Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = ufmylation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5014 KiB  
Article
UFBP1 Ameliorates Heat Stress-Induced Apoptosis via Mitochondria-Mediated Pathway in Bovine Mammary Epithelial Cells
by Yuan Li, Ran Yu, Shujing Tan, Yunlong Jiang, Longwei Sun, Manman Shen, Chuanjian Zhang, Kunlin Chen and Chengmin Li
Animals 2025, 15(9), 1233; https://doi.org/10.3390/ani15091233 - 27 Apr 2025
Viewed by 561
Abstract
Heat stress in dairy cows is aggravated by Global warming, which negatively affects their performance and health, especially high yielding cows are more susceptible to high temperature and humidity in summer. Besides increasing body temperature and reducing feed intake, heat stress also compromises [...] Read more.
Heat stress in dairy cows is aggravated by Global warming, which negatively affects their performance and health, especially high yielding cows are more susceptible to high temperature and humidity in summer. Besides increasing body temperature and reducing feed intake, heat stress also compromises mammary gland function by inducing apoptosis in bovine mammary epithelial cells (BMECs). UFBP1 (Ufm1-binding protein 1) serves as an essential component of ufmylation, is crucial for the preservation of cellular homeostasis. However, little is known about its contribution to heat stress-induced apoptosis in BMECs. Therefore, the present study aimed to elucidate the effect of UFBP1 on heat stress-induced apoptosis through knockdown and overexpression of UFBP1 in BMECs. The results showed that heat stress triggered cell apoptosis (increased apoptosis rate and Bax/Bcl-2 protein expression) and decreased the expression of genes associated with the production of milk fat and protein both in vivo and in vitro studies. Furthermore, UFBP1 silencing aggravated the high-temperature-induced cell damage, and overexpression of UFBP1 attenuated heat stress-induced mitochondrial dysfunction, as evidenced by increased mitochondrial membrane potential (MMP), ATP synthesis and NAD+/NADH ratio, as well as the reduced reactive oxygen species (ROS) generation. Importantly, the mitochondrial apoptosis pathway triggered by heat stress was blocked by UFBP1, as indicated by the reduced apoptosis rate and Bax/Bcl-2 protein expression. In addition, UFBP1 restored the expression of milk fat and protein-related genes in heat-stressed BMECs. In conclusion, these findings indicate that UFBP1 may serve as a promising therapeutic target for ameliorating heat stress in dairy cows, thereby providing novel theoretical insights into the mitigation of adverse thermal stress effects on livestock productivity. Full article
(This article belongs to the Special Issue Genetic Research for Improving Livestock Heat Stress Resistance)
Show Figures

Figure 1

20 pages, 4501 KiB  
Article
Hypomyelinating Leukodystrophy 14 (HLD14)-Related UFC1 p.Arg23Gln Decreases Cell Morphogenesis: A Phenotype Reversable with Hesperetin
by Yuri Ichihara, Maho Okawa, Minori Minegishi, Hiroaki Oizumi, Masahiro Yamamoto, Katsuya Ohbuchi, Yuki Miyamoto and Junji Yamauchi
Medicines 2025, 12(1), 2; https://doi.org/10.3390/medicines12010002 - 16 Jan 2025
Viewed by 1419
Abstract
Introduction: In the central nervous system (CNS), proper interaction between neuronal and glial cells is crucial for the development of mature nervous tissue. Hypomyelinating leukodystrophies (HLDs) are a group of genetic CNS disorders characterized by hypomyelination and/or demyelination. In these conditions, genetic mutations [...] Read more.
Introduction: In the central nervous system (CNS), proper interaction between neuronal and glial cells is crucial for the development of mature nervous tissue. Hypomyelinating leukodystrophies (HLDs) are a group of genetic CNS disorders characterized by hypomyelination and/or demyelination. In these conditions, genetic mutations disrupt the biological functions of oligodendroglial cells, which are responsible for wrapping neuronal axons with myelin sheaths. Among these, an amino acid mutation of the ubiquitin-fold modifier conjugating enzyme 1 (UFC1) is associated with HLD14-related disease, characterized by hypomyelination and delayed myelination in the brain. UFC1 is a critical component of the UFMylation system, functioning similarly to E2-conjugating enzymes in the ubiquitin-dependent protein degradation system. Methodology: We describe how a missense mutation in UFC1 (p.Arg23Gln) leads to the aggregation of UFC1 primarily in lysosomes in FBD-102b cells, which are undergoing oligodendroglial cell differentiation. Results: Cells with mutated UFC1 exhibit reduced Akt kinase phosphorylation and reduced expression of differentiation and myelination marker proteins. Consistently, these cells exhibit impaired morphological differentiation with a reduced ability to extend widespread membranes. Interestingly, hesperetin, a citrus flavonoid with known neuroprotective properties, was found to restore differentiation abilities in cells with the UFC1 mutation. Conclusions: These findings indicate that the HLD14-related mutation in UFC1 causes its lysosomal aggregation, impairing its morphological differentiation. Furthermore, the study highlights potential therapeutic insights into the pathological molecular and cellular mechanisms underlying HLD14 and suggests hesperetin as a promising candidate for treatment. Full article
Show Figures

