Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (180)

Search Parameters:
Keywords = ultra high frequency (UHF)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4782 KiB  
Article
PD Detection and Analysis Triggered by Metal Protrusion in GIS Through Various Methods
by Weifeng Xin, Wei Song, Manling Dong, Xiaochuan Huang, Xiaoshi Kou, Zhenyu Zhan, Xinyue Shi and Xutao Han
Appl. Sci. 2025, 15(14), 8113; https://doi.org/10.3390/app15148113 - 21 Jul 2025
Viewed by 283
Abstract
Defects in GIS can be effectively detected by detecting the partial discharge (PD). The common methods of detecting partial discharge are pulse current, ultrasonic and UHF (ultra-high frequency). However, the results of different methods may be different due to the different physical quantities [...] Read more.
Defects in GIS can be effectively detected by detecting the partial discharge (PD). The common methods of detecting partial discharge are pulse current, ultrasonic and UHF (ultra-high frequency). However, the results of different methods may be different due to the different physical quantities detected. It is important to research the differences between the PD detection methods for the PD detection and analysis. In this study, we designed metal protrusion defects in GIS, including protrusion on the conductor and enclosure. Then, we detected the PD of defects using pulse current, UHF and ultrasonic methods at the same time. The PRPD patterns, maximum discharge amplitude of different defects and PD inception voltage (PDIV) detected by the three methods were analyzed. The PRPD patterns and discharge amplitude of the different methods were very similar to each other, but the PDIVs were different. It can be concluded that the process from the PD inception to breakdown can be divided into four sections based on the PRPD and the maximum discharge amplitude. The similarity between the three methods is because their signals are all related to the pulse current during the PD process, and differences in their PDIVs are caused by the differences in sensitivity. The sensitivity of the pulse current is the lowest among the three methods due to its poor anti-jamming capability. The sensitivity of UHF is higher, and that of ultrasonic is the highest. Full article
(This article belongs to the Special Issue Advances in Monitoring and Fault Diagnosis for Power Equipment)
Show Figures

Figure 1

26 pages, 7637 KiB  
Article
Insulator Partial Discharge Localization Based on Improved Wavelet Packet Threshold Denoising and Gxxβ Generalized Cross-Correlation Algorithm
by Hongxin Ji, Zijian Tang, Chao Zheng, Xinghua Liu and Liqing Liu
Sensors 2025, 25(13), 4089; https://doi.org/10.3390/s25134089 - 30 Jun 2025
Viewed by 277
Abstract
Partial discharge (PD) in insulators will not only lead to the gradual degradation of insulation performance but even cause power system failure in serious cases. Because there is strong noise interference in the field, it is difficult to accurately locate the position of [...] Read more.
Partial discharge (PD) in insulators will not only lead to the gradual degradation of insulation performance but even cause power system failure in serious cases. Because there is strong noise interference in the field, it is difficult to accurately locate the position of the PD source. Therefore, this paper proposes a three-dimensional spatial localization method of the PD source with a four-element ultra-high-frequency (UHF) array based on improved wavelet packet dynamic threshold denoising and the Gxxβ generalized cross-correlation algorithm. Firstly, considering the field noise interference, the PD signal is decomposed into sub-signals with different frequency bands by the wavelet packet, and the corresponding wavelet packet coefficients are extracted. By using the improved threshold function to process the wavelet packet coefficients, the PD signal with low distortion rate and high signal-to-noise ratio (SNR) is reconstructed. Secondly, in order to solve the problem that the amplitude of the first wave of the PD signal is small and the SNR is low, an improved weighting function, Gxxβ, is proposed, which is based on the self-power spectral density of the signal and is adjusted by introducing an exponential factor to improve the accuracy of the first wave arrival time and time difference calculation. Finally, the influence of different sensor array shapes and PD source positions on the localization results is analyzed, and a reasonable arrangement scheme is found. In order to verify the performance of the proposed method, simulation and experimental analysis are carried out. The results show that the improved wavelet packet denoising algorithm can effectively realize the separation of PD signal and noise and improve the SNR of the localization signal with low distortion rate. The improved Gxxβ weighting function significantly improves the estimation accuracy of the time difference between UHF sensors. With the sensor array designed in this paper, the relative localization error is 3.46%, and the absolute error is within 6 cm, which meets the requirements of engineering applications. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

