Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (78)

Search Parameters:
Keywords = typhoon-induced waves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7043 KB  
Article
Strength and Fatigue Assessment of the Coupled Riser–Landing String System for Deepwater Completion and Testing
by Longgui Wei, Jin Yang, Shaochen Wang, Shaodong Ju and Nanding Hu
Appl. Sci. 2026, 16(2), 1063; https://doi.org/10.3390/app16021063 - 20 Jan 2026
Viewed by 145
Abstract
During deepwater completion and testing, the platform and riser system are subjected to long-term motions induced by ocean currents, which may cause structural damage and potential failure of the landing string. This study investigates the mechanical and fatigue performance of a subsea Christmas [...] Read more.
During deepwater completion and testing, the platform and riser system are subjected to long-term motions induced by ocean currents, which may cause structural damage and potential failure of the landing string. This study investigates the mechanical and fatigue performance of a subsea Christmas tree and landing string under environmental conditions of the LH11-1 Oilfield in the South China Sea. A global–local simulation framework is used to build a coupled dynamic model of the riser–landing string system and a local model for the landing string, considering load-transfer characteristics, current profiles, periodic features, and two representative environmental conditions (typhoon and non-typhoon). For seventeen typical operating scenarios, the strength of the riser–landing string system is evaluated, and wave-induced and vortex-induced fatigue analyses are performed for the key components. The stress distribution strongly depends on operating conditions, but local strength results confirm that stresses in the primary landing string components remain below allowable limits in all scenarios. Fatigue analysis indicates that the most severe wave-induced damage in the riser occurs at its bottom section, with a fatigue life of about 15.12 years, while in the landing string, it is concentrated near the lower end, with an estimated life of about 52.68 years. The maximum vortex-induced fatigue damage occurs near the riser surface region, with a corresponding fatigue life of about 18.52 years. Full article
Show Figures

Figure 1

17 pages, 3079 KB  
Article
Characteristics of Coastal Trapped Waves Generated by Typhoon ‘Soudelor’ in the Northwestern South China Sea
by Xuefeng Cao, Lunyu Wu, Chuanxi Xing, Maochong Shi and Peifang Guo
J. Mar. Sci. Eng. 2026, 14(1), 4; https://doi.org/10.3390/jmse14010004 - 19 Dec 2025
Viewed by 330
Abstract
Coastal Trapped Waves (CTWs) represent an important class of mesoscale fluctuations in nearshore shelf regions and play a crucial role in modulating coastal circulation. The South China Sea (SCS), the largest semi-enclosed marginal sea in the western Pacific Ocean, features a continental shelf [...] Read more.
Coastal Trapped Waves (CTWs) represent an important class of mesoscale fluctuations in nearshore shelf regions and play a crucial role in modulating coastal circulation. The South China Sea (SCS), the largest semi-enclosed marginal sea in the western Pacific Ocean, features a continental shelf approximately 200 km wide. During summer, the SCS is frequently impacted by typhoons, which often trigger significant CTWs. This study investigates the characteristics of CTWs generated by Typhoon ‘Soudelor’ (No. 1513) in the northwestern SCS, based on current observations and numerical model simulations. Under the influence of Soudelor, CTWs characterized by elevated water levels nearshore and depressed water levels offshore were initially generated by wind-induced Ekman transport in the Taiwan Strait. These waves subsequently propagated southwestward along the coastline with phase velocities ranging from 7.2 to 18.3 m/s. Model results indicate that the CTW influenced current fields up to 160 km offshore, with a maximum CTW-induced current velocity exceeding 0.7 m/s. The vertical structure of the CTW-induced current field exhibited a barotropic characteristic. The influence of CTWs on current fields diminished with propagation distance, accompanied by a reduction in the induced current velocity. This attenuation was particularly pronounced between Xiamen (XM) and Shanwei (SW). Sensitivity experiments further revealed that the slowed propagation phase velocity of CTWs between XM and SW was attributable to strong reflection, scattering, and nonlinear effects caused by the abrupt topographic changes of the Taiwan Bank. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

