Ultrafast Photo-Ion Probing of the Relaxation Dynamics in 2-Thiouracil
Abstract
:1. Introduction
2. Results
2.1. Observed Fragments
2.2. VUV (PEPICO) Studies
2.3. UV/UV Power Series
2.4. Time-Dependent UV/UV Signal from Pump-Probe Beams with Equal Power
2.5. Time-Dependent UV/UV Signals from Pump and Probe Beam with Unequal Powers
3. Discussion
3.1. General Analysis of VUV PEPICO Results and UV/UV Power Series
3.2. Fragment Assignment and Discussion of Appearance
3.3. Parent Ion UV/UV Discussions
3.4. Fragment Ion UV/UV Photon-Order Processes
3.5. Fragment Ion UV/UV Time-Dependent Signals
4. Materials and Methods
4.1. UV/UV Pump-Probe Experiments
4.2. VUV Dissociative Photoionsation Experiments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barc, B.; Ryszka, M.; Spurrell, J.; Dampc, M.; Limão-Vieira, P.; Parajuli, R.; Mason, N.J.; Eden, S. Multi-photon ionization and fragmentation of uracil: Neutral excited-state ring opening and hydration effects. J. Chem. Phys. 2013, 139, 244311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghafur, O.; Crane, S.W.; Ryszka, M.; Bockova, J.; Rebelo, A.; Saalbach, L.; De Camillis, S.; Greenwood, J.B.; Eden, S.; Townsend, D. Ultraviolet relaxation dynamics in uracil: Time-resolved photoion yield studies using a laser-based thermal desorption source. J. Chem. Phys. 2018, 149, 034301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Vázquez, J.; González, L.; Samoylova, E.; Schultz, T. Thymine relaxation after UV irradiation: The role of tautomerization and πσ* states. Phys. Chem. Chem. Phys. 2009, 11, 3927–3934. [Google Scholar] [CrossRef] [PubMed]
- Kotur, M.; Weinacht, T.C.; Zhou, C.; Matsika, S. Following Ultrafast Radiationless Relaxation Dynamics With Strong Field Dissociative Ionization: A Comparison Between Adenine, Uracil, and Cytosine. IEEE J. Sel. Top. Quantum Electron. 2012, 18, 187–194. [Google Scholar] [CrossRef]
- Wolf, T.J.A.; Parrish, R.M.; Myhre, R.H.; Martínez, T.J.; Koch, H.; Gühr, M. Observation of ultrafast intersystem crossing in thymine by extreme ultraviolet time-resolved photoelectron spectroscopy. J. Phys. Chem. A 2019, 123, 6897–6903. [Google Scholar] [CrossRef]
- Barbatti, M.; Borin, A.C.; Ullrich, S. Photoinduced Phenomena in Nucleic Acids; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Crespo-Hernández, C.E.; Cohen, B.; Hare, P.M.; Kohler, B. Ultrafast excited-state dynamics in nucleic acids. Chem. Rev. 2004, 104, 1977–2019. [Google Scholar] [CrossRef]
- Cui, G.; Fang, W.H. State-specific heavy-atom effect on intersystem crossing processes in 2-thiothymine: A potential photodynamic therapy photosensitizer. J. Chem. Phys. 2013, 138, 044315. [Google Scholar] [CrossRef]
- Attard, N.R.; Karran, P. UVA photosensitization of thiopurines and skin cancer in organ transplant recipients. Photochem. Photobiol. Sci. 2012, 11, 62–68. [Google Scholar] [CrossRef]
- Schreier, W.J.; Gilch, P.; Zinth, W. Early events of DNA photodamage. Annu. Rev. Phys. Chem. 2015, 66, 497–519. [Google Scholar] [CrossRef]
- Middleton, C.T.; De La Harpe, K.; Su, C.; Law, Y.K.; Crespo-Hernández, C.E.; Kohler, B. DNA excited-state dynamics: From single bases to the double helix. Annu. Rev. Phys. Chem. 2009, 60, 217–239. [Google Scholar] [CrossRef] [Green Version]