14 pages, 990 KiB  
Article
Performance of Ultra-High-Frequency Ultrasound in the Evaluation of Skin Involvement in Systemic Sclerosis: A Cross-Sectional Pilot Study
by Olga Barbara Krammer, Martin Fleck, Boris Ehrenstein, Wolfgang Hartung and Florian Günther
Diagnostics 2025, 15(13), 1600; https://doi.org/10.3390/diagnostics15131600 - 24 Jun 2025
Viewed by 474
Abstract
Objective: The aim of this study was to assess the performance and feasibility of ultra-high-frequency ultrasound (UHF-US) in clinical practice for measuring skin thickness in patients with systemic sclerosis (SSc) compared to age- and sex-matched controls. Materials and Methods: A total [...] Read more.
Objective: The aim of this study was to assess the performance and feasibility of ultra-high-frequency ultrasound (UHF-US) in clinical practice for measuring skin thickness in patients with systemic sclerosis (SSc) compared to age- and sex-matched controls. Materials and Methods: A total of 14 patients with SSc and 14 healthy controls (HCs) were enrolled in the study. All subjects underwent US evaluation of the epidermis, dermis and cutis by three experts in the 17 sites of the modified Rodnan skin score (mRSS). All the sonographers were blinded to the mRSS, which was assessed by an experienced rheumatologist who was not involved in, and blinded to, the US assessment. Results: In comparison to HCs, dermal thickness was significantly higher in patients at six sites: the right (p < 0.001) and left (p = 0.001) finger; right (p = 0.027) and left (p = 0.048) hand; left foot (p = 0.010) and face (p < 0.001). The epidermal layer did not differ significantly. At all mRSS sites except for the chest, there were moderate to strong positive correlations between US-assessed dermal thickness and local mRSS. The interobserver reliability for all sites of the mRSS, with the exception of the face, was good to excellent (with an intraclass correlation coefficient [ICC] ranging from 0.724 to 0.939). Conclusions: These data support the use of UHF-US as an objective and reliable tool for the assessment of skin involvement in patients with SSc. Considering its feasibility in clinical practice, we suggest that US assessment of skin in patients with SSc should be restricted to the dermal layer of the fingers and hands, since they are the sites that skin fibrosis typically starts from. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

21 pages, 5595 KiB  
Article
A Compact and Tunable Active Inductor-Based Bandpass Filter with High Dynamic Range for UHF Band Applications
by Sehmi Saad, Fayrouz Haddad and Aymen Ben Hammadi
Sensors 2025, 25(10), 3089; https://doi.org/10.3390/s25103089 - 13 May 2025
Viewed by 698
Abstract
This paper presents a fully integrated bandpass filter (BPF) with high tunability based on a novel differential active inductor (DAI), designed for sensor interface circuits operating in the ultra-high frequency (UHF) band. The design of the proposed DAI is based on a symmetrical [...] Read more.
This paper presents a fully integrated bandpass filter (BPF) with high tunability based on a novel differential active inductor (DAI), designed for sensor interface circuits operating in the ultra-high frequency (UHF) band. The design of the proposed DAI is based on a symmetrical configuration, utilizing a differential amplifier for the feedforward transconductance and a common-source (CS) transistor for the feedback transconductance. By integrating a cascode scheme with a feedback resistor, the quality factor of the active inductor is significantly improved, leading to enhanced mid-band gain for the bandpass filter. To facilitate independent tuning of the BPF‘s center frequency and mid-band gain, an active resistor adjustment and bias voltage control are employed, providing precise control over the filter’s operational parameters. Post-layout simulations and process corner results are conducted with 0.13 µm CMOS technology at 1.2 V supply voltage. The proposed second order BPF achieves a broad tuning range of 280 MHz to 2.426 GHz, with a passband gain between 8.9 dB and 16.54 dB. The design demonstrates a maximum noise figure of 16.54 dB at 280 MHz, an input-referred 1 dB compression point of −3.78 dBm, and a third-order input intercept point (IIP3) of −0.897 dBm. Additionally, the BPF occupies an active area of only 68.2×30 µm2, including impedance-matching part, and consumes a DC power of 14–20 mW. The compact size and low power consumption of the design make it highly suitable for integration into modern wireless sensor interfaces where performance and area efficiency are critical. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Sensors 2025)
Show Figures