17 pages, 12485 KB  
Article
Comparative Study of Wave-Resolving Models for Typhoon-Induced Harbor Oscillations
by Shih-Feng Su, I-An Chen and Pei-Wen Wang
J. Mar. Sci. Eng. 2025, 13(12), 2305; https://doi.org/10.3390/jmse13122305 - 4 Dec 2025
Viewed by 396
Abstract
This study investigates typhoon-induced oscillations within Youngan Harbor, southwestern Taiwan, which frequently compromise port operations and cause dock overtopping. Two representative wave-resolving models, the Boussinesq-type FUNWAVE-TVD and the non-hydrostatic XBeach-NH, were applied to simulate a typhoon event and evaluate their predictive performance against [...] Read more.
This study investigates typhoon-induced oscillations within Youngan Harbor, southwestern Taiwan, which frequently compromise port operations and cause dock overtopping. Two representative wave-resolving models, the Boussinesq-type FUNWAVE-TVD and the non-hydrostatic XBeach-NH, were applied to simulate a typhoon event and evaluate their predictive performance against field observations. Both models underestimated significant wave height across all frequency bands. Spectral analysis revealed that FUNWAVE-TVD generated higher energy in the infragravity and very-low-frequency ranges, whereas XBeach-NH exhibited greater energy in the swell and wind-wave bands. Spatial resonance patterns further indicated that a berth, located in a nodal region, experienced reduced tranquility due to considerable horizontal currents. Conversely, wave overtopping at a dock was driven by amplified vertical water-level oscillations in an antinodal region. These contrasting responses highlight the sensitivity of the models to nonlinear wave interactions and underscore the critical role of simulating harbor currents, emphasizing the need for careful model selection in harbor tranquility assessment. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

18 pages, 4476 KB  
Article
Storm Surge Dynamics and Mechanisms in the Macao Cross Tidal Channel
by Li Li, Boshuai Zhang, Jiayi Guo, Ye Zhu, Zhiguo He and Yuezhang Xia
J. Mar. Sci. Eng. 2025, 13(11), 2087; https://doi.org/10.3390/jmse13112087 - 3 Nov 2025
Viewed by 593
Abstract
Storm surge dynamics in coastal zones and estuaries are complex, driven by coupled oceanic and terrestrial interactions that enhance the risk of coastal disasters. This study investigates storm surge characteristics and mechanisms in the Macao Cross Tidal Channel (MCTC), located in the Macao [...] Read more.
Storm surge dynamics in coastal zones and estuaries are complex, driven by coupled oceanic and terrestrial interactions that enhance the risk of coastal disasters. This study investigates storm surge characteristics and mechanisms in the Macao Cross Tidal Channel (MCTC), located in the Macao Sea Area (MSA). A tide-surge coupled numerical model was established using the unstructured grid Finite Volume Community Ocean Model (FVCOM). The model was rigorously validated against tide gauge data from Typhoon Hato, demonstrating strong performance, with a skill score of 0.95 and a correlation coefficient exceeding 0.94. The spatiotemporal characteristics and mechanisms of storm surge dynamics in the MCTC were elucidated. The results show that the MCTC’s complex geometry induces a geometric funneling effect, which substantially amplifies the storm surge compared with adjacent locations in the estuary and open sea. During the typhoon period, coastal geomorphology affects winds, tide levels, currents, and waves, which in turn spatially and temporally modulate the storm surge. Wind is the primary driver, but its effect is modulated by nonlinear interactions with waves, including enhanced bottom friction and wave set-down. In isolation, the wind-induced component contributed approximately 106% of the peak total surge. This overestimation quantitatively highlights the critical role of nonlinear interactions, where wave-enhanced bottom friction acts as a major energy sink, and wave set-down directly suppresses the water level at the channel entrance. The individual peak contributions from atmospheric pressure and wave were approximately 5% and 17%, respectively, but these peaks occurred out of phase with the storm surge. Energy transformation analysis based on the Bernoulli principle revealed a distinct conversion from potential to kinetic energy in the constricted transverse waterway, while the longitudinal waterway exhibited a more gradual energy change. These findings enhance the mechanistic understanding of storm surges in complex, constricted estuaries and can inform targeted strategies for coastal hazard mitigation in the Macao region. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