- Crespo-Hernández, C.E.; Cohen, B.; Kohler, B. Base stacking controls excited-state dynamics in A·T DNA. Nature 2005, 436, 1141–1144. [Google Scholar] [CrossRef] [PubMed]
- Kneuttinger, A.C.; Kashiwazaki, G.; Prill, S.; Heil, K.; Carell, T. Formation and direct repair of UV-induced dimeric DNA pyrimidine lesions. Photochem. Photobiol. 2014, 90, 1–14. [Google Scholar] [CrossRef]
- Mario, B.; Antonio, C.B.; Susanne, U. (Eds.) Photoinduced Phenomena in Nucleic Acids I Nucleobases in the Gas Phase and in Solvents; Springer International Publishing: New York, NY, USA, 2015; ISBN 978-3-319-13370-6. [Google Scholar]
- Zechmann, G.; Barbatti, M. Photophysics and deactivation pathways of thymine. J. Phys. Chem. A 2008, 112, 8273–8279. [Google Scholar] [CrossRef]
- Arslancan, S.; Martínez-Fernández, L.; Corral, I. Photophysics and photochemistry of canonical nucleobases’ thioanalogs: From quantum mechanical studies to time resolved experiments. Molecules 2017, 22, 998. [Google Scholar] [CrossRef]
- Pollum, M.; Martínez-Fernández, L.; Crespo-Hernández, C.E. Photochemistry of nucleic acid bases and their thio- and aza-analogues in solution. Top. Curr. Chem. 2015, 355, 245–327. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Barbatti, M. On the decay of the triplet state of thionucleobases. Phys. Chem. Chem. Phys. 2017, 19, 12674–12682. [Google Scholar] [CrossRef] [Green Version]
- Pollum, M.; Jockusch, S.; Crespo-Hernández, C.E. Increase in the photoreactivity of uracil derivatives by doubling thionation. Phys. Chem. Chem. Phys. 2015, 17, 27851–27861. [Google Scholar] [CrossRef]
- Martínez-Fernández, L.; Granucci, G.; Pollum, M.; Crespo-Hernández, C.E.; Persico, M.; Corral, I. Decoding the Molecular Basis for the Population Mechanism of the Triplet Phototoxic Precursors in UVA Light-Activated Pyrimidine Anticancer Drugs. Chem. A Eur. J. 2017, 23, 2619–2627. [Google Scholar] [CrossRef]
- Park, E.; Baron, R.; Landgraf, R. Higher-order association states of cellular ERBB3 probed with photo-cross-linkable aptamers. Biochemistry 2008, 47, 11992–12005. [Google Scholar] [CrossRef] [Green Version]
- Brem, R.; Daehn, I.; Karran, P. Efficient DNA interstrand crosslinking by 6-thioguanine and UVA radiation. DNA Repair 2011, 10, 869–876. [Google Scholar] [CrossRef]
- Mai, S.; Pollum, M.; Martínez-Fernández, L.; Dunn, N.; Marquetand, P.; Corral, I.; Crespo-Hernández, C.E.; González, L. The origin of efficient triplet state population in sulfur-substituted nucleobases. Nat. Commun. 2016, 7, 13077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mai, S.; Mohamadzade, A.; Marquetand, P.; González, L.; Ullrich, S. Simulated and experimental time-resolved photoelectron spectra of the intersystem crossing dynamics in 2-thiouracil. Molecules 2018, 23, 2836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruckenbauer, M.; Mai, S.; Marquetand, P.; González, L. Photoelectron spectra of 2-thiouracil, 4-thiouracil, and 2,4-dithiouracil. J. Chem. Phys. 2016, 144, 074303. [Google Scholar] [CrossRef] [Green Version]