Figure 1

17 pages, 25383 KiB  
Article
RFID Sensor with Integrated Energy Harvesting for Wireless Measurement of dc Magnetic Fields
by Shijie Fu, Greg E. Bridges and Behzad Kordi
Sensors 2025, 25(10), 3024; https://doi.org/10.3390/s25103024 - 10 May 2025
Viewed by 853
Abstract
High-voltage direct-current (HVdc) transmission lines are gaining more attention as an integral part of modern power system networks. Monitoring the dc current is important for metering and the development of dynamic line rating control schemes. However, this has been a challenging task, and [...] Read more.
High-voltage direct-current (HVdc) transmission lines are gaining more attention as an integral part of modern power system networks. Monitoring the dc current is important for metering and the development of dynamic line rating control schemes. However, this has been a challenging task, and there is a need for wireless sensing methods with high accuracy and a dynamic range. Conventional methods require direct contact with the high-voltage conductors and utilize bulky and complex equipment. In this paper, an ultra-high-frequency (UHF) radio frequency identification (RFID)-based sensor is introduced for the monitoring of the dc current of an HVdc transmission line. The sensor is composed of a passive RFID tag with a custom-designed antenna, integrated with a Hall effect magnetic field device and an RF power harvesting unit. The dc current is measured by monitoring the dc magnetic field around the conductor using the Hall effect device. The internal memory of the RFID tag is encoded with the magnetic field data. The entire RFID sensor can be wirelessly powered and interrogated using a conventional RFID reader. The advantage of this approach is that the sensor does not require batteries and does not need additional maintenance during its lifetime. This is an important feature in a high-voltage environment where any maintenance requires either an outage or special equipment. In this paper, the detailed design of the RFID sensor is presented, including the antenna design and measurements for both the RFID tag and the RF harvesting section, the microcontroller interfacing design and testing, the magnetic field sensor calibration, and the RF power harvesting section. The UHF RFID-based magnetic field sensor was fabricated and tested using a laboratory experimental setup. In the experiment, a 40 mm-diameter-aluminum conductor, typically used in 500 kV HVdc transmission lines carrying a dc current of up to 1200 A, was used to conduct dc current tests for the fabricated sensor. The sensor was placed near the conductor such that the Hall effect device was close to the surface of the conductor, and readings were acquired by the RFID reader. The sensitivity of the entire RFID sensor was 30 mV/mT, with linear behavior over a magnetic flux density range from 0 mT to 4.5 mT. Full article
(This article belongs to the Special Issue Advances in Magnetic Sensors and Their Applications)
Show Figures

Figure 1

16 pages, 5879 KiB  
Article
Partial Discharge Pattern Recognition Based on Swin Transformer for Power Cable Fault Diagnosis in Modern Distribution Systems
by Yifei Li, Cheng Gong, Tun Deng, Zihao Jia, Fang Wang, Qiao Zhao and Jingrui Zhang
Processes 2025, 13(3), 852; https://doi.org/10.3390/pr13030852 - 14 Mar 2025
Cited by 2 | Viewed by 806
Abstract
As critical infrastructure in modern distribution systems, power cables face progressive insulation degradation from partial discharge (PD), while conventional recognition methods struggle with feature extraction and model generalizability. This study develops an integrated experimental platform for PD pattern recognition in power cable systems, [...] Read more.
As critical infrastructure in modern distribution systems, power cables face progressive insulation degradation from partial discharge (PD), while conventional recognition methods struggle with feature extraction and model generalizability. This study develops an integrated experimental platform for PD pattern recognition in power cable systems, comprising a control console, high-voltage transformer, high-frequency current transformer, and ultra-high-frequency (UHF) signal acquisition equipment. Four distinct types of discharge-defective models are constructed and tested through this dedicated high-voltage platform, generating a dataset of phase-resolved partial discharge (PRPD) spectra. Based on this experimental foundation, an improved Swin Transformer-based framework with adaptive learning rate optimization is developed to address the limitations of conventional methods. The proposed architecture demonstrates superior performance, achieving 94.68% classification accuracy with 20 training epochs while reaching 97.52% at the final 200th epoch. Comparisons with the original tiny version of the Swin Transformer model show that the proposed Swin Transformer with an adaptive learning rate attains a maximum improvement of 6.89% over the baseline model in recognition accuracy for different types of PD defect detection. Comparisons with other deeper Convolutional Neural Networks illustrate that the proposed lightweight Swin Transformer can achieve comparable accuracy with significantly lower computational demands, making it more promising for application in real-time PD defect diagnostics. Full article
Show Figures