17 pages, 4602 KB  
Article
Typhoon-Induced Wave–Current Coupling Dynamics in Intertidal Zones: Impacts on Protective Device of Ancient Forest Relics
by Lihong Zhao, Dele Guo, Chaoyang Li, Zhengfeng Bi, Yi Hu, Hongqin Liu and Tongju Han
J. Mar. Sci. Eng. 2025, 13(9), 1831; https://doi.org/10.3390/jmse13091831 - 22 Sep 2025
Viewed by 720
Abstract
Extreme weather events, such as typhoons, induce strong wave–current interactions that significantly alter nearshore hydrodynamic conditions, particularly in shallow intertidal zones. This study investigates the influence of wind speed and water depth on wave–current coupling under typhoon conditions in Shenhu Bay, southeastern China—a [...] Read more.
Extreme weather events, such as typhoons, induce strong wave–current interactions that significantly alter nearshore hydrodynamic conditions, particularly in shallow intertidal zones. This study investigates the influence of wind speed and water depth on wave–current coupling under typhoon conditions in Shenhu Bay, southeastern China—a semi-enclosed bay that hosts multiple ancient forest relics within its intertidal zone. A two-tier numerical modeling framework was developed, comprising a regional-scale hydrodynamic model and a localized high-resolution model centered on a protective structure. Validation data were obtained from in situ field observations. Three structural scenarios were tested: fully intact, bottom-blocked, and damaged. Results indicate that wave-induced radiation stress plays a dominant role in enhancing flow velocities when wind speeds exceed 6 m/s, with wave contributions approaching 100% across all water depths. However, the linear relationship between water depth and wave contribution observed under non-typhoon conditions breaks down under typhoon forcing. A critical depth range was identified, within which wave contribution peaked before declining with further increases in depth—highlighting its potential sensitivity to storm energy. Moreover, structural simulations revealed that bottom-blocked devices, although seemingly more enclosed, may be vulnerable to vertical pressure loading due to insufficient water exchange. In contrast, perforated designs facilitate an internal–external hydrodynamic balance, thereby enhancing protective effect. This study provides both theoretical and practical insights into intertidal structure design and paleo-heritage conservation under extreme hydrodynamic stress. Full article
(This article belongs to the Special Issue Advances in Storm Tide and Wave Simulations and Assessment)
Show Figures

Figure 1

20 pages, 47004 KB  
Article
Upper Ocean Response to Typhoon Khanun in the South China Sea from Multiple-Satellite Observations and Numerical Simulations
by Fengcheng Guo, Xia Chai, Yongze Li and Dongyang Fu
J. Mar. Sci. Eng. 2025, 13(9), 1718; https://doi.org/10.3390/jmse13091718 - 5 Sep 2025
Viewed by 1093
Abstract
This study examines the upper-ocean response to Typhoon Khanun, which traversed the northern South China Sea in October 2017, by integrating multi-satellite observations with numerical simulations from the Regional Ocean Modeling System (ROMS). For the ROMS simulations, an Arakawa C-grid was adopted with [...] Read more.
This study examines the upper-ocean response to Typhoon Khanun, which traversed the northern South China Sea in October 2017, by integrating multi-satellite observations with numerical simulations from the Regional Ocean Modeling System (ROMS). For the ROMS simulations, an Arakawa C-grid was adopted with a 4-km horizontal resolution and 40 vertical terrain-following σ-layers, covering the domain of 105° E to 119° E and 15° N to 23° N. Typhoons significantly influence ocean dynamics, altering sea surface temperature (SST), sea surface salinity (SSS), and ocean currents, thereby modulating air–sea exchange processes and marine ecosystem dynamics. High-resolution satellite datasets, including GHRSSST for SST, SMAP for SSS, GPM IMERG for precipitation, and GLORYS12 for sea surface height, were combined with ROMS simulations configured at a 4-km horizontal resolution with 40 vertical layers to analyze ocean changes from 11 to 18 October 2017. The results show that Typhoon Khanun induced substantial SST cooling, with ROMS simulations indicating a maximum decrease of 1.94 °C and satellite data confirming up to 1.5 °C, primarily on the right side of the storm track due to wind-driven upwelling and vertical mixing. SSS exhibited a complex response: nearshore regions, such as the Beibu Gulf, experienced freshening of up to 0.1 psu driven by intense rainfall, while the right side of the storm track showed a salinity increase of 0.6 psu due to upwelling of saltier deep water. Ocean currents intensified significantly, reaching speeds of 0.5–1 m/s near coastal areas, with pronounced vertical mixing in the upper 70 m driven by Ekman pumping and wave-current interactions. By effectively capturing typhoon-induced oceanic responses, the integration of satellite data and the ROMS model enhances understanding of typhoon–ocean interaction mechanisms, providing a scientific basis for risk assessment and disaster management in typhoon-prone regions. Future research should focus on refining model parameterizations and advancing data assimilation techniques to improve predictions of typhoon–ocean interactions, providing valuable insights for disaster preparedness and environmental management in typhoon-prone regions. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

