The Liquid Jet Endstation for Hard X-ray Scattering and Spectroscopy at the Linac Coherent Light Source
Abstract
:1. Introduction
2. XCS Instrument Overview
XCS Pump Laser
3. Liquid Jet Endstation (LJE)
4. Techniques
4.1. X-ray Solution Scattering (XSS)
4.2. X-ray Absorption Spectroscopy (XAS)
4.3. X-ray Emission Spectroscopy (XES)
4.4. Simultaneous Data Collection
4.5. Data Processing
5. Data Collection Examples
5.1. X-ray Absorption Spectroscopy
5.2. Simultaneous X-ray Solution Scattering and X-ray Emission Spectroscopy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DePonte, D.P. Sample Delivery Methods: Liquids and Gases at FELs. In X-ray Free Electron Lasers: Applications in Materials, Chemistry and Biology; Bergmann, U., Yachandra, V., Yano, J., Eds.; The Royal Society of Chemistry: London, UK, 2017; pp. 323–336. [Google Scholar] [CrossRef]
- Koralek, J.D.; Kim, J.B.; Brůža, P.; Curry, C.B.; Chen, Z.; Bechtel, H.A.; Cordones, A.A.; Sperling, P.; Toleikis, S.; Kern, J.F.; et al. Generation and characterization of ultrathin free-flowing liquid sheets. Nat. Commun. 2018, 9, 1353. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, D.J.; Van Driel, T.B.; Kroll, T.; Crissman, C.J.; Ryland, E.S.; Nelson, K.J.; Cordones, A.A.; Koralek, J.D.; DePonte, D.P. Microfluidic liquid sheets as large-area targets for high repetition XFELs. Front. Mol. Biosci. 2022, 9, 1048932. [Google Scholar] [CrossRef] [PubMed]
- van Driel, T.B.; Nelson, S.; Armenta, R.; Blaj, G.; Boo, S.; Boutet, S.; Doering, D.; Dragone, A.; Hart, P.; Haller, G.; et al. The ePix10k 2-megapixel hard X-ray detector at LCLS. J. Synchrotron Radiat. 2020, 27, 608–615. [Google Scholar] [CrossRef] [PubMed]
- Hart, P.; Boutet, S.; Carini, G.; Dragone, A.; Duda, B.; Freytag, D.; Haller, G.; Herbst, R.; Hermann, S.; Kenney, C.; et al. The Cornell-SLAC pixel array detector at LCLS. In Proceedings of the 2012 IEEE Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC), Anaheim, CA, USA, 29 October–3 November 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 538–541. [Google Scholar] [CrossRef]
- Blaj, G.; Dragone, A.; Kenney, C.J.; Abu-Nimeh, F.; Caragiulo, P.; Doering, D.; Kwiatkowski, B.; Markovic, B.; Pines, J.; Weaver, M.; et al. Performance of ePix10K, a high dynamic range, gain auto-ranging pixel detector for FELs. AIP Conf. Proc. 2019, 2054, 060062. [Google Scholar] [CrossRef]
- Feng, Y.; Feldkamp, J.M.; Fritz, D.M.; Cammarata, M.; Aymeric, R.; Caronna, C.; Lemke, H.T.; Zhu, D.; Lee, S.; Boutet, S.; et al. A single-shot intensity-position monitor for hard X-ray FEL sources. In X-ray Lasers and Coherent X-ray Sources: Development and Applications IX; SPIE: Bellingham, WA, USA, 2011; pp. 163–168. [Google Scholar] [CrossRef]
- Harmand, M.; Coffee, R.; Bionta, M.R.; Chollet, M.; French, D.; Zhu, D.; Fritz, D.M.; Lemke, H.T.; Medvedev, N.; Ziaja, B.; et al. Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers. Nat. Photonics 2013, 7, 215–218. [Google Scholar] [CrossRef]
- Behrens, C.; Decker, F.-J.; Ding, Y.; Dolgashev, V.A.; Frisch, J.; Huang, Z.; Krejcik, P.; Loos, H.; Lutman, A.; Maxwell, T.J.; et al. Few-femtosecond time-resolved measurements of X-ray free-electron lasers. Nat. Commun. 2014, 5, 3762. [Google Scholar] [CrossRef] [PubMed]