Figure 1

10 pages, 2261 KiB  
Brief Report
Systematic Analysis of UFMylation Family Genes in Tissues of Mice with Metabolic Dysfunction-Associated Steatotic Liver Disease
by Mingdi Jiang, Chenlu Zhang, Zhengyao Zhang, Yingying Duan, Shuaiyong Qi, Qingyu Zeng, Jiabao Wang, Jiawen Zhang, Yu Jiang, Ying Wang, Yi Chen and Jiang Liu
Genes 2025, 16(1), 31; https://doi.org/10.3390/genes16010031 - 27 Dec 2024
Viewed by 1456
Abstract
Background/Objectives: UFMylation, a newly identified ubiquitin-like modification, modulates a variety of physiological processes, including endoplasmic reticulum homeostasis maintenance, DNA damage response, embryonic development, and tumor progression. Recent reports showed that UFMylation plays a protective role in preventing liver steatosis and fibrosis, serving as [...] Read more.
Background/Objectives: UFMylation, a newly identified ubiquitin-like modification, modulates a variety of physiological processes, including endoplasmic reticulum homeostasis maintenance, DNA damage response, embryonic development, and tumor progression. Recent reports showed that UFMylation plays a protective role in preventing liver steatosis and fibrosis, serving as a defender of liver homeostasis in the development of metabolic dysfunction-associated steatotic liver disease (MASLD). However, the regulation of UFMylation in MASLD remains unclear. This study aimed to determine the expressed patterns of UFMylation components in multiple tissues of leptin-deficient ob/ob mice and high-fat diet (HFD)-fed mice, which are mimicking the conditions of MASLD. Methods: The ob/ob mice and HFD-fed mice were sacrificed to collect tissues indicated in this study. Total RNA and proteins were extracted from tissues to examine the expressed patterns of UFMylation components, including UBA5, UFC1, UFL1, DDRGK1, UFSP1, UFSP2 and UFM1, by real-time PCR and western blot analysis. Results: The protein levels of UBA5, UFC1 and UFL1 were down-regulated in liver, brown adipose tissue (BAT) and inguinal white adipose tissue (iWAT), whereas the messenger RNA (mRNA) levels of Ufl1 and Ufsp1 were both decreased in skeletal muscle, BAT, iWAT and epididymal white adipose tissue (eWAT) of ob/ob mice. In contrast, the mRNA levels of Ufsp1 in skeletal muscle, BAT, iWAT and heart, and the protein levels of UFL1 were decreased in BAT, iWAT, heart and cerebellum of HFD-fed mice. Conclusions: Our findings established the expressed profiles of UFMylaiton in multiple tissues of mice mimicking MASLD, indicating an important regulation for UFMylation in these tissues’ homeostasis maintenance. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

22 pages, 1794 KiB  
Review
The Post-Translational Role of UFMylation in Physiology and Disease
by Xingde Wang, Xingzhi Xu and Zhifeng Wang
Cells 2023, 12(21), 2543; https://doi.org/10.3390/cells12212543 - 29 Oct 2023
Cited by 13 | Viewed by 4602
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a newly identified ubiquitin-like protein that has been conserved during the evolution of multicellular organisms. In a similar manner to ubiquitin, UFM1 can become covalently linked to the lysine residue of a substrate via a dedicated enzymatic cascade. [...] Read more.
Ubiquitin-fold modifier 1 (UFM1) is a newly identified ubiquitin-like protein that has been conserved during the evolution of multicellular organisms. In a similar manner to ubiquitin, UFM1 can become covalently linked to the lysine residue of a substrate via a dedicated enzymatic cascade. Although a limited number of substrates have been identified so far, UFM1 modification (UFMylation) has been demonstrated to play a vital role in a variety of cellular activities, including mammalian development, ribosome biogenesis, the DNA damage response, endoplasmic reticulum stress responses, immune responses, and tumorigenesis. In this review, we summarize what is known about the UFM1 enzymatic cascade and its biological functions, and discuss its recently identified substrates. We also explore the pathological role of UFMylation in human disease and the corresponding potential therapeutic targets and strategies. Full article
(This article belongs to the Special Issue Advances in Ubiquitination and Deubiquitination Research)
Show Figures