22 pages, 17693 KB  
Article
Mooring Observations of Typhoon Trami (2024)-Induced Upper-Ocean Variability: Diapycnal Mixing and Internal Wave Energy Characteristics
by Letian Chen, Xiaojiang Zhang, Ze Zhang and Weimin Zhang
Remote Sens. 2025, 17(15), 2604; https://doi.org/10.3390/rs17152604 - 27 Jul 2025
Viewed by 851
Abstract
High-resolution mooring observations captured diverse upper-ocean responses during typhoon passage, showing strong agreement with satellite-derived sea surface temperature and salinity. Analysis indicates that significant wind-induced mixing drove pronounced near-surface cooling and salinity increases at the mooring site. This mixing enhancement was predominantly governed [...] Read more.
High-resolution mooring observations captured diverse upper-ocean responses during typhoon passage, showing strong agreement with satellite-derived sea surface temperature and salinity. Analysis indicates that significant wind-induced mixing drove pronounced near-surface cooling and salinity increases at the mooring site. This mixing enhancement was predominantly governed by rapid intensification of near-inertial shear in the surface layer, revealed by mooring observations. Unlike shear instability, near-inertial horizontal kinetic energy displays a unique vertical distribution, decreasing with depth before rising again. Interestingly, the subsurface peak in diurnal tidal energy coincides vertically with the minimum in near-inertial energy. While both barotropic tidal forcing and stratification changes negligibly influence diurnal tidal energy emergence, significant energy transfer occurs from near-inertial internal waves to the diurnal tide. This finding highlights a critical tide–wave interaction process and demonstrates energy cascading within the oceanic internal wave spectrum. Full article
(This article belongs to the Special Issue Remote Sensing for Ocean-Atmosphere Interaction Studies)
Show Figures

Figure 1

19 pages, 1325 KB  
Article
Identifying and Prioritizing Climate-Related Natural Hazards for Nuclear Power Plants in Korea Using Delphi
by Dongchang Kim, Shinyoung Kwag, Minkyu Kim, Raeyoung Jung and Seunghyun Eem
Sustainability 2025, 17(12), 5400; https://doi.org/10.3390/su17125400 - 11 Jun 2025
Viewed by 1096
Abstract
Climate change is projected to increase the intensity and frequency of natural hazards such as heat waves, extreme rainfall, heavy snowfall, typhoons, droughts, floods, and cold waves, potentially impacting the operational safety of critical infrastructure, including nuclear power plants (NPPs). Although quantitative indicators [...] Read more.
Climate change is projected to increase the intensity and frequency of natural hazards such as heat waves, extreme rainfall, heavy snowfall, typhoons, droughts, floods, and cold waves, potentially impacting the operational safety of critical infrastructure, including nuclear power plants (NPPs). Although quantitative indicators exist to screen-out natural hazards at NPPs, comprehensive methodologies for assessing climate-related hazards remain underdeveloped. Furthermore, given the variability and uncertainty of climate change, it is realistically and resource-wise difficult to evaluate all potential risks quantitatively. Using a structured expert elicitation approach, this study systematically identifies and prioritizes climate-related natural hazards for Korean NPPs. An iterative Delphi survey involving 42 experts with extensive experience in nuclear safety and systems was conducted and also evaluated using the best–worst scaling (BWS) method for cross-validation to enhance the robustness of the Delphi priorities. Both methodologies identified extreme rainfall, typhoons, marine organisms, forest fires, and lightning as the top five hazards. The findings provide critical insights for climate resilience planning, inform vulnerability assessments, and support regulatory policy development to mitigate climate-induced risks to Korean nuclear power plants. Full article
Show Figures