- Bostedt, C.; Boutet, S.; Fritz, D.M.; Huang, Z.; Lee, H.J.; Lemke, H.T.; Aymeric, R.; Schlotter, W.F.; Turner, J.J.; Williams, G.J. Linac Coherent Light Source: The first five years. Rev. Mod. Phys. 2016, 88, 015007. [Google Scholar] [CrossRef]
- Chollet, M.; Alonso-Mori, R.; Cammarata, M.; Damiani, D.; Defever, J.; Delor, J.T.; Feng, Y.; Glownia, J.M.; Langton, J.B.; Nelson, S.; et al. The X-ray Pump-Probe instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 2015, 22, 503–507. [Google Scholar] [CrossRef] [PubMed]
- Sierra, R.G.; Batyuk, A.; Sun, Z.; Aquila, A.; Hunter, M.S.; Lane, T.J.; Liang, M.; Yoon, C.H.; Alonso-Mori, R.; Armenta, R.; et al. The Macromolecular Femtosecond Crystallography Instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 2019, 26, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Mori, R.; Caronna, C.; Chollet, M.; Curtis, R.; Damiani, D.S.; Defever, J.; Feng, Y.; Flath, D.L.; Glownia, J.M.; Lee, S.; et al. The X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 2015, 22, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, S.; Sandy, A.; Shu, D.; Sprung, M.; Preissner, C.; Sullivan, J. Design and performance of an ultra-high-vacuum-compatible artificial channel-cut monochromator. J. Synchrotron Radiat. 2007, 15, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Lemke, H.T.; Bressler, C.; Chen, L.X.; Fritz, D.M.; Gaffney, K.J.; Galler, A.; Gawelda, W.; Haldrup, K.; Hartsock, R.W.; Ihee, H.; et al. Femtosecond X-ray Absorption Spectroscopy at a Hard X-ray Free Electron Laser: Application to Spin Crossover Dynamics. J. Phys. Chem. A 2013, 117, 735–740. [Google Scholar] [CrossRef] [PubMed]
- Britz, A.; Abraham, B.; Biasin, E.; van Driel, T.B.; Gallo, A.; Garcia-Esparza, A.T.; Glownia, J.; Loukianov, A.; Nelson, S.; Reinhard, M.; et al. Resolving structures of transition metal complex reaction intermediates with femtosecond EXAFS. Phys. Chem. Chem. Phys. 2020, 22, 2660–2666. [Google Scholar] [CrossRef] [PubMed]
- Kroll, T.; Weninger, C.; Fuller, F.D.; Guetg, M.W.; Benediktovitch, A.; Zhang, Y.; Marinelli, A.; Alonso-Mori, R.; Aquila, A.; Liang, M.; et al. Observation of Seeded Mn Kβ Stimulated X-ray Emission Using Two-Color X-ray Free-Electron Laser Pulses. Phys. Rev. Lett. 2020, 125, 037404. [Google Scholar] [CrossRef] [PubMed]
- Decker, F.-J.; Bane, K.L.; Colocho, W.; Gilevich, S.; Marinelli, A.; Sheppard, J.C.; Turner, J.L.; Turner, J.J.; Vetter, S.L.; Halavanau, A.; et al. Tunable X-ray free electron laser multi-pulses with nanosecond separation. Sci. Rep. 2022, 12, 3253. [Google Scholar] [CrossRef]
- Feng, Y.; Alonso-Mori, R.; Blank, V.; Boutet, S.; Chollet, M.; van Driel, T.B.; Fritz, D.M.; Glownia, J.M.; Hastings, J.B.; Lemke, H.; et al. Recent development of thin diamond crystals for X-ray FEL beam-sharing. In Advances in X-ray Free-Electron Lasers II: Instrumentation; SPIE: Bellingham, WA, USA, 2013; pp. 26–33. [Google Scholar] [CrossRef]