Graphical abstract

13 pages, 6607 KiB  
Article
Ufmylation of UFBP1 Is Dispensable for Endoplasmic Reticulum Stress Response, Embryonic Development, and Cardiac and Intestinal Homeostasis
by Varsha Tandra, Travis Anderson, Juan D. Ayala, Neal L. Weintraub, Nagendra Singh, Honglin Li and Jie Li
Cells 2023, 12(15), 1923; https://doi.org/10.3390/cells12151923 - 25 Jul 2023
Cited by 3 | Viewed by 2348
Abstract
Protein modification by ubiquitin fold modifier 1 (UFM1), termed ufmylation, regulates various physiological and pathological processes. Among emerging UFM1 targets, UFM1 binding protein 1 (UFBP1) is the first identified ufmylation substrate. Recent clinical and animal studies have demonstrated the pivotal roles of UFBP1 [...] Read more.
Protein modification by ubiquitin fold modifier 1 (UFM1), termed ufmylation, regulates various physiological and pathological processes. Among emerging UFM1 targets, UFM1 binding protein 1 (UFBP1) is the first identified ufmylation substrate. Recent clinical and animal studies have demonstrated the pivotal roles of UFBP1 in development, hematopoiesis, intestinal homeostasis, chondrogenesis, and neuronal development, which has been linked to its function in maintaining endoplasmic reticulum (ER) homeostasis. However, the importance of UFBP1 ufmylation in these cellular and physiological processes has yet to be determined. It has been proposed that ufmylation of lysine 268 (267 in humans) in UFBP1 plays a critical role in mediating the effects of the ufmylation pathway. In this study, we for the first time probe the pathophysiological significance of UFBP1 ufmylation in vivo by creating and characterizing a mouse UFBP1 knockin (KI) model in which the lysine 268 of UFBP1, the amino acid accepting UFM1, was mutated to arginine. Our results showed that the K268R mutation reduced the total ufmylated proteins without altering the expression levels of individual ufmylation enzymes in mouse embryonic fibroblasts. The K268R mutation did not alter ER stress–stimuli–induced ER stress signaling or cell death in mouse embryonic fibroblasts. The homozygous KI mice were viable and morphologically indistinguishable from their littermate wild–type controls up to one year of age. Serial echocardiography revealed no cardiac functional impairment of the homozygous KI mice. Furthermore, the homozygous KI mice exhibited the same susceptibility to dextran sulfate sodium (DSS) –induced colitis as wild-type mice. Taken together, these results suggest that UFBP1 K268 is dispensable for ER stress response, embryonic development, cardiac homeostasis under physiological conditions, and intestinal homeostasis under pathological conditions. Our studies call for future investigations to understand the biological function of UFBP1 ufmylation and offer a new mouse model to determine the roles of UFBP1 ufmylation in different tissues under stress conditions. Full article
Show Figures