Figure 1

18 pages, 5992 KiB  
Article
A Deployable Conical Log Spiral Antenna for Small Spacecraft: Electronic Design and Test
by Lewis R. Williams, Karina Vieira Hoel, Lars Erling Bråten, Arthur Romeijer, Natanael Hjermann and Bendik Sagsveen
Aerospace 2025, 12(3), 218; https://doi.org/10.3390/aerospace12030218 - 7 Mar 2025
Cited by 1 | Viewed by 1906
Abstract
An ultra-high-frequency (UHF) deployable conical log spiral antenna’s design and experimental test results are presented. The antenna is a spring constructed from a carbon-fiber-infused epoxy matrix. The spring design simplified the spacecraft deployment mechanism, and the use of composite materials allowed for the [...] Read more.
An ultra-high-frequency (UHF) deployable conical log spiral antenna’s design and experimental test results are presented. The antenna is a spring constructed from a carbon-fiber-infused epoxy matrix. The spring design simplified the spacecraft deployment mechanism, and the use of composite materials allowed for the integration of radiating elements into the spring structure. A Chebyshev transformer at the base of the antenna is used to match the incoming transmission line impedance to a 95 Ω coaxial cable. The 95 Ω coaxial, which is the balun and the radiating element, is embedded into the antenna structure. The antenna is fed at the cone’s base without requiring a ground plane whilst maintaining radiation in the cone’s apex-pointing direction. This facilitated an uncomplicated deployment mechanism. Prototypes have been manufactured for 500 to 1500 MHz designs. Antenna measurements show a realized gain of between approximately 3 to 6 dBi from 500 to 1500 MHz. Full article
(This article belongs to the Special Issue Small Satellite Missions)
Show Figures

Figure 1

18 pages, 13167 KiB  
Article
Research on Low-Profile Directional Flexible Antenna with 3D Coplanar Waveguide for Partial Discharge Detection
by Yan Mi, Wentao Liu, Yiqin Peng, Lei Deng, Benxiang Shu, Xiaopeng Wang and Songyuan Li
Micromachines 2025, 16(3), 253; https://doi.org/10.3390/mi16030253 - 24 Feb 2025
Viewed by 1415
Abstract
Due to the challenges in antenna installation and detection performance caused by metal obstruction along the propagation path at a Gas-Insulated Switchgear (GIS) cable terminal, as well as the adverse effects of environmental interference on the detection of partial discharge (PD) by existing [...] Read more.
Due to the challenges in antenna installation and detection performance caused by metal obstruction along the propagation path at a Gas-Insulated Switchgear (GIS) cable terminal, as well as the adverse effects of environmental interference on the detection of partial discharge (PD) by existing flexible antennas, this paper proposes a directional flexible antenna design to mitigate these issues and improve detection performance. The proposed design employs a coplanar waveguide (CPW)-fed monopole antenna structure, where the grounding plane is extended to the back of the antenna to enhance directional reception. The designed flexible antenna measures 88.5 × 70 × 20 mm, and its low-profile design allows it to be easily mounted on the outer wall of the epoxy sleeve at the GIS cable terminal. The measurement results show that the flexible antenna has a Voltage Standing Wave Ratio (VSWR) of less than 2 in the 0.541–3 GHz frequency range. It also maintains stable impedance characteristics across various bending radii, with an average effective height of 10.79 mm in the 0.3–1.5 GHz frequency range. A GIS cable terminal PD experimental platform was established, and the experimental results demonstrate that the bending has minimal impact on the detection performance of the flexible antenna, which can cover the detection range of the GIS cable terminal; metal obstruction significantly impacts the PD signal amplitude, and the designed flexible antenna is suitable for detecting PDs in confined spaces with metal obstruction. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