- Bionta, M.R.; Lemke, H.T.; Cryan, J.P.; Glownia, J.M.; Bostedt, C.; Cammarata, M.; Castagna, J.-C.; Ding, Y.; Fritz, D.M.; Fry, A.R.; et al. Spectral encoding of X-ray/optical relative delay. Opt. Express 2011, 19, 21855–21865. [Google Scholar] [CrossRef] [PubMed]
- Glownia, J.M.; Gumerlock, K.; Lemke, H.T.; Sato, T.; Zhu, D.; Chollet, M. Pump-probe experimental methodology at the Linac Coherent Light Source. J. Synchrotron Radiat. 2019, 26, 685–691. [Google Scholar] [CrossRef] [PubMed]
- Bionta, M.R.; Hartmann, N.; Weaver, M.; French, D.; Nicholson, D.J.; Cryan, J.P.; Glownia, J.M.; Baker, K.; Bostedt, C.; Chollet, M.; et al. Spectral encoding method for measuring the relative arrival time between X-ray/optical pulses. Rev. Sci. Instrum. 2014, 85, 083116. [Google Scholar] [CrossRef] [PubMed]
- Stan, C.A.; Milathianaki, D.; Laksmono, H.; Sierra, R.G.; McQueen, T.A.; Messerschmidt, M.; Williams, G.J.; Koglin, J.E.; Lane, T.J.; Hayes, M.J.; et al. Liquid explosions induced by X-ray laser pulses. Nat. Phys. 2016, 12, 966–971. [Google Scholar] [CrossRef]
- Vagovič, P.; Sato, T.; Mikeš, L.; Mills, G.; Graceffa, R.; Mattsson, F.; Villanueva-Perez, P.; Ershov, A.; Faragó, T.; Uličný, J.; et al. Megahertz X-ray microscopy at X-ray free-electron laser and synchrotron sources. Optica 2019, 6, 1106. [Google Scholar] [CrossRef]
- Lemke, H.T.; Kjær, K.S.; Hartsock, R.; van Driel, T.B.; Chollet, M.; Glownia, J.M.; Song, S.; Zhu, D.; Pace, E.; Matar, S.F.; et al. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching. Nat. Commun. 2017, 8, 15342. [Google Scholar] [CrossRef] [PubMed]
- Reinhard, M.; Gallo, A.; Guo, M.; Garcia-Esparza, A.T.; Biasin, E.; Qureshi, M.; Britz, A.; Ledbetter, K.; Kunnus, K.; Weninger, C.; et al. Ferricyanide photo-aquation pathway revealed by combined femtosecond Kβ main line and valence-to-core X-ray emission spectroscopy. Nat. Commun. 2023, 14, 2443. [Google Scholar] [CrossRef]
- Choi, E.H.; Lee, Y.; Heo, J.; Ihee, H. Reaction dynamics studied via femtosecond X-ray liquidography at X-ray free-electron lasers. Chem. Sci. 2022, 13, 8457–8490. [Google Scholar] [CrossRef] [PubMed]
- Khakhulin, D.; Otte, F.; Biednov, M.; Bömer, C.; Choi, T.-K.; Diez, M.; Galler, A.; Jiang, Y.; Kubicek, K.; Lima, F.A.; et al. Ultrafast X-ray Photochemistry at European XFEL: Capabilities of the Femtosecond X-ray Experiments (FXE) Instrument. Appl. Sci. 2020, 10, 995. [Google Scholar] [CrossRef]
- Carini, G.A.; Alonso-Mori, R.; Blaj, G.; Caragiulo, P.; Chollet, M.; Damiani, D.; Dragone, A.; Feng, Y.; Haller, G.; Hart, P.; et al. Studies of the ePix100 low-noise X-ray camera at SLAC. In Proceedings of the 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Seattle, WA, USA, 8–15 November 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 1–3. [Google Scholar] [CrossRef]
- Barends, T.R.M.; Gorel, A.; Bhattacharyya, S.; Schirò, G.; Bacellar, C.; Cirelli, C.; Colletier, J.-P.; Foucar, L.; Grünbein, M.L.; Hartmann, E.; et al. Influence of pump laser fluence on ultrafast myoglobin structural dynamics. Nature 2024, 626, 905–911. [Google Scholar] [CrossRef] [PubMed]
- Stickrath, A.B.; Mara, M.W.; Lockard, J.V.; Harpham, M.R.; Huang, J.; Zhang, X.; Attenkofer, K.; Chen, L.X. Detailed transient heme structures of Mb-CO in solution after CO dissociation: An X-ray transient absorption spectroscopic study. J. Phys. Chem. B 2013, 117, 4705–4712. [Google Scholar] [CrossRef] [PubMed]
