Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = ultra fine grained materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 12545 KiB  
Article
Experimental Study on the Influence of Low Temperature on the Gas Permeability of Granite
by Wei Chen, Peng Wang and Yue Liang
Appl. Sci. 2025, 15(10), 5447; https://doi.org/10.3390/app15105447 - 13 May 2025
Viewed by 389
Abstract
Granite is widely regarded as an ideal material for the construction of underground liquefied natural gas (LNG) storage reservoirs due to its high mechanical strength and broad geological availability. However, the ultra-low storage temperature of LNG (−162 °C) poses potential risks in altering [...] Read more.
Granite is widely regarded as an ideal material for the construction of underground liquefied natural gas (LNG) storage reservoirs due to its high mechanical strength and broad geological availability. However, the ultra-low storage temperature of LNG (−162 °C) poses potential risks in altering the permeability of granite, which may compromise the long-term safety and integrity of the reservoir. To investigate the permeability characteristics and microstructural degradation of granite under low-temperature conditions, both coarse-grained and fine-grained granite samples were subjected to a series of experiments, including one-dimensional (1D) gas permeability tests (conducted before and after freeze–thaw cycles ranging from −20 °C to −120 °C), nuclear magnetic resonance (NMR) tests, and two-dimensional (2D) gas permeability tests performed under real-time low-temperature conditions. Experimental results indicated that the gas permeability of granite under real-time low-temperature conditions exhibited a linear increase as the temperature decreased. In contrast, the gas permeability after freeze–thaw cycling followed a nonlinear trend: it increased initially, plateaued, and then increased again as the freezing temperature continued to drop. A further analysis of pore structure evolution and permeability changes revealed distinct degradation mechanisms depending on grain size. In coarse-grained granite, freeze–thaw damage was primarily characterized by the initiation and propagation of new microcracks, which originated as micropores and expanded into mesopores. In fine-grained granite, the damage primarily resulted from the progressive widening of existing fissures, with micropores gradually evolving into mesopores over successive cycles. The study’s findings provide a useful theoretical foundation for the secure subterranean storage of LNG. Full article
(This article belongs to the Special Issue Advances and Challenges in Rock Mechanics and Rock Engineering)
Show Figures

Figure 1

21 pages, 8410 KiB  
Article
Effect of Extrusion Temperature on the Microstructure and Properties of Biomedical Mg-1Zn-0.4Ca-1MgO Composite
by Shuaipeng Gao, Shaoyuan Lyu, Qian Zhao and Minfang Chen
Metals 2025, 15(3), 337; https://doi.org/10.3390/met15030337 - 20 Mar 2025
Cited by 1 | Viewed by 447
Abstract
The effects of extrusion temperatures on the microstructure, mechanical properties, and corrosion performance of biomedical Mg-1Zn-0.4Ca-1MgO composites were systematically investigated. The results indicated that lower extrusion temperatures notably refined the grain size and promoted the formation of numerous nano-scaled secondary phase particles. The [...] Read more.
The effects of extrusion temperatures on the microstructure, mechanical properties, and corrosion performance of biomedical Mg-1Zn-0.4Ca-1MgO composites were systematically investigated. The results indicated that lower extrusion temperatures notably refined the grain size and promoted the formation of numerous nano-scaled secondary phase particles. The grain sizes were 0.8 μm, 1.7 μm, and 3.4 μm for the materials extruded at 280 °C, 310 °C, and 330 °C, which were named ET280, ET310, and ET330. The finest grain size and abundant precipitates enhanced the mechanical properties of the composite with a microhardness of 86.9 HV, a yield strength of 305 MPa, and a fracture elongation of 15.2%. Moreover, the ET280 alloy with ultra-fine grains exhibited the optimal corrosion resistance among these three composites, and its annual corrosion after immersion in Hank’s solution for 14 days was only 0.17 mm/y. The excellent performance in vitro immersion was mainly attributed to the formation of the uniformly dense Ca-P layer on its surface and the contiguous compact Mg(OH)2 layer, which could effectively weaken the contact between the corrosive solution and the Mg matrix. Full article
(This article belongs to the Special Issue Metal Composite Materials and Their Interface Behavior)
Show Figures