- Mai, S.; Marquetand, P.; González, L. Intersystem Crossing Pathways in the Noncanonical Nucleobase 2-Thiouracil: A Time-Dependent Picture. J. Phys. Chem. Lett. 2016, 7, 1978–1983. [Google Scholar] [CrossRef] [Green Version]
- Mai, S.; Marquetand, P.; González, L. A Static Picture of the Relaxation and Intersystem Crossing Mechanisms of Photoexcited 2-Thiouracil. J. Phys. Chem. A 2015, 119, 9524–9533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayer, D.; Picconi, D.; Robinson, M.S.; Gühr, M. Experimental and theoretical gas-phase absorption spectra of thionated uracils. Chem. Phys. 2022, 558, 111500. [Google Scholar] [CrossRef]
- Yu, H.; Sanchez-Rodriguez, J.A.; Pollum, M.; Crespo-Hernández, C.E.; Mai, S.; Marquetand, P.; González, L.; Ullrich, S. Internal conversion and intersystem crossing pathways in UV excited, isolated uracils and their implications in prebiotic chemistry. Phys. Chem. Chem. Phys. 2016, 18, 20168–20176. [Google Scholar] [CrossRef] [Green Version]
- Pollum, M.; Crespo-Hernández, C.E. Communication: The dark singlet state as a doorway state in the ultrafast and efficient intersystem crossing dynamics in 2-thiothymine and 2-thiouracil. J. Chem. Phys. 2014, 140, 071101. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Rodríguez, J.A.; Mohamadzade, A.; Mai, S.; Ashwood, B.; Pollum, M.; Marquetand, P.; González, L.; Crespo-Hernández, C.E.; Ullrich, S. 2-Thiouracil intersystem crossing photodynamics studied by wavelength-dependent photoelectron and transient absorption spectroscopies. Phys. Chem. Chem. Phys. 2017, 19, 19756–19766. [Google Scholar] [CrossRef] [Green Version]
- Ullrich, S.; Mohamadzade, A. Intersystem crossing dynamics in thionated uracils studied by time-resolved photoelectron spectroscopy: The effect of substituent position. EPJ Web Conf. 2019, 205, 09010. [Google Scholar] [CrossRef]
- Lever, F.; Mayer, D.; Picconi, D.; Metje, J.; Alisauskas, S.; Calegari, F.; Düsterer, S.; Ehlert, C.; Feifel, R.; Niebuhr, M.; et al. Ultrafast dynamics of 2-thiouracil investigated by time-resolved Auger spectroscopy. J. Phys. B At. Mol. Opt. Phys. 2020, 54, 014002. [Google Scholar] [CrossRef]
- Mayer, D.; Lever, F.; Picconi, D.; Metje, J.; Alisauskas, S.; Calegari, F.; Düsterer, S.; Ehlert, C.; Feifel, R.; Niebuhr, M.; et al. Following excited-state chemical shifts in molecular ultrafast X-ray photoelectron spectroscopy. Nat. Commun. 2022, 13, 198. [Google Scholar] [CrossRef]
- Hecht, S.M.; Gupta, A.S.; Leonard, N.J. Position of uridine thiation: The identification of minor nucleosides from transfer RNA by mass spectrometry. BBA Sect. Nucleic Acids Protein Synth. 1969, 182, 444–448. [Google Scholar] [CrossRef] [PubMed]
- Uleanya, K.O.; Cercola, R.; Nikolova, M.; Matthews, E.; Wong, N.G.K.; Dessent, C.E.H. Observation of Enhanced Dissociative Photochemistry in the Non-Native Nucleobase 2-Thiouracil. Molecules 2020, 25, 3157. [Google Scholar] [CrossRef] [PubMed]
- Jochims, H.W.; Schwell, M.; Baumgärtel, H.; Leach, S. Photoion mass spectrometry of adenine, thymine and uracil in the 6–22 eV photon energy range. Chem. Phys. 2005, 314, 263–282. [Google Scholar] [CrossRef]