- Arcovito, A.; Lamb, D.C.; Nienhaus, G.U.; Hazemann, J.L.; Benfatto, M.; Della Longa, S. Light-induced relaxation of photolyzed carbonmonoxy myoglobin: A temperature-dependent X-ray absorption near-edge structure (XANES) study. Biophys. J. 2005, 88, 2954–2964. [Google Scholar] [CrossRef]
- Della Longa, S.; Arcovito, A.; Girasole, M.; Hazemann, J.L.; Benfatto, M. Quantitative analysis of X-ray absorption near edge structure data by a full multiple scattering procedure: The Fe-CO geometry in photolyzed carbonmonoxy-myoglobin single crystal. Phys. Rev. Lett. 2001, 87, 155501. [Google Scholar] [CrossRef] [PubMed]
- Gaffney, K.J. Capturing photochemical and photophysical transformations in iron complexes with ultrafast X-ray spectroscopy and scattering. Chem. Sci. 2021, 12, 8010–8025. [Google Scholar] [CrossRef] [PubMed]
- Kong, Q.Y.; Laursen, M.G.; Haldrup, K.; Kjær, K.S.; Khakhulin, D.; Biasin, E.; van Driel, T.B.; Wulff, M.; Kabanova, V.; Vuilleumier, R.; et al. Initial metal-metal bond breakage detected by fs X-ray scattering in the photolysis of Ru3(CO)12 in cyclohexane at 400 nm. Photochem. Photobiol. Sci. 2019, 18, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Biasin, E.; Fox, Z.W.; Andersen, A.; Ledbetter, K.; Kjær, K.S.; Alonso-Mori, R.; Carlstad, J.M.; Chollet, M.; Gaynor, J.D.; Glownia, J.M.; et al. Direct observation of coherent femtosecond solvent reorganization coupled to intramolecular electron transfer. Nat. Chem. 2021, 13, 343–349. [Google Scholar] [CrossRef] [PubMed]
- van Driel, T.B.; Kjær, K.S.; Hartsock, R.W.; Dohn, A.O.; Harlang, T.; Chollet, M.; Christensen, M.; Gawelda, W.; Henriksen, N.E.; Kim, J.G.; et al. Atomistic characterization of the active-site solvation dynamics of a model photocatalyst. Nat. Commun. 2016, 7, 13678. [Google Scholar] [CrossRef] [PubMed]
- Kjær, K.S.; van Driel, T.B.; Kehres, J.; Haldrup, K.; Khakhulin, D.; Bechgaard, K.; Cammarata, M.; Wulff, M.; Sørensen, T.J.; Nielsen, M.M. Introducing a standard method for experimental determination of the solvent response in laser pump, X-ray probe time-resolved wide-angle X-ray scattering experiments on systems in solution. Phys. Chem. Chem. Phys. 2013, 15, 15003–15016. [Google Scholar] [CrossRef] [PubMed]
- Prins, R.; Koningsberger, D.C. Catalysis. X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES; Wiley: Hoboken, NJ, USA, 1988; pp. 321–372. Available online: https://tue.elsevierpure.com/en/publications/catalysis (accessed on 23 February 2024).
- Yano, J.; Yachandra, V.K. X-ray absorption spectroscopy. Photosynth. Res. 2009, 102, 241–254. [Google Scholar] [CrossRef] [PubMed]
- Alonso-Mori, R.; Kern, J.; Sokaras, D.; Weng, T.-C.; Nordlund, D.; Tran, R.; Montanez, P.; Delor, J.; Yachandra, V.K.; Yano, J.; et al. A multi-crystal wavelength dispersive X-ray spectrometer. Rev. Sci. Instrum. 2012, 83, 073114. [Google Scholar] [CrossRef] [PubMed]
- Spectra.tools. Available online: https://www.spectra.tools/bin/controller.pl?body=Bragg_Angle_Calculator (accessed on 1 April 2024).