Figure 1

19 pages, 9365 KiB  
Article
Evaluations of Microstructure in Ultra-Fine-Grained Matrix with Sintering-Assisted ECAP Process in Aluminum–Nickel Powders
by Ahmet Güral and Ümit Demir
Crystals 2024, 14(12), 1060; https://doi.org/10.3390/cryst14121060 - 8 Dec 2024
Viewed by 1136
Abstract
The aim of this study was the synthesis of intermetallic crystal dispersion in an ultra-fine-grained (UFG) aluminum matrix by the equal-channel angular pressing (ECAP) process, which provides severe plastic deformation (SPD) of aluminum-5 and 10% wt. nickel powders. The ECAP process of up [...] Read more.
The aim of this study was the synthesis of intermetallic crystal dispersion in an ultra-fine-grained (UFG) aluminum matrix by the equal-channel angular pressing (ECAP) process, which provides severe plastic deformation (SPD) of aluminum-5 and 10% wt. nickel powders. The ECAP process of up to 20 passes was carried out at 200 °C. Intermetallic crystal particles in the UFG Al matrix were obtained in sintered samples at 500 °C for 1 and 5 h, interrupting the ECAP process. The scanning electron microscope (SEM) images were received for the microstructural evaluations. According to the SEM images, it was understood according to the quantitative observation and energy dispersive spectroscopy (EDS) analysis results that the Ni powders added to Al mostly remained in the block state in the matrix structure after the ECAP processes but started to dissolve in the matrix by increasing the ECAP pass number and sintering temperature. DSC and XRD analyses were carried out to investigate intermetallic crystal evaluation in the material. According to DSC analyses, the melting degrees of the alloys increase with the amount of Ni added. Melting enthalpies and melting degrees showed small changes in the number of ECAP passes. Also, electron backscatter diffraction (EBSD) images were obtained for the samples’ grain size and grain boundary angle measurements. It has been understood that the number of passes and the process temperature are effective parameters for the solid-state synthesis of Al3Ni intermetallic crystals in UFG by the ECAP process. Full article
(This article belongs to the Special Issue Crystal Structure and Magnetic Properties of Intermetallics)
Show Figures

Figure 1

12 pages, 4379 KiB  
Article
Improving the Energy Storage Performance in Bi0.5Na0.5TiO3-Based Ceramics by Combining Relaxor and Antiferroelectric Properties
by Srinivas Pattipaka, Yeseul Lim, Yundong Jeong, Mahesh Peddigari, Yuho Min, Jae Won Jeong, Jongmoon Jang, Sung-Dae Kim and Geon-Tae Hwang
Materials 2024, 17(20), 5044; https://doi.org/10.3390/ma17205044 - 15 Oct 2024
Viewed by 1375
Abstract
Ceramic capacitors have received great attention for use in pulse power systems owing to their ultra-fast charge–discharge rate, good temperature stability, and excellent fatigue resistance. However, the low energy storage density and low breakdown strength (BDS) of ceramic capacitors limit the practical applications [...] Read more.
Ceramic capacitors have received great attention for use in pulse power systems owing to their ultra-fast charge–discharge rate, good temperature stability, and excellent fatigue resistance. However, the low energy storage density and low breakdown strength (BDS) of ceramic capacitors limit the practical applications of energy storage technologies. In this work, we present a series of relaxor ferroelectric ceramics (1−x) [0.94 Bi0.5Na0.5TiO3 –0.06BaTiO3]– x Sr0.7Bi0.2TiO3 (1-x BNT-BT- x SBT; x = 0, 0.20, 0.225, 0.25, 0.275 and 0.30) with improved energy storage performances by combining relaxor and antiferroelectric properties. XRD, Raman spectra, and SEM characterizations of BNT-BT-SBT ceramics revealed a rhombohedral–tetragonal phase, highly dynamic polar nanoregions, and a reduction in grain size with a homogeneous and dense microstructure, respectively. A high dielectric constant of 1654 at 1 kHz and low remnant polarization of 1.39 µC/cm2 were obtained with the addition of SBT for x = 0.275; these are beneficial for improving energy storage performance. The diffuse phase transition of these ceramics displays relaxor behavior, which is improved with SBT and confirmed by modified the Curie–Weiss law. The combining relaxor and antiferroelectric properties with fine grain size by the incorporation of SBT enables an enhanced maximum polarization of a minimized P-E loop, leading to an improved BDS. As a result, a high recoverable energy density Wrec of 1.02 J/cm3 and a high energy efficiency η of 75.98% at 89 kV/cm were achieved for an optimum composition of 0.725 [0.94BNT-0.06BT]-0.275 SBT. These results demonstrate that BNT-based relaxor ferroelectric ceramics are good candidates for next-generation ceramic capacitors and offer a potential strategy for exploiting novel high-performance ceramic materials. Full article
Show Figures

