials 2022, 15(15), 5420; https://doi.org/10.3390/ma15155420 - 5 Aug 2022
Cited by 6 | Viewed by 2794
Abstract
Two-dimensional (2D) tri-TMDCs carrier dynamics provide a platform for studying excitons through Ultrafast Pump-Probe Transient Absorption Spectroscopy. Here we studied the ZrTe3 nanosheets (NTs) exciton dynamics by transient absorption (TA) spectrometer. We observed different carrier dynamics in the ZrTe3 NTs sample [...] Read more.
Two-dimensional (2D) tri-TMDCs carrier dynamics provide a platform for studying excitons through Ultrafast Pump-Probe Transient Absorption Spectroscopy. Here we studied the ZrTe3 nanosheets (NTs) exciton dynamics by transient absorption (TA) spectrometer. We observed different carrier dynamics in the ZrTe3 NTs sample at different pump powers and with many wavelengths in the transient absorption spectrometer. The shorter life decay constant is associated with electron-phonon relaxation. Similarly, the longer-life decay constant represents the long live process that is associated with charge separation. The interactions between carrier-phonons at nanoscale materials can be changed by phonons quantum confinements. The hot carrier lifetime determined the strength of carrier phonon interactions. The value of fast decay in the conduction band is due to carrier relaxation or the carrier gets trapped due to surface states or localized defects. The value of slow decay is due to the recombination of surface state and localized defects processes. The lifetime declines for long wavelengths as size decreases. Whereas, during short wavelength-independent decay, carrier characteristics have been observed. TA spectroscopy is employed to investigate insight information of the carrier’s dynamical processes such as carrier lifetime, cooling dynamics, carrier diffusion, and carrier excitations. The absorption enhanced along excitons density with the increase of pump power, which caused a greater number of carriers in the excited state than in the ground state. The TA signals consist of trap carriers and (electron-hole) constituents, which can be increased by TA changes that rely on photoexcitation and carrier properties. Full article
Show Figures

Figure 1

17 pages, 3603 KiB  
Article
Acoustic Vibration Modes of Gold–Silver Core–Shell Nanoparticles
by Tadele Orbula Otomalo, Lorenzo Di Mario, Cyrille Hamon, Doru Constantin, Francesco Toschi, Khanh-Van Do, Vincent Juvé, Pascal Ruello, Patrick O’Keeffe, Daniele Catone, Alessandra Paladini and Bruno Palpant
Chemosensors 2022, 10(5), 193; https://doi.org/10.3390/chemosensors10050193 - 20 May 2022
Cited by 2 | Viewed by 4569
Abstract
Bimetallic Au/Ag core–shell cuboid nanoparticles (NPs) exhibit a complex plasmonic response dominated by a dipolar longitudinal mode and higher-order transverse modes in the near-UV, which may be exploited for a range of applications. In this paper, we take advantage of the strong signature [...] Read more.
Bimetallic Au/Ag core–shell cuboid nanoparticles (NPs) exhibit a complex plasmonic response dominated by a dipolar longitudinal mode and higher-order transverse modes in the near-UV, which may be exploited for a range of applications. In this paper, we take advantage of the strong signature of these modes in the NP ultrafast transient optical response, measured by pump-probe transient absorption (TA) spectroscopy, to explore the NP vibrational landscape. The fast Fourier transform analysis of the TA dynamics reveals specific vibration modes in the frequency range 15–150 GHz, further studied by numerical simulations based on the finite element method. While bare Au nanorods exhibit extensional and breathing modes, the bimetallic NPs undergo more complex motions, involving the displacement of facets, edges and corners. The amplitude and frequency of these modes are shown to depend on the Ag shell thickness, as the silver load modifies the NP aspect ratio and mass. Moreover, the contributions of the vibrational modes to the experimental TA spectra are shown to vary with the probe laser wavelength at which the signal is monitored. Using the combined simulations of the NP elastic and optical properties, we elucidate this influence by analyzing the effect of the mechanisms involved in the acousto-plasmonic coupling. Full article
Show Figures

Graphical abstract

15 pages, 6384 KiB  
Article
Optical Properties of V2O5 Thin Films on Different Substrates and Femtosecond Laser-Induced Phase Transition Studied by Pump–Probe Method
by Yu Lan, Guowen Yang, Yangping Li, Yuheng Wang, Qianqian Shi and Guanghua Cheng
Nanomaterials 2022, 12(3), 330; https://doi.org/10.3390/nano12030330 - 21 Jan 2022
Cited by 9 | Viewed by 3514
Abstract
Vanadium pentoxide can undergo a reversible phase transition by heating above 260 °C; its non-thermal phase transition, as well as ultrafast dynamical processes, is still not known. Here, femtosecond laser-induced phase transition properties in V2O5 thin films were first explored [...] Read more.
Vanadium pentoxide can undergo a reversible phase transition by heating above 260 °C; its non-thermal phase transition, as well as ultrafast dynamical processes, is still not known. Here, femtosecond laser-induced phase transition properties in V2O5 thin films were first explored using femtosecond time-resolved pump–probe spectroscopy. The results show that the phase transient processes occur on a 10−15–10−13 temporal scale. The phase transition and recovery properties are dependent on both the substrates and pump laser energy densities. We propose the oxygen vacancies theory to explain the results, and we provide valuable insights into V2O5 films for potential applications. Full article
(This article belongs to the Special Issue Laser Fabrication of Functional Micro/Nanomaterials)
Show Figures