Figure 1

21 pages, 19457 KB  
Article
Comparative Analysis of Hydrodynamic Characteristics off Shandong Under the Influence of Two Types of Storm Surges
by Wenwen Liu, Qingdan Zheng, Zhizu Wang and Juncheng Zuo
J. Mar. Sci. Eng. 2025, 13(6), 1054; https://doi.org/10.3390/jmse13061054 - 27 May 2025
Cited by 1 | Viewed by 850
Abstract
As China’s largest peninsula, the Shandong Peninsula faces recurrent threats from both tropical and extratropical cyclone-induced storm surges. Understanding the distinct mechanisms governing these surge types is critical for developing targeted coastal hazard mitigation strategies. This investigation employs the FVCOM-SWAVE coupled wave–current model [...] Read more.
As China’s largest peninsula, the Shandong Peninsula faces recurrent threats from both tropical and extratropical cyclone-induced storm surges. Understanding the distinct mechanisms governing these surge types is critical for developing targeted coastal hazard mitigation strategies. This investigation employs the FVCOM-SWAVE coupled wave–current model to conduct numerical simulations and comparative analyses of two 2022 surge events, Typhoon Muifa (tropical) and the “221003” extratropical surge. The results demonstrate that hydrodynamic responses exhibit strong dependence on surge-generating meteorological regimes. Tropical surge dynamics correlate closely with typhoon track geometry, intensity gradients, and asymmetric wind field structures, manifesting rightward-biased energy intensification relative to storm motion. Conversely, extratropical surge variations align with evolving wind-pressure configurations during cold air advection, driven by synoptic-scale atmospheric reorganization. The hydrodynamic environmental response in the sea areas surrounding Jiaodong and Laizhou Bay is particularly pronounced, influenced by the intensity of wind stress on the sea surface, as well as the bathymetry and coastal geometry. Full article
(This article belongs to the Topic Wind, Wave and Tidal Energy Technologies in China)
Show Figures

Figure 1

13 pages, 3371 KB  
Article
Marine Unmanned Surface Vehicle Measurements of Solar Irradiance Under Typhoon Conditions
by Ke Xu, Hongrong Shi, Hongbin Chen, Husi Letu, Jun Li, Wenying He, Xuehua Fan, Yaojiang Chen, Shuqing Ma and Xuefen Zhang
Drones 2025, 9(6), 395; https://doi.org/10.3390/drones9060395 - 25 May 2025
Viewed by 1040
Abstract
Autonomous unmanned surface vehicles (USVs) offer transformative potential for collecting marine meteorological data under extreme weather conditions, yet their capability to provide reliable solar radiation measurements during typhoons remains underexplored. This study evaluates shortwave downward radiation (SWDR) data obtained by a solar-powered USV [...] Read more.
Autonomous unmanned surface vehicles (USVs) offer transformative potential for collecting marine meteorological data under extreme weather conditions, yet their capability to provide reliable solar radiation measurements during typhoons remains underexplored. This study evaluates shortwave downward radiation (SWDR) data obtained by a solar-powered USV (developed by IAP/CAS, Beijing, China) that successfully traversed Typhoon Sinlaku (2020), compared with Himawari-8 satellite products. The SUSV acquired 1 min resolution SWDR measurements near the typhoon center, while satellite data were collocated spatially and temporally for validation. Results demonstrate that the USV maintained uninterrupted operation and power supply despite extreme sea states, enabling continuous radiation monitoring. After averaging, high-frequency SWDR data exhibited minimal bias relative to Himawari-8 to mitigate wave-induced attitude effects, with a mean bias error (MBE) of 13.64 W m−2 under cloudy typhoon conditions. The consistency between platforms confirms the SUSV’s capacity to deliver accurate in situ radiation data where traditional observations are scarce. This work establishes that autonomous SUSVs can critically supplement satellite validation and improve radiative transfer models in typhoon-affected oceans, addressing a key gap in severe weather oceanography. Full article
Show Figures