- Ryszka, M.; Pandey, R.; Rizk, C.; Tabet, J.; Barc, B.; Dampc, M.; Mason, N.J.; Eden, S. Dissociative multi-photon ionization of isolated uracil and uracil-adenine complexes. Int. J. Mass Spectrom. 2016, 396, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Majer, K.; Signorell, R.; Heringa, M.F.; Goldmann, M.; Hemberger, P.; Bodi, A. Valence Photoionization of Thymine: Ionization Energies, Vibrational Structure, and Fragmentation Pathways from the Slow to the Ultrafast. Chem. A Eur. J. 2019, 25, 14192–14204. [Google Scholar] [CrossRef]
- Asher, R.L.; Appelman, E.H.; Ruscic, B. On the heat of formation of carbonyl fluoride, CF2O. J. Chem. Phys. 1996, 105, 9781–9795. [Google Scholar] [CrossRef] [Green Version]
- Di Giacomo, F. A short account of RRKM theory of unimolecular reactions and of marcus theory of electron transfer in a historical perspective. J. Chem. Educ. 2015, 92, 476–481. [Google Scholar] [CrossRef]
- Sztáray, B.; Bodi, A.; Baer, T. Modeling unimolecular reactions in photoelectron photoion coincidence experiments. J. Mass Spectrom. 2010, 45, 1233–1245. [Google Scholar] [CrossRef]
- L’Huillier, A.; Lompre, L.A.; Mainfray, G.; Manus, C. Multiply charged ions induced by multiphoton absorption in rare gases at 0.53 μm. Phys. Rev. A 1983, 27, 2503–2512. [Google Scholar] [CrossRef]
- Koch, M.; Wolf, T.J.A.; Gühr, M. Understanding the modulation mechanism in resonance-enhanced multiphoton probing of molecular dynamics. Phys. Rev. A At. Mol. Opt. Phys. 2015, 91, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Ullrich, S.; Schultz, T.; Zgierski, M.Z.; Stolow, A. Electronic relaxation dynamics in DNA and RNA bases studied by time-resolved photoelectron spectroscopy. Phys. Chem. Chem. Phys. 2004, 6, 2796–2801. [Google Scholar] [CrossRef]
- Kotur, M.; Weinacht, T.C.; Zhou, C.; Kistler, K.A.; Matsika, S. Distinguishing between relaxation pathways by combining dissociative ionization pump probe spectroscopy and ab initio calculations: A case study of cytosine. J. Chem. Phys. 2011, 134, 184309. [Google Scholar] [CrossRef]
- Robinson, M.S.; Niebuhr, M.; Lever, F.; Mayer, D.; Metje, J.; Guehr, M. Ultrafast Photo-Ion Probing of the Ring-Opening Process in Trans-Stilbene Oxide. Chem. A Eur. J. 2021, 27, 11418. [Google Scholar] [CrossRef]
- Katritzky, A.R.; Szafran, M.; Pfister-Guillouzo, G. The tautomeric equilibria of thio analogues of nucleic acid bases. Part 3. Ultraviolet photoelectron spectra of 2-thiouracil and its methyl derivatives. J. Chem. Soc. Perkin Trans. 2 1990, 2, 871. [Google Scholar] [CrossRef]
- Page, R.H.; Larkin, R.J.; Shen, Y.R.; Lee, Y.T. High-resolution photoionization spectrum of water molecules in a supersonic beam. J. Chem. Phys. 1988, 88, 2249–2263. [Google Scholar] [CrossRef] [Green Version]
- Tonkyn, R.G.; Winniczek, J.W.; White, M.G. Rotationally resolved photoionization of O2+ near threshold. Chem. Phys. Lett. 1989, 164, 137–142. [Google Scholar] [CrossRef]
- Denifl, S.; Sonnweber, B.; Hanel, G.; Scheier, P. Threshold electron impact ionization studies of uracil. Int. J. Mass Spectrom. 2004, 238, 47–53. [Google Scholar] [CrossRef]
- Coupier, B.; Farizon, B.; Farizon, M.; Gaillard, M.J.; Gobet, F.; De Castro Faria, N.V.; Jalbert, G.; Ouaskit, S.; Carré, M.; Gstir, B.; et al. Inelastic interactions of protons and electrons with biologically relevant molecules. Eur. Phys. J. D 2002, 20, 459–468. [Google Scholar] [CrossRef] [Green Version]