Figure 1

16 pages, 1069 KiB  
Review
UFMylation System: An Emerging Player in Tumorigenesis
by Yu Jing, Ziming Mao and Fengling Chen
Cancers 2022, 14(14), 3501; https://doi.org/10.3390/cancers14143501 - 19 Jul 2022
Cited by 18 | Viewed by 4694
Abstract
Ubiquitin-fold modifier 1 (UFM1), a newly identified ubiquitin-like molecule (UBLs), is evolutionarily expressed in multiple species except yeast. Similarly to ubiquitin, UFM1 is covalently attached to its substrates through a well-orchestrated three-step enzymatic reaction involving E1, the UFM1-activating enzyme (ubiquitin-like modifier-activating enzyme 5, [...] Read more.
Ubiquitin-fold modifier 1 (UFM1), a newly identified ubiquitin-like molecule (UBLs), is evolutionarily expressed in multiple species except yeast. Similarly to ubiquitin, UFM1 is covalently attached to its substrates through a well-orchestrated three-step enzymatic reaction involving E1, the UFM1-activating enzyme (ubiquitin-like modifier-activating enzyme 5, UBA5); E2, the UFM1-conjugating enzyme 1 (UFC1); and E3, the UFM1-specific ligase 1 (UFL1). To date, numerous studies have shown that UFM1 modification is implicated in various cellular processes, including endoplasmic reticulum (ER) stress, DNA damage response and erythroid development. An abnormal UFM1 cascade is closely related to a variety of diseases, especially tumors. Herein, we summarize the process and functions of UFM1 modification, illustrating the relationship and mechanisms between aberrant UFMylation and diversified tumors, aiming to provide novel diagnostic biomarkers or therapeutic targets for cancer treatments. Full article
Show Figures

Graphical abstract

11 pages, 4320 KiB  
Article
Overexpression of UBA5 in Cells Mimics the Phenotype of Cells Lacking UBA5
by Sujata Kumari, Sayanika Banerjee, Manoj Kumar, Arata Hayashi, Balakrishnan Solaimuthu, Einav Cohen-Kfir, Yoav D. Shaul, Alexander Rouvinski and Reuven Wiener
Int. J. Mol. Sci. 2022, 23(13), 7445; https://doi.org/10.3390/ijms23137445 - 4 Jul 2022
Cited by 7 | Viewed by 3475
Abstract
Ufmylation is a posttranslational modification in which the modifier UFM1 is attached to target proteins. This conjugation requires the concerted work of three enzymes named UBA5, UFC1, and UFL1. Initially, UBA5 activates UFM1 in a process that ends with UFM1 attached to UBA5’s [...] Read more.
Ufmylation is a posttranslational modification in which the modifier UFM1 is attached to target proteins. This conjugation requires the concerted work of three enzymes named UBA5, UFC1, and UFL1. Initially, UBA5 activates UFM1 in a process that ends with UFM1 attached to UBA5’s active site Cys. Then, in a trans-thiolation reaction, UFM1 is transferred from UBA5 to UFC1, forming a thioester bond with the latter. Finally, with the help of UFL1, UFM1 is transferred to the final destination—a lysine residue on a target protein. Therefore, not surprisingly, deletion of one of these enzymes abrogates the conjugation process. However, how overexpression of these enzymes affects this process is not yet clear. Here we found, unexpectedly, that overexpression of UBA5, but not UFC1, damages the ability of cells to migrate, in a similar way to cells lacking UBA5 or UFC1. At the mechanistic level, we found that overexpression of UBA5 reverses the trans-thiolation reaction, thereby leading to a back transfer of UFM1 from UFC1 to UBA5. This, as seen in cells lacking UBA5, reduces the level of charged UFC1 and therefore harms the conjugation process. In contrast, co-expression of UBA5 with UFM1 abolishes this effect, suggesting that the reverse transfer of UFM1 from UFC1 to UBA5 depends on the level of free UFM1. Overall, our results propose that the cellular expression level of the UFM1 conjugation enzymes has to be tightly regulated to ensure the proper directionality of UFM1 transfer. Full article
(This article belongs to the Special Issue Ubiquitination and Deubiquitination in Cellular Homeostasis)
Show Figures

Graphical abstract

29 pages, 4083 KiB  
Article
C53 Interacting with UFM1-Protein Ligase 1 Regulates Microtubule Nucleation in Response to ER Stress
by Anastasiya Klebanovych, Stanislav Vinopal, Eduarda Dráberová, Vladimíra Sládková, Tetyana Sulimenko, Vadym Sulimenko, Věra Vosecká, Libor Macůrek, Agustin Legido and Pavel Dráber
Cells 2022, 11(3), 555; https://doi.org/10.3390/cells11030555 - 5 Feb 2022
Cited by 12 | Viewed by 4053
Abstract
ER distribution depends on microtubules, and ER homeostasis disturbance activates the unfolded protein response resulting in ER remodeling. CDK5RAP3 (C53) implicated in various signaling pathways interacts with UFM1-protein ligase 1 (UFL1), which mediates the ufmylation of proteins in response to ER stress. Here [...] Read more.
ER distribution depends on microtubules, and ER homeostasis disturbance activates the unfolded protein response resulting in ER remodeling. CDK5RAP3 (C53) implicated in various signaling pathways interacts with UFM1-protein ligase 1 (UFL1), which mediates the ufmylation of proteins in response to ER stress. Here we find that UFL1 and C53 associate with γ-tubulin ring complex proteins. Knockout of UFL1 or C53 in human osteosarcoma cells induces ER stress and boosts centrosomal microtubule nucleation accompanied by γ-tubulin accumulation, microtubule formation, and ER expansion. C53, which is stabilized by UFL1, associates with the centrosome and rescues microtubule nucleation in cells lacking UFL1. Pharmacological induction of ER stress by tunicamycin also leads to increased microtubule nucleation and ER expansion. Furthermore, tunicamycin suppresses the association of C53 with the centrosome. These findings point to a novel mechanism for the relief of ER stress by stimulation of centrosomal microtubule nucleation. Full article
(This article belongs to the Special Issue 10th Anniversary of Cells—Advances in Organelle Function)
Show Figures