Figure 1

24 pages, 6724 KB  
Article
Long-Lead-Time Typhoon Wave Prediction Using Data-Driven Models, Typhoon Parameters, and Geometric Effective Factors on the Northwest Coast of Taiwan
by Wei-Ting Chao
Water 2025, 17(9), 1376; https://doi.org/10.3390/w17091376 - 2 May 2025
Cited by 1 | Viewed by 2901
Abstract
This study introduces an innovative long-lead-time prediction model for typhoon-induced waves through the back-propagation neural network (BPNN) method along Taiwan’s northwest coast, a region vulnerable to severe coastal hazards due to its exposure to frequent typhoons and ongoing offshore energy development. Utilizing data [...] Read more.
This study introduces an innovative long-lead-time prediction model for typhoon-induced waves through the back-propagation neural network (BPNN) method along Taiwan’s northwest coast, a region vulnerable to severe coastal hazards due to its exposure to frequent typhoons and ongoing offshore energy development. Utilizing data from 13 typhoons (2001–2024) at the Hsinchu buoy station, the model integrates nine parameters—including significant wave height, typhoon parameters (e.g., wind speed, central pressure), and novel geometric factors like topographic elevation—to enhance forecast accuracy. The proposed WVPDUG model, incorporating forward speed, movement direction, and topography, outperforms traditional approaches, achieving over 60% improvement in RMSE and CC for lead times up to 10 h. A knowledge extraction method (KEM) further unveils the neural network’s internal dynamics, offering unprecedented insight into parameter contributions. This research addresses a critical gap in long-term wave forecasting under complex topographic influences, providing a robust tool for early warning systems and coastal disaster mitigation in typhoon-prone regions. Full article
(This article belongs to the Special Issue Application of Machine Learning in Hydrologic Sciences)
Show Figures

Figure 1

14 pages, 6956 KB  
Article
Investigation of Typhoon-Induced Wind Waves for Deep-Sea Wind Power Platform Design
by Jianjun Yi, Guangpu Bai, Pengfei Li and Jia Sun
J. Mar. Sci. Eng. 2025, 13(5), 838; https://doi.org/10.3390/jmse13050838 - 23 Apr 2025
Viewed by 962
Abstract
Typhoons generate extreme waves that pose significant threats to offshore wind power platforms in deep-sea areas, a challenge not fully addressed in current design standards. This study investigates wind–wave coupling processes during typhoon events to provide guidance for typhoon selection in deep-sea wind [...] Read more.
Typhoons generate extreme waves that pose significant threats to offshore wind power platforms in deep-sea areas, a challenge not fully addressed in current design standards. This study investigates wind–wave coupling processes during typhoon events to provide guidance for typhoon selection in deep-sea wind power platform design. Using Pearson Type III frequency analysis of typhoon data from 1949 to 2019, the 50-year return period typhoon intensity was determined for the study area. The validated SWAN model was employed to simulate typhoon-induced waves, revealing that wave height contours align parallel to the coastline and increase sharply from nearshore to deep-sea areas. The maximum significant wave height reaches 7.78 m when a 50-year return period typhoon passes the engineering site. These findings offer critical insights for offshore wind farm design in typhoon-prone regions, providing a robust basis for wave load assessment, structural fatigue analysis, and safety optimization. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

26 pages, 9838 KB  
Article
Impact of Silted Coastal Port Engineering Construction on Marine Dynamic Environment: A Case Study of Binhai Port
by Xiaolong Deng, Zhifeng Wang and Xin Ma
J. Mar. Sci. Eng. 2025, 13(3), 494; https://doi.org/10.3390/jmse13030494 - 2 Mar 2025
Cited by 5 | Viewed by 2606
Abstract
Siltation around the harbour entrance poses significant challenges to the navigational safety and operational stability of coastal ports. Previous research has predominantly focused on sedimentation mechanisms in sandy coastal environments, while studies on silt-muddy coasts remain scarce. This paper investigates the causes of [...] Read more.
Siltation around the harbour entrance poses significant challenges to the navigational safety and operational stability of coastal ports. Previous research has predominantly focused on sedimentation mechanisms in sandy coastal environments, while studies on silt-muddy coasts remain scarce. This paper investigates the causes of siltation around the entrance of Binhai Port in Jiangsu Province, China, utilising field observation data and a two-dimensional tidal current numerical model, with emphasis on hydrodynamic variations and sediment dynamics. Observations reveal that tidal currents induce sediment deposition in the outer harbour entrance area, whereas pronounced scouring occurs near breakwater heads. During extreme weather events, such as Typhoons Lekima (2019) and Muifa (2022), combined wind–wave interactions markedly intensified sediment transport and accumulation, particularly amplifying siltation at the entrance, with deposition thicknesses reaching 0.5 m and 1.0 m, respectively. The study elucidates erosion–deposition patterns under combined tidal, wave, and wind forces, identifying two critical mechanisms: (1) net sediment transport directionality driven by tidal asymmetry, and (2) a lagged dynamic sedimentary response during sediment migration. Notably, the entrance zone, functioning as a critical conduit for water– sediment exchange, exhibits the highest siltation levels, forming a key bottleneck for navigational capacity. The insights gleaned from this study are instrumental in understanding the morphodynamic processes triggered by artificial structures in silt-muddy coastal systems, thereby providing a valuable reference point for the sustainable planning and management of ports. Full article
Show Figures