- Ledbetter, K.; Reinhard, M.E.; Kunnus, K.; Gallo, A.; Britz, A.; Biasin, E.; Glownia, J.M.; Nelson, S.; Van Driel, T.B.; Weninger, C.; et al. Excited state charge distribution and bond expansion of ferrous complexes observed with femtosecond valence-to-core X-ray emission spectroscopy. J. Chem. Phys. 2020, 152, 074203. [Google Scholar] [CrossRef] [PubMed]
- March, A.M.; Doumy, G.; Andersen, A.; Al Haddad, A.; Kumagai, Y.; Tu, M.-F.; Bang, J.; Bostedt, C.; Uhlig, J.; Nascimento, D.R.; et al. Elucidation of the photoaquation reaction mechanism in ferrous hexacyanide using synchrotron X-rays with sub-pulse-duration sensitivity. J. Chem. Phys. 2019, 151, 144306. [Google Scholar] [CrossRef] [PubMed]
- Reinhard, M.; Penfold, T.J.; Lima, F.A.; Rittmann, J.; Rittmann-Frank, M.H.; Abela, R.; Tavernelli, I.; Rothlisberger, U.; Milne, C.J.; Chergui, M. Photooxidation and photoaquation of iron hexacyanide in aqueous solution: A picosecond X-ray absorption study. Struct. Dyn. 2014, 1, 024901. [Google Scholar] [CrossRef] [PubMed]
- Kjær, K.S.; Van Driel, T.B.; Harlang, T.C.B.; Kunnus, K.; Biasin, E.; Ledbetter, K.; Hartsock, R.W.; Reinhard, M.E.; Koroidov, S.; Li, L.; et al. Finding intersections between electronic excited state potential energy surfaces with simultaneous ultrafast X-ray scattering and spectroscopy. Chem. Sci. 2019, 10, 5749–5760. [Google Scholar] [CrossRef] [PubMed]
- Kunnus, K.; Vacher, M.; Harlang, T.C.B.; Kjær, K.S.; Haldrup, K.; Biasin, E.; van Driel, T.B.; Pápai, M.; Chabera, P.; Liu, Y.; et al. Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scattering. Nat. Commun. 2020, 11, 634. [Google Scholar] [CrossRef] [PubMed]
- Mara, M.W.; Hadt, R.G.; Reinhard, M.E.; Kroll, T.; Lim, H.; Hartsock, R.W.; Alonso-Mori, R.; Chollet, M.; Glownia, J.M.; Nelson, S.; et al. Metalloprotein entatic control of ligand-metal bonds quantified by ultrafast X-ray spectroscopy. Science 2017, 356, 1276–1280. [Google Scholar] [CrossRef] [PubMed]
- Penfold, T.J.; Reinhard, M.; Rittmann-Frank, M.H.; Tavernelli, I.; Rothlisberger, U.; Milne, C.J.; Glatzel, P.; Chergui, M. X-ray spectroscopic study of solvent effects on the ferrous and ferric hexacyanide anions. J. Phys. Chem. A 2014, 118, 9411–9418. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.; Andersen, A.; Fox, Z.W.; Zhang, Y.; Hong, K.; Lee, J.-H.; Cordones, A.A.; March, A.M.; Doumy, G.; Southworth, S.H.; et al. Comprehensive Experimental and Computational Spectroscopic Study of Hexacyanoferrate Complexes in Water: From Infrared to X-ray Wavelengths. J. Phys. Chem. B 2018, 122, 5075–5086. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, K.; Hatada, K.; D’Angelo, P.; Della Longa, S.; Natoli, C.R.; Benfatto, M. Full quantitative multiple-scattering analysis of X-ray absorption spectra: Application to potassium hexacyanoferrat(II) and -(III) complexes. J. Am. Chem. Soc. 2004, 126, 15618–15623. [Google Scholar] [CrossRef] [PubMed]
- Westre, T.E.; Kennepohl, P.; DeWitt, J.G.; Hedman, B.; Hodgson, K.O.; Solomon, E.I. Understanding Fe K-edge XAS pre-edge features: A multiplet analysis of the 1s-> 3d final states. In Abstracts of Papers of the American Chemical Society; ACS: Washington, DC, USA, 1997; p. 485–INOR. [Google Scholar]
- Sension, R.J.; McClain, T.P.; Lamb, R.M.; Alonso-Mori, R.; Lima, F.A.; Ardana-Lamas, F.; Biednov, M.; Chollet, M.; Chung, T.; Deb, A.; et al. Watching Excited State Dynamics with Optical and X-ray Probes: The Excited State Dynamics of Aquocobalamin and Hydroxocobalamin. J. Am. Chem. Soc. 2023, 145, 14070–14086. [Google Scholar] [CrossRef] [PubMed]