Figure 1

13 pages, 3682 KiB  
Article
Four New Cases of Hypomyelinating Leukodystrophy Associated with the UFM1 c.-155_-153delTCA Founder Mutation in Pediatric Patients of Roma Descent in Hungary
by Zsuzsanna Szűcs, Réka Fitala, Ágnes Renáta Nyuzó, Krisztina Fodor, Éva Czemmel, Nóra Vrancsik, Mónika Bessenyei, Tamás Szabó, Katalin Szakszon and István Balogh
Genes 2021, 12(9), 1331; https://doi.org/10.3390/genes12091331 - 27 Aug 2021
Cited by 7 | Viewed by 3777
Abstract
Ufmylation is a relatively newly discovered type of post-translational modification when the ubiquitin-fold modifier 1 (UFM1) protein is covalently attached to its target proteins in a three-step enzymatic reaction involving an E1 activating enzyme (UBA5), E2 conjugating enzyme (UFC1), and E3 ligase enzyme [...] Read more.
Ufmylation is a relatively newly discovered type of post-translational modification when the ubiquitin-fold modifier 1 (UFM1) protein is covalently attached to its target proteins in a three-step enzymatic reaction involving an E1 activating enzyme (UBA5), E2 conjugating enzyme (UFC1), and E3 ligase enzyme (UFL1). The process of ufmylation is essential for normal brain development and function in humans. Mutations in the UFM1 gene are associated with Hypomyelinating leukodystrophy type 14, presenting with global developmental delay, failure to thrive, progressive microcephaly, refractive epilepsy, and hypomyelination, with atrophy of the basal ganglia and cerebellum phenotypes. The c.-155_-153delTCA deletion in the promoter region of UFM1 is considered to be a founding mutation in the Roma population. Here we present four index patients with homozygous UFM1:c.-155_-153delTCA mutation detected by next-generation sequencing (whole genome/exome sequencing) or Sanger sequencing. This mutation may be more common in the Roma population than previously estimated, and the targeted testing of the UFM1:c.-155_-153delTCA mutation may have an indication in cases of hypomyelination and neurodegenerative clinical course in pediatric patients of Roma descent. Full article
(This article belongs to the Collection Genotype-Phenotype Study in Disease)
Show Figures

Figure 1

19 pages, 6357 KiB  
Article
A Concerted Action of UBA5 C-Terminal Unstructured Regions Is Important for Transfer of Activated UFM1 to UFC1
by Nicole Wesch, Frank Löhr, Natalia Rogova, Volker Dötsch and Vladimir V. Rogov
Int. J. Mol. Sci. 2021, 22(14), 7390; https://doi.org/10.3390/ijms22147390 - 9 Jul 2021
Cited by 8 | Viewed by 3585
Abstract
Ubiquitin fold modifier 1 (UFM1) is a member of the ubiquitin-like protein family. UFM1 undergoes a cascade of enzymatic reactions including activation by UBA5 (E1), transfer to UFC1 (E2) and selective conjugation to a number of target proteins via UFL1 (E3) enzymes. Despite [...] Read more.
Ubiquitin fold modifier 1 (UFM1) is a member of the ubiquitin-like protein family. UFM1 undergoes a cascade of enzymatic reactions including activation by UBA5 (E1), transfer to UFC1 (E2) and selective conjugation to a number of target proteins via UFL1 (E3) enzymes. Despite the importance of ufmylation in a variety of cellular processes and its role in the pathogenicity of many human diseases, the molecular mechanisms of the ufmylation cascade remains unclear. In this study we focused on the biophysical and biochemical characterization of the interaction between UBA5 and UFC1. We explored the hypothesis that the unstructured C-terminal region of UBA5 serves as a regulatory region, controlling cellular localization of the elements of the ufmylation cascade and effective interaction between them. We found that the last 20 residues in UBA5 are pivotal for binding to UFC1 and can accelerate the transfer of UFM1 to UFC1. We solved the structure of a complex of UFC1 and a peptide spanning the last 20 residues of UBA5 by NMR spectroscopy. This structure in combination with additional NMR titration and isothermal titration calorimetry experiments revealed the mechanism of interaction and confirmed the importance of the C-terminal unstructured region in UBA5 for the ufmylation cascade. Full article
(This article belongs to the Special Issue Frontiers in Protein Structure Research)
Show Figures