Figure 1

17 pages, 5043 KB  
Article
Surface Wave Effects on Storm Surge: A Case Study of Typhoon Doksuri (2023)
by Zhiyong Peng and Peng Wang
J. Mar. Sci. Eng. 2025, 13(3), 478; https://doi.org/10.3390/jmse13030478 - 28 Feb 2025
Cited by 5 | Viewed by 1590
Abstract
Storm surge is one of the most significant marine hazards in coastal regions of Fujian, China. Previous studies show that surface waves can exacerbate storm surge by providing additional momentum and mass flux. In fact, surface wave effects on currents can be divided [...] Read more.
Storm surge is one of the most significant marine hazards in coastal regions of Fujian, China. Previous studies show that surface waves can exacerbate storm surge by providing additional momentum and mass flux. In fact, surface wave effects on currents can be divided into conservative and non-conservative parts. However, it is unclear whether or not both kinds of wave effects are important to storm surge. In this study, we utilize an ocean circulation model coupled with surface wave forcing to investigate wave effects on the storm surge caused by Typhoon Doksuri (2305). The results indicate that both Stokes drift and wave breaking significantly contribute to the storm surge in the region located in the northeast quadrant of the typhoon’s trajectory. Wave breaking enhances the onshore current during the passage of the typhoon. This effect, combined with the onshore Stokes drift, leads to a rapid accumulation of nearshore water, thereby exacerbating storm surge. This study compares the contribution of conservative and non-conservative wave effects to the storm surge induced by Doksuri and underscores the necessity for numerical models to incorporate wave breaking and Stokes drift in order to accurately simulate and forecast storm surge. Full article
(This article belongs to the Section Physical Oceanography)
Show Figures

Figure 1

23 pages, 8334 KB  
Article
Typhoon Blend Wind Field Optimization Using Wave-Height Hindcasts
by Tzu-Chieh Chen, Kai-Cheng Hu, Han-Lun Wu, Wei-Shiun Lu, Wei-Bo Chen, Wen-Son Chiang and Shih-Chun Hsiao
J. Mar. Sci. Eng. 2025, 13(2), 354; https://doi.org/10.3390/jmse13020354 - 14 Feb 2025
Cited by 1 | Viewed by 1732
Abstract
Typhoons cause significant losses and pose substantial threats every year, with an increasing trend observed in recent years. This study evaluates significant wave height (SWH) hindcasts for typhoons affecting Taiwan using optimized wind field configurations within the SCHISM-WWM-III coupled model. To enhance typhoon-induced [...] Read more.
Typhoons cause significant losses and pose substantial threats every year, with an increasing trend observed in recent years. This study evaluates significant wave height (SWH) hindcasts for typhoons affecting Taiwan using optimized wind field configurations within the SCHISM-WWM-III coupled model. To enhance typhoon-induced SWH simulations, the blended wind field integrates ERA5 reanalysis wind data with the modified Rankine vortex wind model. Key parameters, including the parametric wind field start time, best track data, and the radius of maximum wind speed, were carefully selected based on analyses of typhoons Meranti and Megi in 2016. Validation metrics such as the skill core, HH indicator, maximum SWH difference, and peak time difference of the SWH indicate that the optimized setup improves the accuracy of simulation. The findings highlight the effectiveness of the adjusted blended wind field, the high-resolution best track data provided by Taiwan, and the maximum wind speed radius in significantly enhancing the accuracy of typhoon wave modeling for the waters surrounding Taiwan. Full article
(This article belongs to the Special Issue Storm Tide and Wave Simulations and Assessment, 3rd Edition)
Show Figures

Figure 1

Back to TopTop