20 pages, 4123 KiB  
Article
RFID Unpacked: A Case Study in Employing RFID Tags from Item to Pallet Level
by Ethan Claucherty, Danielle Cummins and Bahar Aliakbarian
Electronics 2025, 14(2), 278; https://doi.org/10.3390/electronics14020278 - 11 Jan 2025
Viewed by 1983
Abstract
As the use of passive ultra-high frequency (UHF) radio frequency identification (RFID) tags continues to surge in supply chain management, it becomes crucial to optimize their application at various levels of packaging to ensure reliability. These packaging levels play a pivotal role in [...] Read more.
As the use of passive ultra-high frequency (UHF) radio frequency identification (RFID) tags continues to surge in supply chain management, it becomes crucial to optimize their application at various levels of packaging to ensure reliability. These packaging levels play a pivotal role in achieving maximum readability and widespread adoption within the industry. This research paper aims to determine the most suitable passive UHF RFID tag for consumer goods filled with liquid and wrapped in foil packaging. In this study, two distinct RFID tags from separate manufacturers were evaluated. The research focused on critical factors such as reader height, distance, and item configuration across different packaging levels (item, case, and pallet). The results demonstrated that the packaging configuration impacts the readability of RFID tags at each packaging level. Through rigorous testing, it was found that achieving a tag readability rate higher than 99.7% is feasible and readability can be optimized by adjusting the reader position, packaging configuration, and tag design. The optimized configuration and testing platform developed in this study can be used for comparable products in other supply chains such as consumer goods, pharmaceuticals, and food. The results of this study emphasize RFID’s potential to revolutionize supply chain management. Full article
(This article belongs to the Special Issue RFID Technology and Its Applications)
Show Figures

Figure 1

17 pages, 15611 KiB  
Article
A Reading Range- and Frequency-Reconfigurable Antenna for Near-Field and Far-Field UHF RFID Applications
by Chenyang Song and Zhipeng Wu
Sensors 2025, 25(2), 408; https://doi.org/10.3390/s25020408 - 11 Jan 2025
Viewed by 1335
Abstract
In radio frequency identification (RFID), differences in spectrum policies and tag misreading in different countries are the two main issues that limit its application. To solve these problems, this article proposes a composite right/left-handed transmission line (CRLH-TL)-based reconfigurable antenna for ultra-high frequency near-field [...] Read more.
In radio frequency identification (RFID), differences in spectrum policies and tag misreading in different countries are the two main issues that limit its application. To solve these problems, this article proposes a composite right/left-handed transmission line (CRLH-TL)-based reconfigurable antenna for ultra-high frequency near-field and far-field RFID reader applications. The CRLH-TL is achieved using a periodically capacitive gap-loaded parallel plate line. By deploying the CRLH-TL operating at zeroth-order resonance, a loop antenna with in-phase radiating current is obtained, which contributes to a strong and uniform H-field and a horizontally polarized omnidirectional radiation pattern. By introducing additional tunable components, frequency and reading range reconfigurabilities are enabled. The frequency tuning range is from 833 MHz to 979 MHz, which covers the worldwide UHF RFID band. Moreover, each operation mode has a narrow frequency band, which means it can operate without violating different countries’ radio frequency policy and reduce the design difficulty of designing multiple versions of a reader. Both the near-field interrogation zone and maximum far-field reading distance of the antenna are adjustable. The near-field interrogation zone is 400 mm × 400 mm × 50 mm and can be further confined. The tuning range for far-field reading distance is from 2.71 m to 0.35 m. Full article
(This article belongs to the Special Issue RFID and Zero-Power Backscatter Sensors)
Show Figures