Graphical abstract

22 pages, 1442 KiB  
Article
The UFM1 Pathway Impacts HCMV US2-Mediated Degradation of HLA Class I
by A.B.C. Schuren, I.G.J. Boer, E.M. Bouma, M.L. Van de Weijer, A.I. Costa, P. Hubel, A. Pichlmair, R.J. Lebbink and E.J.H.J. Wiertz
Molecules 2021, 26(2), 287; https://doi.org/10.3390/molecules26020287 - 8 Jan 2021
Cited by 12 | Viewed by 4291
Abstract
To prevent accumulation of misfolded proteins in the endoplasmic reticulum, chaperones perform quality control on newly translated proteins and redirect misfolded proteins to the cytosol for degradation by the ubiquitin-proteasome system. This pathway is called ER-associated protein degradation (ERAD). The human cytomegalovirus protein [...] Read more.
To prevent accumulation of misfolded proteins in the endoplasmic reticulum, chaperones perform quality control on newly translated proteins and redirect misfolded proteins to the cytosol for degradation by the ubiquitin-proteasome system. This pathway is called ER-associated protein degradation (ERAD). The human cytomegalovirus protein US2 induces accelerated ERAD of HLA class I molecules to prevent immune recognition of infected cells by CD8+ T cells. Using US2-mediated HLA-I degradation as a model for ERAD, we performed a genome-wide CRISPR/Cas9 library screen to identify novel cellular factors associated with ERAD. Besides the identification of known players such as TRC8, p97, and UBE2G2, the ubiquitin-fold modifier1 (UFM1) pathway was found to affect degradation of HLA-I. UFMylation is a post-translational modification resembling ubiquitination. Whereas we observe ubiquitination of HLA-I, no UFMylation was detected on HLA-I or several other proteins involved in degradation of HLA-I, suggesting that the UFM1 pathway impacts ERAD in a different manner than ubiquitin. Interference with the UFM1 pathway seems to specifically inhibit the ER-to-cytosol dislocation of HLA-I. In the absence of detectable UFMylation of HLA-I, UFM1 may contribute to US2-mediated HLA-I degradation by misdirecting protein sorting indirectly. Mass spectrometry analysis of US2-expressing cells showed that ribosomal proteins are a major class of proteins undergoing extensive UFMylation; the role of these changes in protein degradation may be indirect and remains to be established. Full article
Show Figures

Figure 1

14 pages, 1328 KiB  
Review
Decrypting UFMylation: How Proteins Are Modified with UFM1
by Sayanika Banerjee, Manoj Kumar and Reuven Wiener
Biomolecules 2020, 10(10), 1442; https://doi.org/10.3390/biom10101442 - 14 Oct 2020
Cited by 47 | Viewed by 9335
Abstract
Besides ubiquitin (Ub), humans have a set of ubiquitin-like proteins (UBLs) that can also covalently modify target proteins. To date, less is known about UBLs than Ub and even less is known about the UBL called ubiquitin-fold modifier 1 (UFM1). Currently, our understanding [...] Read more.
Besides ubiquitin (Ub), humans have a set of ubiquitin-like proteins (UBLs) that can also covalently modify target proteins. To date, less is known about UBLs than Ub and even less is known about the UBL called ubiquitin-fold modifier 1 (UFM1). Currently, our understanding of protein modification by UFM1 (UFMylation) is like a jigsaw puzzle with many missing pieces, and in some cases it is not even clear whether these pieces of data are in the right place. Here we review the current data on UFM1 from structural biology to biochemistry and cell biology. We believe that the physiological significance of protein modification by UFM1 is currently underestimated and there is more to it than meets the eye. Full article
(This article belongs to the Special Issue Ubiquitin-Like Modifiers and Their Diverse Impact on Cell Signaling)
Show Figures