Figure 1

14 pages, 3670 KiB  
Article
Mechanical Behavior of Oxide Dispersion Strengthened Steel Directly Consolidated by Rotary Swaging
by Radim Kocich, Lenka Kunčická, Petr Král and Karel Dvořák
Materials 2024, 17(19), 4831; https://doi.org/10.3390/ma17194831 - 30 Sep 2024
Cited by 1 | Viewed by 946
Abstract
Among the main benefits of powder-based materials is the possibility of combining different constituents to achieve enhanced properties of the fabricated bulk material. The presented study characterizes the micro- and sub-structures and related mechanical properties of ferritic steel strengthened with a fine dispersion [...] Read more.
Among the main benefits of powder-based materials is the possibility of combining different constituents to achieve enhanced properties of the fabricated bulk material. The presented study characterizes the micro- and sub-structures and related mechanical properties of ferritic steel strengthened with a fine dispersion of nano-sized Y2O3 oxide particles. Unlike the typical method of preparation via rolling, the material presented herein was fabricated by direct consolidation from a mixture of powders using the versatile method of hot rotary swaging. The mechanical properties were evaluated at room temperature and also at 1300 °C to document the suitability of the prepared steel for high-temperature applications. The results showed that the imposed shear strain, i.e., swaging ratio, is a crucial parameter influencing the microstructure and, thus, material behavior. The workpiece subjected to the swaging ratio of 1.4 already exhibited a sufficiently consolidated structure with ultra-fine grains and featured high room-temperature microhardness values (up to 690 HV0.5), as well as a relatively high maximum flow stress (~88 MPa) when deformed at the temperature of 1300 °C with the strain rate of 0.5 s−1. However, the dispersion of oxides within this sample exhibited local inhomogeneities. Increasing the swaging ratio to 2.5 substantially contributed to the homogenization of the distribution of the Y2O3 oxide particles, which resulted in increased homogeneity of mechanical properties (lower deviations from the average values), but their lower absolute values due to the occurrence of nucleating nano-sized recrystallized grains. Full article
Show Figures