- Rice, J.M.; Dudek, G.O.; Barber, M. Mass Spectra of Nucleic Acid Derivatives. Pyrimidines. J. Am. Chem. Soc. 1965, 87, 4569–4576. [Google Scholar] [CrossRef] [PubMed]
- Nelson, C.C.; McCloskey, J.A. Collision-induced dissociation of uracil and its derivatives. J. Am. Soc. Mass Spectrom. 1994, 5, 339–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.; Matsika, S.; Kotur, M.; Weinacht, T.C. Fragmentation pathways in the uracil radical cation. J. Phys. Chem. A 2012, 116, 9217–9227. [Google Scholar] [CrossRef]
- Matsika, S.; Zhou, C.; Kotur, M.; Weinacht, T.C. Combining dissociative ionization pump-probe spectroscopy and ab initio calculations to interpret dynamics and control through conical intersections. Faraday Discuss. 2011, 153, 247–260. [Google Scholar] [CrossRef]
- Uleanya, K.; Dessent, C.E.H. Investigating the Mapping of Chromophore Excitations onto the Electron Detachment Spectrum: Photodissociation Spectroscopy of Iodide Ion-Thiouracil Clusters. Phys. Chem. Chem. Phys. 2021, 23, 1021–1030. [Google Scholar] [CrossRef] [PubMed]
- Natalis, P.; Franklin, J.L. Ionization and dissociation of diphenyl and condensed-ring aromatics by electron impact. III. Azobenzene. Int. J. Mass Spectrom. Ion Phys. 1981, 40, 35–42. [Google Scholar] [CrossRef]
- Castrovilli, M.C.; Trabattoni, A.; Bolognesi, P.; O’Keeffe, P.; Avaldi, L.; Nisoli, M.; Calegari, F.; Cireasa, R. Ultrafast Hydrogen Migration in Photoionized Glycine. J. Phys. Chem. Lett. 2018, 9, 6012–6016. [Google Scholar] [CrossRef] [Green Version]
- Giuliano, B.M.; Feyer, V.; Prince, K.C.; Coreno, M.; Evangelisti, L.; Melandri, S.; Caminati, W. Tautomerism in 4-hydroxypyrimidine, S-methyl-2-thiouracil, and 2-thiouracil. J. Phys. Chem. A 2010, 114, 12725–12730. [Google Scholar] [CrossRef]
- Wolf, T.; Holzmeier, F.; Wagner, I.; Berrah, N.; Bostedt, C.; Bozek, J.; Bucksbaum, P.; Coffee, R.; Cryan, J.; Farrell, J.; et al. Observing Femtosecond Fragmentation Using Ultrafast X-ray-Induced Auger Spectra. Appl. Sci. 2017, 7, 681. [Google Scholar] [CrossRef]
- Assmann, M.; Köppel, H.; Matsika, S. Photoelectron spectrum and dynamics of the uracil cation. J. Phys. Chem. A 2015, 119, 866–875. [Google Scholar] [CrossRef]
- McFarland, B.K.; Berrah, N.; Bostedt, C.; Bozek, J.; Bucksbaum, P.H.; Castagna, J.C.; Coffee, R.N.; Cryan, J.P.; Fang, L.; Farrell, J.P.; et al. Experimental strategies for optical pump–Soft X-ray probe experiments at the LCLS. J. Phys. Conf. Ser. 2014, 488, 012015. [Google Scholar] [CrossRef] [Green Version]
- Wiley, W.C.; McLaren, I.H. Time-Of-Flight Mass Spectrometer with Improved Resolution. Rev. Sci. Instrum. 1955, 26, 1150–1157. [Google Scholar] [CrossRef]
- Giugni, A.; Cavalieri, S.; Eramo, R.; Fini, L.; Materazzi, M. Electron angular distributions in non-resonant three-photon ionization of xenon. J. Phys. B At. Mol. Opt. Phys. 2000, 33, 285–289. [Google Scholar] [CrossRef]
- Okuno, T.; Imasaka, T.; Kida, Y.; Imasaka, T. Autocorrelator for measuring an ultrashort optical pulse width in the ultraviolet region based on two-photon ionization of an organic compound. Opt. Commun. 2014, 310, 48–52. [Google Scholar] [CrossRef]