Figure 1

14 pages, 4693 KiB  
Article
A Broadband Ultra High Frequency (UHF) Fat-Dipole Antenna for Digital TV Applications
by Marcelo B. Perotoni, Marcos S. Vieira and Giovane G. B. dos Santos
Appl. Sci. 2024, 14(24), 11679; https://doi.org/10.3390/app142411679 - 14 Dec 2024
Viewed by 1382
Abstract
A broadband and compact planar UHF antenna is presented for use in MIMO Digital TV indoor applications. The choice of the element and its physical implementation is oriented towards a low-profile, low-cost, and single-layer deployment. Since it is intended to be used in [...] Read more.
A broadband and compact planar UHF antenna is presented for use in MIMO Digital TV indoor applications. The choice of the element and its physical implementation is oriented towards a low-profile, low-cost, and single-layer deployment. Since it is intended to be used in a 2 × 1 MIMO array, two antennas were constructed and tested to minimize their coupling to provide larger MIMO gains. Regarding the excitation, two different structures were evaluated to observe their impact on the final impedance profile. The option of an infinite balun provided a 62% fractional bandwidth (394 MHz to 747 MHz), covering the desired band and with good isolation levels when analyzed in the array. Results regarding MIMO parameters are provided herein, such as Envelope Correlation Coefficient and Total Active Reflection Coefficient, proving the potential of the proposed antenna array to be used in MIMO Digital TV applications in covering the UHF band. Full article
(This article belongs to the Special Issue Antenna Design and Microwave Engineering)
Show Figures

Figure 1

22 pages, 6748 KiB  
Article
Leaf Moisture Content Detection Method Based on UHF RFID and Hyperdimensional Computing
by Yin Wu, Ziyang Hou, Yanyi Liu and Wenbo Liu
Forests 2024, 15(10), 1798; https://doi.org/10.3390/f15101798 - 13 Oct 2024
Cited by 2 | Viewed by 1714
Abstract
Leaf moisture content (LMC) directly affects the life activities of plants and becomes a key factor to evaluate the growth status of plants. To explore a low-cost, real-time, rapid, and accurate method for LMC detection, this paper employs Ultra-High-Frequency Radio-Frequency Identification (UHF RFID) [...] Read more.
Leaf moisture content (LMC) directly affects the life activities of plants and becomes a key factor to evaluate the growth status of plants. To explore a low-cost, real-time, rapid, and accurate method for LMC detection, this paper employs Ultra-High-Frequency Radio-Frequency Identification (UHF RFID) sensor technology. By reading the tag information attached to the back of leaves, the parameters of the RSSI, phase, and reading distance of the tags are collected. In this paper, we propose an enhanced Multi-Feature Fusion algorithm based on Hyperdimensional Computing (HDC) called MFFHDC. In our proposed method, the real-valued features are encoded into hypervectors and then combined with Multi-Linear Discriminant Analysis (MLDA) for the feature fusion of different features. Finally, a retraining method based on Cosine Annealing with Warm Restarts (CAWR) is proposed to improve the model and further enhance its accuracy. Tests conducted in the experimental forest show that the proposed mechanism can effectively predict the LMC. The model’s Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Coefficient of Determination (R2) reached 0.0195, 0.0255, and 0.9131, respectively. Additionally, comparisons with other methods demonstrate that the presented system performs excellently in most aspects. As a lightweight model, this study shows great practical application value, particularly for the limited data volume and low hardware costs. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

13 pages, 11445 KiB  
Article
Compact VHF/UHF Ultrawideband Discone Antenna with Consistent Pattern
by Guang Li, Fushun Zhang and Bingnan Wang
Sensors 2024, 24(18), 6147; https://doi.org/10.3390/s24186147 - 23 Sep 2024
Cited by 1 | Viewed by 1743
Abstract
A compact VHF/UHF ultrawideband discone antenna with consistent patterns is proposed in this article. The proposed antenna consists of a disk, a modified cone, an inverted cone, four shorting probes, and two sleeves. To improve the radiation angular distortion at high frequencies, two [...] Read more.
A compact VHF/UHF ultrawideband discone antenna with consistent patterns is proposed in this article. The proposed antenna consists of a disk, a modified cone, an inverted cone, four shorting probes, and two sleeves. To improve the radiation angular distortion at high frequencies, two sleeves are inserted into the discone antenna. Higher-order modes are suppressed, and ultrawideband consistent patterns are obtained without antenna size increasing. An inverted cone and four shorting probes are introduced to achieve broadband and profile reduction. An antenna prototype is fabricated and measured. The proposed antenna possesses consistent patterns in a 11.36:1 bandwidth. The pattern nulls is improved by 26.1 dB. The antenna occupies a cylindrical volume of 0.227 λ0 (D) and 0.096 λ0 (H). It is a competitive candidate for future in-vehicle communication systems. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