Figure 1

21 pages, 41754 KiB  
Article
Study on Fracture Behavior and Toughening Mechanisms of Ultra-High-Strength Pipeline Steel
by Ba Li, Xiaoshun Zhou, Shujun Jia, Xiaoping Chen, Song Fu, Dongliang Zhao, Haonan Zhang and Jie Guo
Metals 2024, 14(6), 666; https://doi.org/10.3390/met14060666 - 4 Jun 2024
Cited by 5 | Viewed by 1991
Abstract
In this paper, a series of low-temperature CVN (Charpy V-notch impact test) and DWTT (drop-weight tear test) experiments were carried out to deal with the intensifying contradiction of strength and toughness of ultra-high-strength pipeline steel. The fracture behavior and toughening mechanisms of ultra-high-strength [...] Read more.
In this paper, a series of low-temperature CVN (Charpy V-notch impact test) and DWTT (drop-weight tear test) experiments were carried out to deal with the intensifying contradiction of strength and toughness of ultra-high-strength pipeline steel. The fracture behavior and toughening mechanisms of ultra-high-strength pipeline steel were investigated using scanning electron microscopy, transmission electron microscopy and backscattered electron diffraction systems. The results show that DWTT fractures in ultra-high-strength pipeline steel had a variety of unconventional morphological features compared to CVN fractures, including ridge protrusion in ductile fracture conditions and a large-size fracture platform in brittle fracture conditions. Therefore, DWTT fractures contained more information about the material fracturing process, and could better reflect the actual process of material fracturing. In ultra-high-strength pipeline steel, fine-grained granular bainite caused cracks to undergo large deflections or frequent small transitions, which consumed additional energy and improved toughness. In contrast, large-sized granular bainite, which consisted of low-angle grain boundaries, did not effectively prevent crack propagation when it encountered cracks, which was not conducive to improved toughness. Moreover, the M/A constituents in large-sized granular bainite aggregated, cracked, or fell off, which could easily lead to the formation of microcracks and was also detrimental to toughening. Full article
(This article belongs to the Special Issue Design, Preparation and Properties of High Performance Steels)
Show Figures

Figure 1

20 pages, 12081 KiB  
Article
Crystal Plasticity Modeling to Capture Microstructural Variations in Cold-Sprayed Materials
by Aulora Williams, YubRaj Paudel, Shiraz Mujahid, Marc Pepi, Peter Czech, Haitham El Kadiri and Hongjoo Rhee
Crystals 2024, 14(4), 329; https://doi.org/10.3390/cryst14040329 - 30 Mar 2024
Cited by 1 | Viewed by 1684
Abstract
The high-velocity impact of powder particles in cold-spray additively manufactured (CSAM) parts creates intersplat boundaries with regions of high dislocation densities and sub-grain structures. Upon microstructure and mechanical characterization, CSAM Aluminum 6061 showed non-uniformity with spatial variation in the microstructure and mechanical properties, [...] Read more.
The high-velocity impact of powder particles in cold-spray additively manufactured (CSAM) parts creates intersplat boundaries with regions of high dislocation densities and sub-grain structures. Upon microstructure and mechanical characterization, CSAM Aluminum 6061 showed non-uniformity with spatial variation in the microstructure and mechanical properties, affecting the overall response of the additively manufactured parts. Post-processing treatments are conducted in as-printed samples to improve particle bonding, relieve residual stresses, and improve mechanical properties. In this work, we attempt to implement the effects of grain size and distribution of smaller grains along the intersplat boundaries using the grain size distribution function and powder size information to accurately predict the deformation response of cold-sprayed material using a mean-field viscoplastic self-consistent (VPSC) model. The incorporation of an intersplat boundary term in the VPSC model resulted in a stress–strain response closely matching the experimental findings, preventing the superficially high stresses observed due to Hall–Petch effects from ultra-fine-grain structures. Likewise, the results from the grain analysis showed the combined effects of grain size, orientation, and intersplat mechanisms that captured the stresses experienced and strain accommodated by individual grains. Full article
(This article belongs to the Special Issue Processing-Microstructure-Properties Relationship of Advanced Alloys)
Show Figures