- Miller, N.A.; Michocki, L.B.; Konar, A.; Alonso-Mori, R.; Deb, A.; Glownia, J.M.; Sofferman, D.L.; Song, S.; Kozlowski, P.M.; Kubarych, K.J.; et al. Ultrafast XANES Monitors Femtosecond Sequential Structural Evolution in Photoexcited Coenzyme B12. J. Phys. Chem. B 2020, 124, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Michocki, L.B.; Miller, N.A.; Alonso-Mori, R.; Britz, A.; Deb, A.; Glownia, J.M.; Kaneshiro, A.K.; Konar, A.; Koralek, J.; Meadows, J.H.; et al. Probing the Excited State of Methylcobalamin Using Polarized Time-Resolved X-ray Absorption Spectroscopy. J. Phys. Chem. B 2019, 123, 6042–6048. [Google Scholar] [CrossRef]
- Cammarata, M.; Zerdane, S.; Balducci, L.; Azzolina, G.; Mazerat, S.; Exertier, C.; Trabuco, M.; Levantino, M.; Alonso-Mori, R.; Glownia, J.M.; et al. Charge transfer driven by ultrafast spin transition in a CoFe Prussian blue analogue. Nat. Chem. 2021, 13, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Vester, P.; Kubicek, K.; Alonso-Mori, R.; Assefa, T.; Biasin, E.; Christensen, M.; Dohn, A.O.; van Driel, T.B.; Galler, A.; Gawelda, W.; et al. Tracking structural solvent reorganization and recombination dynamics following e-photoabstraction from aqueous I- with femtosecond X-ray spectroscopy and scattering. J. Chem. Phys. 2022, 157, 224201. [Google Scholar] [CrossRef] [PubMed]
- Holm, R.H.; Kennepohl, P.; Solomon, E.I. Structural and Functional Aspects of Metal Sites in Biology. Chem. Rev. 1996, 96, 2239–2314. [Google Scholar] [CrossRef]
- Williams, J.A.G. Photochemistry and Photophysics of Coordination Compounds: Platinum. In Photochemistry and Photophysics of Coordination Compounds II; Balzani, V., Campagna, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 205–268. [Google Scholar] [CrossRef]
- Chergui, M. Ultrafast photophysics of transition metal complexes. Acc. Chem. Res. 2015, 48, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Rehr, J.J.; Mustre de Leon, J.; Zabinsky, S.I.; Albers, R.C. Theoretical X-ray absorption fine structure standards. J. Am. Chem. Soc. 1991, 113, 5135–5140. [Google Scholar] [CrossRef]
- Duchesne, P.N.; Chen, G.; Zheng, N.; Zhang, P. Local Structure, Electronic Behavior, and Electrocatalytic Reactivity of CO-Reduced Platinum–Iron Oxide Nanoparticles. J. Phys. Chem. C 2013, 117, 26324–26333. [Google Scholar] [CrossRef]
- Hersbach, T.J.P.; Garcia, A.C.; Kroll, T.; Sokaras, D.; Koper, M.T.M.; Garcia-Esparza, A.T. Base-Accelerated Degradation of Nanosized Platinum Electrocatalysts. ACS Catal. 2021, 11, 9904–9915. [Google Scholar] [CrossRef]
- Glebov, E.M.; Pozdnyakov, I.P.; Plyusnin, V.F.; Khmelinskii, I. Primary reactions in the photochemistry of hexahalide complexes of platinum group metals: A minireview. J. Photochem. Photobiol. C Photochem. Rev. 2015, 24, 1–15. [Google Scholar] [CrossRef]
- Levantino, M.; Lemke, H.T.; Schirò, G.; Glownia, M.; Cupane, A.; Cammarata, M. Observing heme doming in myoglobin with femtosecond X-ray absorption spectroscopy. Struct. Dyn. 2015, 2, 041713. [Google Scholar] [CrossRef] [PubMed]
- Mills, D.M.; Lewis, A.; Harootunian, A.; Huang, J.; Smith, B. Time-Resolved X-ray Absorption Spectroscopy of Carbon Monoxide-Myoglobin Recombination after Laser Photolysis. Science 1984, 223, 811–813. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Peng, G.; Cramer, S.P. X-ray absorption spectroscopy of biological photolysis products: Kilohertz photolysis and soft X-ray applications. J. Electron. Spectrosc. Relat. Phenom. 2005, 143, 1–7. [Google Scholar] [CrossRef]