Figure 1

16 pages, 1638 KiB  
Article
An Integrative Synthetic Biology Approach to Interrogating Cellular Ubiquitin and Ufm Signaling
by Chuanyin Li, Tianting Han, Rong Guo, Peng Chen, Chao Peng, Gali Prag and Ronggui Hu
Int. J. Mol. Sci. 2020, 21(12), 4231; https://doi.org/10.3390/ijms21124231 - 14 Jun 2020
Cited by 20 | Viewed by 3836
Abstract
Global identification of substrates for PTMs (post-translational modifications) represents a critical but yet dauntingly challenging task in understanding biology and disease pathology. Here we presented a synthetic biology approach, namely ‘YESS’, which coupled Y2H (yeast two hybrid) interactome screening with PTMs reactions reconstituted [...] Read more.
Global identification of substrates for PTMs (post-translational modifications) represents a critical but yet dauntingly challenging task in understanding biology and disease pathology. Here we presented a synthetic biology approach, namely ‘YESS’, which coupled Y2H (yeast two hybrid) interactome screening with PTMs reactions reconstituted in bacteria for substrates identification and validation, followed by the functional validation in mammalian cells. Specifically, the sequence-independent Gateway® cloning technique was adopted to afford simultaneous transfer of multiple hit ORFs (open reading frames) between the YESS sub-systems. In proof-of-evidence applications of YESS, novel substrates were identified for UBE3A and UFL1, the E3 ligases for ubiquitination and ufmylation, respectively. Therefore, the YESS approach could serve as a potentially powerful tool to study cellular signaling mediated by different PTMs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

8 pages, 7456 KiB  
Review
Role of Protein Quality Control Failure in Alcoholic Hepatitis Pathogenesis
by Samuel W. French, Maryam Masouminia, Sara Samadzadeh, Brittany C. Tillman, Alejandro Mendoza and Barbara A. French
Biomolecules 2017, 7(1), 11; https://doi.org/10.3390/biom7010011 - 8 Feb 2017
Cited by 13 | Viewed by 6312
Abstract
The mechanisms of protein quality control in hepatocytes in cases of alcoholic hepatitis (AH) including ufmylation, FAT10ylation, metacaspase 1 (Mca1), ERAD (endoplasmic reticulum-associated degradation), JUNQ (juxta nuclear quality control), IPOD (insoluble protein deposit) autophagocytosis, and ER stress are reviewed. The Mallory–Denk body (MDB) [...] Read more.
The mechanisms of protein quality control in hepatocytes in cases of alcoholic hepatitis (AH) including ufmylation, FAT10ylation, metacaspase 1 (Mca1), ERAD (endoplasmic reticulum-associated degradation), JUNQ (juxta nuclear quality control), IPOD (insoluble protein deposit) autophagocytosis, and ER stress are reviewed. The Mallory–Denk body (MDB) formation develops in the hepatocytes in alcoholic hepatitis as a consequence of the failure of these protein quality control mechanisms to remove misfolded and damaged proteins and to prevent MDB aggresome formation within the cytoplasm of hepatocytes. The proteins involved in the quality control pathways are identified, quantitated, and visualized by immunofluorescent antibody staining of liver biopsies from patients with AH. Quantification of the proteins are achieved by measuring the fluorescent intensity using a morphometric system. Ufmylation and FAT10ylation pathways were downregulated, Mca1 pathways were upregulated, autophagocytosis was upregulated, and ER stress PERK (protein kinase RNA-like endoplasmic reticulum kinase) and CHOP (CCAAT/enhancer-binding protein homologous protein) mechanisms were upregulated. In conclusion: Despite the upregulation of several pathways of protein quality control, aggresomes (MDBs) still formed in the hepatocytes in AH. The pathogenesis of AH is due to the failure of protein quality control, which causes balloon-cell change with MDB formation and ER stress. Full article
(This article belongs to the Special Issue Multi-Organ Alcohol-Related Damage: Mechanisms and Treatment)
Show Figures

Figure 1

Back to TopTop