Figure 1

21 pages, 5171 KiB  
Review
Structural Phenomena Introduced by Rotary Swaging: A Review
by Lenka Kunčická
Materials 2024, 17(2), 466; https://doi.org/10.3390/ma17020466 - 18 Jan 2024
Cited by 6 | Viewed by 2433
Abstract
Rotary swaging is an industrially applicable intensive plastic deformation method. Due to its versatility, it is popular, especially in the automotive industry. Similar to the well-known methods of severe plastic deformation (SPD), rotary swaging imparts high shear strain into the swaged materials and [...] Read more.
Rotary swaging is an industrially applicable intensive plastic deformation method. Due to its versatility, it is popular, especially in the automotive industry. Similar to the well-known methods of severe plastic deformation (SPD), rotary swaging imparts high shear strain into the swaged materials and thus introduces grain refinement down to a very fine, even ultra-fine, level. However, contrary to SPD methods, one of the primary characteristics of which is that they retain the shapes and dimensions of the processed sample, rotary swaging enables the imparting of required shapes and dimensions of workpieces (besides introducing structure refinement and the consequent enhancement of properties and performance). Therefore, under optimized conditions, swaging can be used to process workpieces of virtually any metallic material with theoretically any required dimensions. The main aim of this review is to present the principle of the rotary swaging method and its undeniable advantages. The focus is primarily on assessing its pros and cons by evaluating the imparted microstructures. Full article
(This article belongs to the Special Issue Structural Phenomena in Metallic Materials for Demanding Applications)
Show Figures

Figure 1

22 pages, 18307 KiB  
Article
Microstructural Evolution of a Re-Containing 10% Cr-3Co-3W Steel during Creep at Elevated Temperature
by Alexandra Fedoseeva, Ivan Brazhnikov, Svetlana Degtyareva, Ivan Nikitin and Rustam Kaibyshev
Metals 2023, 13(10), 1683; https://doi.org/10.3390/met13101683 - 1 Oct 2023
Cited by 1 | Viewed by 1355
Abstract
Ten percent Cr steels are considered to be prospective materials for the production of pipes, tubes, and blades in coal-fired power plants, which are able to operate within ultra-supercritical steam parameters. The microstructural evolution of a Re-containing 10% Cr-3Co-3W steel with low N [...] Read more.
Ten percent Cr steels are considered to be prospective materials for the production of pipes, tubes, and blades in coal-fired power plants, which are able to operate within ultra-supercritical steam parameters. The microstructural evolution of a Re-containing 10% Cr-3Co-3W steel with low N and high B content during creep was investigated at different strains at 923 K and under an applied stress of 120 MPa using TEM and EBSD analyses. The studied steel had been previously normalized at 1323 K and tempered at 1043 K for 3 h. In the initial state, the tempered martensite lath structure with high dislocation density was stabilized by M23C6 carbides, NbX carbonitrides, and M6C carbides. At the end of the primary creep stage, the main microstructural change was found to be the precipitation of the fine Laves phase particles along the boundaries of the prior austenite grains, packets, blocks, and martensitic laths. The remarkable microstructural degradation processes, such as the significant growth of martensitic laths, the reduction in dislocation density within the lath interiors, and the growth of the grain boundary Laves phase particles, occurred during the steady-state and tertiary creep stages. Moreover, during the steady-state creep stage, the precipitation of the V-rich phase was revealed. Softening was in accordance with the dramatic reduction in hardness during the transition from the primary creep stage to the steady-state creep stage. The reasons for the softening were considered to be due to the change in the strengthening mechanisms and the interactions of the grain boundary M23C6 carbides and Laves phase with the low-angle boundaries of the martensitic laths and free dislocations. Full article
(This article belongs to the Special Issue Creep and Fatigue Behavior of Alloys)
Show Figures