- Kjær, K.S.; Kunnus, K.; Harlang, T.C.B.; Van Driel, T.B.; Ledbetter, K.; Hartsock, R.W.; Reinhard, M.E.; Koroidov, S.; Li, L.; Laursen, M.G.; et al. Solvent control of charge transfer excited state relaxation pathways in [Fe(2,2′-bipyridine)(CN)4]2−. Phys. Chem. Chem. Phys. 2018, 20, 4238–4249. [Google Scholar] [CrossRef] [PubMed]
- Haldrup, K.; Levi, G.; Biasin, E.; Vester, P.; Laursen, M.G.; Beyer, F.; Kjær, K.S.; van Driel, T.B.; Harlang, T.; Dohn, A.O.; et al. Ultrafast X-ray Scattering Measurements of Coherent Structural Dynamics on the Ground-State Potential Energy Surface of a Diplatinum Molecule. Phys. Rev. Lett. 2019, 122, 063001. [Google Scholar] [CrossRef]
- Biasin, E.; van Driel, T.B.; Levi, G.; Laursen, M.G.; Dohn, A.O.; Moltke, A.; Vester, P.; Hansen, F.B.K.; Kjaer, K.S.; Harlang, T.; et al. Anisotropy enhanced X-ray scattering from solvated transition metal complexes. J. Synchrotron Radiat. 2018, 25, 306–315. [Google Scholar] [CrossRef] [PubMed]
- Montoya-Castillo, A.; Chen, M.S.; Raj, S.L.; Jung, K.A.; Kjaer, K.S.; Morawietz, T.; Gaffney, K.J.; van Driel, T.B.; Markland, T.E. Optically Induced Anisotropy in Time-Resolved Scattering: Imaging Molecular-Scale Structure and Dynamics in Disordered Media with Experiment and Theory. Phys. Rev. Lett. 2022, 129, 056001. [Google Scholar] [CrossRef] [PubMed]
Wavelength (nm) | Maximum Energy (mJ) | Typical Energy at IP (mJ) | Generation Method |
---|---|---|---|
800 | 6 | >1 | Fundamental |
400 | 1.2 | 0.8 | 2nd harmonic |
266 | 0.25 | 0.05 | 3rd harmonic |
500 | 0.7 | 0.2 | OPA |
600 | 0.5 | 0.1 | OPA |
ePix10k2M (L/M/H) | ePix100 | |
---|---|---|
Saturation (8 keV photons) | 10,000/300/100 | 100 |
Pixel size | 100 μm × 100 μm | 50 μm × 50 μm |
Noise (8 keV photons RMS) | 1.7/0.07/0.04 photons | 0.026 |
Frame rate | 120 Hz | 120 Hz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antolini, C.; Sosa Alfaro, V.; Reinhard, M.; Chatterjee, G.; Ribson, R.; Sokaras, D.; Gee, L.; Sato, T.; Kramer, P.L.; Raj, S.L.; et al. The Liquid Jet Endstation for Hard X-ray Scattering and Spectroscopy at the Linac Coherent Light Source. Molecules 2024, 29, 2323. https://doi.org/10.3390/molecules29102323
Antolini C, Sosa Alfaro V, Reinhard M, Chatterjee G, Ribson R, Sokaras D, Gee L, Sato T, Kramer PL, Raj SL, et al. The Liquid Jet Endstation for Hard X-ray Scattering and Spectroscopy at the Linac Coherent Light Source. Molecules. 2024; 29(10):2323. https://doi.org/10.3390/molecules29102323
Chicago/Turabian StyleAntolini, Cali, Victor Sosa Alfaro, Marco Reinhard, Gourab Chatterjee, Ryan Ribson, Dimosthenis Sokaras, Leland Gee, Takahiro Sato, Patrick L. Kramer, Sumana Laxmi Raj, and et al. 2024. "The Liquid Jet Endstation for Hard X-ray Scattering and Spectroscopy at the Linac Coherent Light Source" Molecules 29, no. 10: 2323. https://doi.org/10.3390/molecules29102323
APA StyleAntolini, C., Sosa Alfaro, V., Reinhard, M., Chatterjee, G., Ribson, R., Sokaras, D., Gee, L., Sato, T., Kramer, P. L., Raj, S. L., Hayes, B., Schleissner, P., Garcia-Esparza, A. T., Lim, J., Babicz, J. T., Jr., Follmer, A. H., Nelson, S., Chollet, M., Alonso-Mori, R., & van Driel, T. B. (2024). The Liquid Jet Endstation for Hard X-ray Scattering and Spectroscopy at the Linac Coherent Light Source. Molecules, 29(10), 2323. https://doi.org/10.3390/molecules29102323