40 pages, 6510 KiB  
Review
Review of Various Sensor Technologies in Monitoring the Condition of Power Transformers
by Meysam Beheshti Asl, Issouf Fofana and Fethi Meghnefi
Energies 2024, 17(14), 3533; https://doi.org/10.3390/en17143533 - 18 Jul 2024
Cited by 12 | Viewed by 7489
Abstract
Modern power grids are undergoing a significant transformation with the massive integration of renewable, decentralized, and electronically interfaced energy sources, alongside new digital and wireless communication technologies. This transition necessitates the widespread adoption of robust online diagnostic and monitoring tools. Sensors, known for [...] Read more.
Modern power grids are undergoing a significant transformation with the massive integration of renewable, decentralized, and electronically interfaced energy sources, alongside new digital and wireless communication technologies. This transition necessitates the widespread adoption of robust online diagnostic and monitoring tools. Sensors, known for their intuitive and smart capabilities, play a crucial role in efficient condition monitoring, aiding in the prediction of power outages and facilitating the digital twinning of power equipment. This review comprehensively analyzes various sensor technologies used for monitoring power transformers, focusing on the critical need for reliable and efficient fault detection. The study explores the application of fiber Bragg grating (FBG) sensors, optical fiber sensors, wireless sensing networks, chemical sensors, ultra-high-frequency (UHF) sensors, and piezoelectric sensors in detecting parameters such as partial discharges, core condition, temperature, and dissolved gases. Through an extensive literature review, the sensitivity, accuracy, and practical implementation challenges of these sensor technologies are evaluated. Significant advances in real-time monitoring capabilities and improved diagnostic precision are highlighted in the review. It also identifies key challenges such as environmental susceptibility and the long-term stability of sensors. By synthesizing the current research and methodologies, this paper provides valuable insights into the integration and optimization of sensor technologies for enhancing transformer condition monitoring and reliability in modern power systems. Full article
(This article belongs to the Special Issue Energy, Electrical and Power Engineering 2024)
Show Figures

Figure 1

12 pages, 2818 KiB  
Article
Empowering the Blind: Contactless Activity Recognition with Commodity Software-Defined Radio and Ultra-High-Frequency Radio Frequency Identification
by Muhammad Zakir Khan, Turke Althobaiti, Muhannad Almutiry and Naeem Ramzan
Sensors 2024, 24(11), 3645; https://doi.org/10.3390/s24113645 - 4 Jun 2024
Viewed by 1233
Abstract
This study presents a novel computational radio frequency identification (RFID) system designed specifically for assisting blind individuals, utilising software-defined radio (SDR) with coherent detection. The system employs battery-less ultra-high-frequency (UHF) tag arrays in Gen2 RFID systems, enhancing the transmission of sensed information beyond [...] Read more.
This study presents a novel computational radio frequency identification (RFID) system designed specifically for assisting blind individuals, utilising software-defined radio (SDR) with coherent detection. The system employs battery-less ultra-high-frequency (UHF) tag arrays in Gen2 RFID systems, enhancing the transmission of sensed information beyond standard identification bits. Our method uses an SDR reader to efficiently manage multiple tags with Gen2 preambles implemented on a single transceiver card. The results highlight the system’s real-time capability to detect movements and direction of walking within a four-meter range, indicating significant advances in contactless activity monitoring. This system not only handles the complexities of multiple tag scenarios but also delineates the influence of system parameters on RFID operational efficiency. This study contributes to assistive technology, provides a platform for future advancements aimed at addressing contemporary limitations in pseudo-localisation, and offers a practical, affordable assistance system for blind individuals. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

Back to TopTop