Figure 1

12 pages, 5309 KiB  
Article
Deformation Characteristics of Asymmetric Gradient Extrusion in Preparing Ultra-Fine-Grained Bulk Materials
by Junkai Fan, Jikang Li, Wei Liu and Chengpeng Wang
Processes 2023, 11(8), 2305; https://doi.org/10.3390/pr11082305 - 1 Aug 2023
Cited by 1 | Viewed by 1321
Abstract
In this paper, a novel method for the preparation of ultra-fine-grained bulk materials called asymmetric gradient extrusion (AGE) is proposed. In AGE, the cross-section of the extrusion channel is a rectangle, and two inclined planes are staggered along the extrusion direction. To realize [...] Read more.
In this paper, a novel method for the preparation of ultra-fine-grained bulk materials called asymmetric gradient extrusion (AGE) is proposed. In AGE, the cross-section of the extrusion channel is a rectangle, and two inclined planes are staggered along the extrusion direction. To realize repetitive extrusion, the thickness of the workpiece is limited to be equal to the width of the channel outlet. In order to study the mechanism of ultra-fine grain formation in AGE, the deformation characteristics of AGE were investigated. First, the slip line field method was used to theoretically analyze the deformation characteristics and grain splitting in AGE. Then, the plastic deformation behavior of bulk samples in AGE and traditional extrusion was investigated and compared with the finite element method. In addition, the deformation characteristic and microstructure variation of pure copper bulk samples in AGE were experimentally investigated. The results showed that the deformation characteristics of workpieces were highly related to the two inclined planes within the die channel. Two independent deformation zones can be formed with increasing distance between the two inclined planes. The shear effects in each deformation zone lead to grain splitting during extrusion. Compared with traditional extrusion, the advantage of AGE is its amazing ability to form high and uniform strain during extrusion, which leads to the formation of small and uniform grains in the workpiece. After six passes of AGE, an average grain size of 0.6 μm can be achieved. The enhancement and accumulation of dislocations within grains was the dominating mechanism of grain fragmentation. AGE shows impressive potential in the preparation of ultra-fine-grained bulk materials. Full article
(This article belongs to the Special Issue Computer-Aided Manufacturing Technologies in Mechanical Field)
Show Figures

Figure 1

12 pages, 4017 KiB  
Article
Enhanced Energy Storage Performance and Efficiency in Bi0.5(Na0.8K0.2)0.5TiO3-Bi0.2Sr0.7TiO3 Relaxor Ferroelectric Ceramics via Domain Engineering
by Srinivas Pattipaka, Hyunsu Choi, Yeseul Lim, Kwi-Il Park, Kyeongwoon Chung and Geon-Tae Hwang
Materials 2023, 16(14), 4912; https://doi.org/10.3390/ma16144912 - 9 Jul 2023
Cited by 10 | Viewed by 2790
Abstract
Dielectric materials are highly desired for pulsed power capacitors due to their ultra-fast charge-discharge rate and excellent fatigue behavior. Nevertheless, the low energy storage density caused by the low breakdown strength has been the main challenge for practical applications. Herein, we report the [...] Read more.
Dielectric materials are highly desired for pulsed power capacitors due to their ultra-fast charge-discharge rate and excellent fatigue behavior. Nevertheless, the low energy storage density caused by the low breakdown strength has been the main challenge for practical applications. Herein, we report the electric energy storage properties of (1 − x) Bi0.5(Na0.8K0.2)0.5TiO3-xBi0.2Sr0.7TiO3 (BNKT-BST; x = 0.15–0.50) relaxor ferroelectric ceramics that are enhanced via a domain engineering method. A rhombohedral-tetragonal phase, the formation of highly dynamic PNRs, and a dense microstructure are confirmed from XRD, Raman vibrational spectra, and microscopic investigations. The relative dielectric permittivity (2664 at 1 kHz) and loss factor (0.058) were gradually improved with BST (x = 0.45). The incorporation of BST into BNKT can disturb the long-range ferroelectric order, lowering the dielectric maximum temperature Tm and inducing the formation of highly dynamic polar nano-regions. In addition, the Tm shifts toward a high temperature with frequency and a diffuse phase transition, indicating relaxor ferroelectric characteristics of BNKT-BST ceramics, which is confirmed by the modified Curie-Weiss law. The rhombohedral-tetragonal phase, fine grain size, and lowered Tm with relaxor properties synergistically contribute to a high Pmax and low Pr, improving the breakdown strength with BST and resulting in a high recoverable energy density Wrec of 0.81 J/cm3 and a high energy efficiency η of 86.95% at 90 kV/cm for x = 0.45. Full article
Show Figures