Figure 1

12 pages, 3173 KiB  
Article
p-Type Iodine-Doping of Cu3N and Its Conversion to γ-CuI for the Fabrication of γ-CuI/Cu3N p-n Heterojunctions
by Argyris Tilemachou, Matthew Zervos, Andreas Othonos, Theodoros Pavloudis and Joseph Kioseoglou
Electron. Mater. 2022, 3(1), 15-26; https://doi.org/10.3390/electronicmat3010002 - 10 Jan 2022
Cited by 12 | Viewed by 4626
Abstract
Cu3N with a cubic crystal structure is obtained in this paper by the sputtering of Cu under N2 followed by annealing under NH3: H2 at 400 °C, after which it was doped with iodine at room temperature [...] Read more.
Cu3N with a cubic crystal structure is obtained in this paper by the sputtering of Cu under N2 followed by annealing under NH3: H2 at 400 °C, after which it was doped with iodine at room temperature resulting into p-type Cu3N with hole densities between 1016 and 1017 cm−3. The Cu3N exhibited distinct maxima in differential transmission at ~2.01 eV and 1.87 eV as shown by ultrafast pump-probe spectroscopy, corresponding to the M and R direct energy band gaps in excellent agreement with density functional theory calculations, suggesting that the band gap is clean and free of mid-gap states. The Cu3N was gradually converted into optically transparent γ-CuI that had a hole density of 4 × 1017 cm−3, mobility of 12 cm2/Vs and room temperature photoluminescence at 3.1 eV corresponding to its direct energy band gap. We describe the fabrication and properties of γ-CuI/TiO2/Cu3N and γ-CuI/Cu3N p-n heterojunctions that exhibited rectifying current-voltage characteristics, but no photogenerated current attributed to indirect recombination via shallow states in Cu3N and/or deep states in the γ-CuI consistent with the short (ps) lifetimes of the photoexcited electrons-holes determined from transient absorption–transmission spectroscopy. Full article
(This article belongs to the Special Issue Feature Papers of Electronic Materials)
Show Figures

Graphical abstract

10 pages, 2372 KiB  
Article
Realization of a Continuously Phase-Locked Few-Cycle Deep-UV/XUV Pump-Probe Beamline with Attosecond Precision for Ultrafast Spectroscopy
by Tsendsuren Khurelbaatar, Alexander Gliserin, Je-Hoi Mun, Jaeuk Heo, Yunman Lee and Dong-Eon Kim
Appl. Sci. 2021, 11(15), 6840; https://doi.org/10.3390/app11156840 - 25 Jul 2021
Cited by 2 | Viewed by 2903
Abstract
Chemical and physical processes in molecules can be controlled through the manipulation of quantum interferences between rotational, vibrational, and electronic degrees of freedom. Most of the past efforts have been focused on the control of nuclear dynamics. Even though electronic coherence and its [...] Read more.
Chemical and physical processes in molecules can be controlled through the manipulation of quantum interferences between rotational, vibrational, and electronic degrees of freedom. Most of the past efforts have been focused on the control of nuclear dynamics. Even though electronic coherence and its coupling to nuclear degrees of freedom may profoundly affect the outcome of these processes, electron dynamics have received less attention. Proper investigation of electron dynamics in materials demands ultrafast sources in the visible, ultraviolet (UV), and extreme ultraviolet (XUV) spectral region. For this purpose, a few-cycle deep-UV and XUV beamlines have been constructed for studying ultrafast electron dynamics in molecules. To ensure the required high temporal resolution on the attosecond time scale, vibration isolation from environmental mechanical noise and active stabilization have been implemented to achieve attosecond timing control between pump and probe pulses with excellent stability. This is achieved with an actively phase-stabilized double-layer Mach-Zehnder interferometer system capable of continuous time-delay scans over a range of 200 fs with a root-mean-square timing jitter of only 13 as over a few seconds and ~80 as of peak-to-peak drift over several hours. Full article
Show Figures

Figure 1

11 pages, 3217 KiB  
Article
Single-Shot Coherent X-ray Imaging Instrument at PAL-XFEL
by Daeho Sung, Daewoong Nam, Myong-jin Kim, Seonghan Kim, Kyung Sook Kim, Sang-Youn Park, Sun Min Hwang, Chulho Jung, Heemin Lee, Do Hyung Cho, Minseok Kim, Intae Eom, Su Yong Lee, Changyong Song and Sangsoo Kim
Appl. Sci. 2021, 11(11), 5082; https://doi.org/10.3390/app11115082 - 30 May 2021
Cited by 14 | Viewed by 3963
Abstract
We developed a single-shot coherent X-ray imaging instrument at the hard X-ray beamline of the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL). This experimental platform was established to conduct a variety of XFEL experiments, including coherent diffraction imaging (CDI), X-ray photon correlation [...] Read more.
We developed a single-shot coherent X-ray imaging instrument at the hard X-ray beamline of the Pohang Accelerator Laboratory X-ray Free Electron Laser (PAL-XFEL). This experimental platform was established to conduct a variety of XFEL experiments, including coherent diffraction imaging (CDI), X-ray photon correlation spectroscopy (XPCS), and coherent X-ray scattering (CXS). Based on the forward-scattering geometry, this instrument utilizes a fixed-target method for sample delivery. It is well optimized for single-shot-based experiments in which one expects to observe the ultrafast phenomena of nanoparticles at picosecond temporal and nanometer spatial resolutions. In this paper, we introduce a single-shot coherent X-ray imaging instrument and report pump–probe coherent diffraction imaging (PPCDI) of Ag nanoparticles as an example of its applications. Full article
(This article belongs to the Special Issue Trends in Sub-Microsecond X-ray Science with Coherent Beams)
Show Figures

Figure 1

Back to TopTop