- Bodi, A.; Hemberger, P.; Gerber, T.; Sztáray, B. A new double imaging velocity focusing coincidence experiment: I2PEPICO. Rev. Sci. Instrum. 2012, 83, 083105. [Google Scholar] [CrossRef] [Green Version]
- Sztáray, B.; Voronova, K.; Torma, K.G.; Covert, K.J.; Bodi, A.; Hemberger, P.; Gerber, T.; Osborn, D.L. CRF-PEPICO: Double velocity map imaging photoelectron photoion coincidence spectroscopy for reaction kinetics studies. J. Chem. Phys. 2017, 147, 013944. [Google Scholar] [CrossRef] [Green Version]
- Bodi, A.; Sztáray, B.; Baer, T.; Johnson, M.; Gerber, T. Data acquisition schemes for continuous two-particle time-of-flight coincidence experiments. Rev. Sci. Instrum. 2007, 78, 084102. [Google Scholar] [CrossRef] [Green Version]
- Johnson, M.; Bodi, A.; Schulz, L.; Gerber, T. Vacuum ultraviolet beamline at the Swiss Light Source for chemical dynamics studies. Nucl. Instrum. Methods Phys. Res. Sect. A 2009, 610, 597–603. [Google Scholar] [CrossRef] [Green Version]
Mass/Amu | Attributed Formula | Appearance Energies/eV | Appearance Energy in Uracil/eV [37] |
---|---|---|---|
28 | HCNH+ | 14.04 ± 0.02 | 13.75 ± 0.05 |
41 | C2NH3+ | 13.47 ± 0.01 | 12.95 ± 0.05 |
42 | C2H2O+ | 13.83 ± 0.01 | 13.25 ± 0.05 |
69 | C3NH3O+ | 11.90 ± 0.01 | 10.95 ± 0.05 |
95 | C4N2H3O+ | 12.65 ± 0.02 | Observed, but not given |
96 | C4N2H4O+ | 13.59 ± 0.01 | Observed, but not given |
100 | C3N2H4S+ | 11.95 ± 0.01 | Not observed |
128 (Parent) | C4N2H4SO+ | 8.73 ± 0.01 | 9.15 ± 0.03 |
Delay (ps) | 28 amu | 41 amu | 42 amu | 69 amu | 95 amu | Parent |
---|---|---|---|---|---|---|
0.0 | 2.9 ± 0.5 | 2.68 ± 0.15 | 2.72 ± 0.14 | 2.5 ± 0.3 | 2.6 ± 0.2 | 1.87 ± 0.06 |
0.1 | 3.9 ± 0.3 | 2.87 ± 0.06 | 2.90 ± 0.10 | 2.64 ± 0.05 | 2.74 ± 0.09 | 1.86 ± 0.04 |
0.5 | 3.5 ± 0.7 | 2.76 ± 0.16 | 2.9 ± 0.2 | 2.8 ± 0.4 | 2.48 ± 0.12 | 1.75 ± 0.11 |
1 | 3.2 ± 1.2 | 2.8 ± 0.4 | 2.8 ± 0.3 | 2.70 ± 0.15 | 2.7 ± 0.5 | 1.75 ± 0.05 |
5 | 3.6 ± 0.3 | 2.90 ± 0.08 | 2.91 ± 0.10 | 2.71 ± 0.10 | 2.80 ± 0. 16 | 1.99 ± 0.06 |
10 | 3.6 ± 0.3 | 2.9 ± 0.2 | 2.95 ± 0.05 | 2.71 ± 0.05 | 2.7 ± 0.3 | 1.86 ± 0.03 |
Ion | τ1/fs | τ2/fs | τ3/ps |
---|---|---|---|
Parent | Tends to zero | N/A | N/A |
28 | 330 ± 150 | 220 ± 60 | |
41 | 400 ± 300 | 340 ± 60 | |
42 | N/A | 300 ± 50 | |
69 | 400 ± 300 | 310 ± 30 | |
95 | 340 ± 130 | 380 ± 160 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robinson, M.S.; Niebuhr, M.; Gühr, M. Ultrafast Photo-Ion Probing of the Relaxation Dynamics in 2-Thiouracil. Molecules 2023, 28, 2354. https://doi.org/10.3390/molecules28052354
Robinson MS, Niebuhr M, Gühr M. Ultrafast Photo-Ion Probing of the Relaxation Dynamics in 2-Thiouracil. Molecules. 2023; 28(5):2354. https://doi.org/10.3390/molecules28052354
Chicago/Turabian StyleRobinson, Matthew Scott, Mario Niebuhr, and Markus Gühr. 2023. "Ultrafast Photo-Ion Probing of the Relaxation Dynamics in 2-Thiouracil" Molecules 28, no. 5: 2354. https://doi.org/10.3390/molecules28052354
APA StyleRobinson, M. S., Niebuhr, M., & Gühr, M. (2023). Ultrafast Photo-Ion Probing of the Relaxation Dynamics in 2-Thiouracil. Molecules, 28(5), 2354. https://doi.org/10.3390/molecules28052354