Figure 1

18 pages, 4726 KiB  
Review
A Comprehensive Review of Large-Strain-Extrusion Machining Process for Production of Fine-Grained Materials
by Muralimohan Gurusamy and Balkrishna C. Rao
Crystals 2023, 13(1), 131; https://doi.org/10.3390/cryst13010131 - 11 Jan 2023
Cited by 2 | Viewed by 2708
Abstract
Bulk nanostructured metals and alloys are finding increasing structural applications due to their superior mechanical properties. The methods that rely on the severe plastic deformation technique for effecting microstructural refinement through imposing large strains are utilized mostly to produce nanostructured materials. The machining [...] Read more.
Bulk nanostructured metals and alloys are finding increasing structural applications due to their superior mechanical properties. The methods that rely on the severe plastic deformation technique for effecting microstructural refinement through imposing large strains are utilized mostly to produce nanostructured materials. The machining process has been demonstrated as a simple process for severe plastic deformation by imposing large strains through a single pass of the cutting tool where strains in a range of 1–15 can be imposed for a variety of materials by varying the cutting conditions and tool geometry. However, the geometry of the resulting chip subjected to severe plastic deformation during the machining process is not under control and, hence, a variant of the machining process, called the large-strain-extrusion machining process, has been proposed and utilized extensively for producing bulk nanostructured materials. Large-strain-extrusion machining possesses simultaneous control over microstructure refinement, through managing the strain during large-strain machining, and the shape and dimension of the resulting chip by the extrusion process. This study provides a comprehensive review of the large-strain-extrusion machining process by presenting the findings related to the utilization of this process for the production of fine-grained foils for various metals and alloys. Further research efforts related to finite-element modelling of large-strain-extrusion machining and their usefulness in designing the experimental setup and process conditions are also discussed. Full article
Show Figures

Figure 1

18 pages, 6223 KiB  
Article
Actuating Bimorph Microstructures with Magnetron-Sputtered Ti-Ni-Cu Shape Memory Alloy Films
by Vlad Bolocan, Dragos Valsan, Aurel Ercuta and Corneliu-Marius Craciunescu
Nanomaterials 2022, 12(23), 4207; https://doi.org/10.3390/nano12234207 - 26 Nov 2022
Cited by 2 | Viewed by 1892
Abstract
The generation of microactuation using narrow thermal hysteresis Ti-Ni-Cu shape-memory alloy films deposited on non-metallic substrates as the active element is studied based on a model previously developed for Ni-Ti/Si bimorphs. To this end, the compositional range in which the B2 (monoclinic) → [...] Read more.
The generation of microactuation using narrow thermal hysteresis Ti-Ni-Cu shape-memory alloy films deposited on non-metallic substrates as the active element is studied based on a model previously developed for Ni-Ti/Si bimorphs. To this end, the compositional range in which the B2 (monoclinic) → B19 (orthorhombic) martensitic phase transformation occurs was considered, and films were deposited by magnetron sputtering on heated Si and Kapton substrates. Ultra-fine grains were observed for the 550 °C deposition temperature. The selected composition was close to Ti50Ni35Cu15, so the narrowing of the thermal hysteresis is not associated with a significant reduction in shape recovery capability. The microstructure and composition of the target materials and as-deposited films used in our experiments were characterized by X-ray diffraction and scanning electron microscopy, whereas the temperature dependence of the volume fraction of the martensite phase was derived using differential scanning calorimetry records for the target materials and from the temperature dependence of the electrical resistance data for the films. An original model was used to predict the actuation of cantilever-type bimorphs with Kapton and Si substrates. Full article
(This article belongs to the Special Issue Nanostructural Processing Effects in Shape Memory Alloys)
Show Figures

Figure 1

21 pages, 8931 KiB  
Review
An Overview of Deformation Path Shapes on Equal Channel Angular Pressing
by Erhan Baysal, Oğuz Koçar, Engin Kocaman and Uğur Köklü
Metals 2022, 12(11), 1800; https://doi.org/10.3390/met12111800 - 24 Oct 2022
Cited by 8 | Viewed by 2683
Abstract
In recent years, research on ultra-fine grain materials has gained attention. While attempts have been made to improve the properties of the material, it has also become increasingly important to decrease the costs. Studies on improving material properties have revealed new production methods [...] Read more.
In recent years, research on ultra-fine grain materials has gained attention. While attempts have been made to improve the properties of the material, it has also become increasingly important to decrease the costs. Studies on improving material properties have revealed new production methods or have required the revision of existing production methods. In this direction, severe plastic deformation methods have come to the fore as a good alternative, and by improving the methods with new variations, materials with grain sizes below 1 µm have been obtained. In addition, this method positively affects the mechanical properties of the material. In this study, the Equal Channel Angular Pressing (ECAP) method, one of the severe plastic deformation methods, which has attracted great attention among researchers, was examined and the development stages of the method were investigated according to recent studies. The effective parameters in the method were examined and the effects of these parameters on the grain structure and mechanical properties of the material were discussed. Channel shapes, which are open to innovation and increase the efficiency of the ECAP method, were kept in the foreground among the prominent parameters in the ECAP process, and the results of the design changes made with new variations were examined. Full article
(This article belongs to the Special Issue Metal Plasticity and Deformation Mechanism of Metallic Materials)
Show Figures

Figure 1

11 pages, 5510 KiB  
Article
Effect of Ultra-High Pressure Sintering and Spark Plasma Sintering and Subsequent Heat Treatment on the Properties of Si3N4 Ceramics
by Xiaoan Lv, Xianhui Li, Junwei Huang, Changchun Ge and Qi Yu
Materials 2022, 15(20), 7309; https://doi.org/10.3390/ma15207309 - 19 Oct 2022
Cited by 3 | Viewed by 2357
Abstract
In this study, coarse Beta silicon nitride (β-Si3N4) powder was used as the raw material to fabricate dense Si3N4 ceramics using two different methods of ultra-high pressure sintering and spark plasma sintering at 1550 °C, followed [...] Read more.
In this study, coarse Beta silicon nitride (β-Si3N4) powder was used as the raw material to fabricate dense Si3N4 ceramics using two different methods of ultra-high pressure sintering and spark plasma sintering at 1550 °C, followed by heat treatment at 1750 °C. The densification, microstructure, mechanical properties, and thermal conductivity of samples were investigated comparatively. The results indicate that spark plasma sintering can fabricate dense Si3N4 ceramics with a relative density of 99.2% in a shorter time and promote α-to-β phase transition. Coarse β-Si3N4 grains were partially fragmented during ultra-high pressure sintering under high pressure of 5 GPa, thereby reducing the number of the nucleus, which is conducive to the growth of elongated grains. The UHP sample with no fine α-Si3N4 powder addition achieved the highest fracture strength (822 MPa) and fracture toughness (6.6 MPa·m1/2). The addition of partial fine α-Si3N4 powder facilitated the densification of the SPS samples and promoted the growth of elongated grains. The β-Si3N4 ceramics SPS sintered with fine α-Si3N4 powder addition obtained the best comprehensive performance, including the highest density of 99.8%, hardness of 1890 HV, fracture strength of 817 MPa, fracture toughness of 6.2 MPa·m1/2, and thermal conductivity of 71 W·m−1·K−1. Full article
Show Figures

Figure 1

Back to TopTop